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BRE

Topics

e Introduction

e Fundamentally-based flame spread model
- finite thickness and finite rate
- concurrent spread over PMMA in wind tunnel

e Simple flame spread model
- critical net accumulated flux
« model validation exercises
- plume studies
- half-scale ISO room
- five large-scale test scenarios with 10 materials
- plastic/cellulosic
- with and without flame retardant
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Introduction (1)

e Prediction of fire growth and flame spread
« Goal: “Time to flashover”
 Realistic scenarios

e Simple models
- few empirical parameters

- bridge between small-scale tests and room predictions
- Wwhich tests for these parameters?
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Introduction (2)

e CFD based studies

« comprehensive
- fluid flow, turbulence, combustion, radiation and heat transfer
- what level of detail is required in each sub-model?
- appropriate balance of our effort
- gas phase chemistry
- solid phase pyrolysis
- radiation
- Smoke
- critical model components
- “consistent level of crudeness”
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Fundamentally-based flame spread model

e |mplemented in SOFIE CFD code
- Dr Xi Jiang (1999)

e Finite-thickness ablating solids
- in-depth heat transfer
- fuel consumption

e \/olatilisation rate
- surface vaporisation
- in-depth solid pyrolysis

. _ ~E,[(RT,)
m =Ap.e /L,

- DiBlasi et al - 2nd IAFSS,1989




BRE

Model details

e Physical models
« Transpiring wall functions
« Low Reynolds number turbulence model (Lam and Bremhorst)
- Eddy breakup combustion
- Tesner soot model
- Discrete transfer radiation model

e 2D simulations
« 280 x 36 = 10k cells
« 2x8=16DT rays
- 1 second timestep
- 2 days run-time on 600 MHz machine
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Model validation

e Chao & Fernandez-Pello - CST,1983
- wind-aided spread over PMMA

0.6m x 0.076m

e 20 experiments

inflow turbulence

inflow velocity

inflow oxygen mass fraction
geometry (floor/ceiling)
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u'/U=10%, m_,=0.5, U=1.0m/s, floor

veloclty and mixture fraction
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u'/U=10%, m_=0.5, U=1.0m/s, floor
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u'/U=10%, m_,=0.5, U=1.0m/s, floor
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Effect of orientation
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u'/U=5-20%, m_,=0.5, U=1.0m/s, floor

Surface Flame Front Locations

——-F3— case A2, predicted
—&—&— case A3, predicted
—A—~A— case A4, predicted
—&—— case A5, predicted
case A2, experimental
—— — — case A3, experimental
E— — case A4, experimental

—— - - — case A5, experimental

Distance (m)
o
w
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Flame spread model for building fires

e “Department for Transport, Local Government & the Regions”
« 1997-2001 project

e |arge-scale scenarios
« rooms
- facades
- whole buildings
e Realistic building products
- with and without fire retardant
- plastic and cellulosic
e Life safety
- time to incapacitation (includes carbon monoxide, smoke)
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Simple flame spread model

e |mplemented in SOFIE CFD code
« Dr | Aksit [Aksit et al - 3rd FEH,2000]
e Time to ignition
- critical accumulated net incident heat flux:

i

t

gnition
Ecrilical - Z max(qnet _qnet ’O)At
0

e \Volatilisation rate
- heat of gasification
- function of the accumulated mass loss (hg1, hg2 parameters)

e [ncludes burnout but neglects deformation
e Applied “macroscopically” in large cells
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Physical and numerical models

e Physical models
 Flamelet combustion model
- multiple radiative loss libraries
- carbon monoxide
- Flamelet soot model (Moss et al - 22nd CS,1988)
- Discrete transfer radiation model

e Numerical simulations (deliberately “coarse™)
« 20x20x 15 =060k cells
« 2x4=8DTrays
- 1 second timestep
e 2 hour run-time on 600 MHz machine
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Non-adiabatic flamelets

e Flamelets
- various fuels
- methane, ethylene, MMA, heptane
- Soot flamelet generated
- constants from Moss & Stewart - FSJ, 1998
- surface growth term scaled by soot yield [Tewarson - SFPE,1995]
« Kinetic mechanism
- Held etal - CST,1997 41 species / 274 reactions
- Seiser et al - 28th CS,2000 160 species / 1540 reactions
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Model validation

e Plume heat loss study
- empirical correlations for plume growth
- empirical heat loss measurements

e Half-scale ISO room
- Pierce & Moss - 3rd FEH, 2000
- Toxic product predictions (CO and smoke)

e large-scale tests on building materials
« Smith et al - Interflam, 2000
» detailed measurements flame spread (TC'’s, video)
- duct measurements of HRR, temperature and toxic products
- heat flux measurements
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Plume heat loss

Plume heat loss v soot concentration
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Half-scale ISO room

Heptane Pool Fire Propane Burner
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itivities

Flamelet sens
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Doorway soot volume fraction profile

e I=S09705 room
ntral heptane pool fire (40kW)

[Cut—away view]

Soot concentratiaon z ’ —A—Held

—©—Seiser
—>— Experiment

5E-08 1E-07 1.5E-07 2E-07 2.5E-07 3E-07 3.5E-07
Soot volume fraction (-)

Room carbon monoxide concentration profile

—A—Held
—©— Seiser
—<— Experiment

50.0 100.0 150.0
Carbon monoxide concentration (ppm)
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Calibration/validation of flame spread model

e Full-scale tests
« Corner facade 7.2x3.6x2.4m, 500kW

- Shaft 2.2x3.5%x4.9m, 500kW

« Duct 7.2x1.2x0.3m, 300kW

« Corridor 7.2x1.2x24m,300kW

« Room 3.6 x2.4 x 2.4 m, 100-300kW
e 10 materials

| ['Cellulosic’

Non-fire retarded |Ordinary particleboard |PUR foam panels with Al foil faces
Ordinary plywood (birch) [(Steel-clad EPS sandwich panel)
Low density fibreboard

Fire-retarded FR chipboard FR extruded polystyrene boards
FR PVC

- Paper-faced gypsum plasterboard
- Acoustic mineral fibre tiles
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Calibration/validation of flame spread model

e Flame spread model parameters calibrated for corner facade
- critical net accumulated heat flux
« minimum flux
- heat of gasification
- scaling factors (function of accumulated mass 10ss)
- material and char densities
- char thickness

e Model applied “predictively” to other scenarios
- without changing any of the model constants!!!
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Corner facade:
particleboard

200s =
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Corner fagade:
particleboard
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Corner fagade:
particleboard
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Corner fagade:
particleboard
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Corner fagade:
FR-EPS
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Corner facade:
FR-EPS

120s
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Corner facade:
FR-EPS
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Corner facade:
FR-EPS
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60s

Corner facade:
PVC
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500s

Corner facade:
Sandwich Panel
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Duct: transition to external flahji;ng;
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Shaft: EPS
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Room:
PIR post-test




‘ BRE

EPS

Corridor




‘ BRE

72
o 18
LLl

Corridor



BRE

Corridor: EPS

55s
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Corridor: EPS
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Corridor: EPS

70s m




Full-scale tests

Comparison of pyrolysis velocities in corner wall, corridor, duct & shaft

O Corner wall / y = 1.4029x - 59.851

O Corridor (ceiling)
Duct (ceiling)
Shaft
Poly. (Shaft)
Poly. (Duct (ceiling))
Linear (Corner w all) O y=0.1578x + 26.618
Linear (Corridor (ceiling)) @)
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y = 3E-05x> - 0.0156x? + 2.2281x - 62.502

y = 0.0003x> - 0.0804x? + 7.512x - 195.69
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Heatrelease rate - PIR
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—aA— Prediction
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Carbon monoxide concentration - PIR
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Heat release rate - Particle-board

Heat release rate - FR Chipboard
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Smoke production rate (g/s)
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Effect of soot scaling on soot concentration
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Effect of soot scaling on total incident heat flux
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BRE Agcumulative flame spread model (SOFIE3) Surface velocity 47
Time=0—100= (mam /=)

Corridor — particle board

Gas temperature {degree C)
on soot concentration iso—surface (20% stoichiometric fuel carbon)



BRE Agcumulative flame spread model (SOFIE3) Surface velocity 47
Time=0—100= (mam /=)

Corridor — particle board

17
958 Gas temperature {degree C)
on soot concentration iso—surface (20% stoichiometric fuel carbon)
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Predictive use of model - corridor

Accumulative flame spread model (SOFIE3) Surface veloeity 47
Time=120s (mm/s} I

Time Of Cei”ng Spread: Corridor — particle board

Experiment: ¢. 35s

Prediction: c. 40s

I'IOOO

17
Gas temperature {degree C)}
on soot concentration ise—surface {20% stoichiometric fuel carbon)
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on soot concentration iso—surface {(10% stoichiometric fuel carbon)
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Predictive use of model - room

Aecumulative flame spread model (S0FIE3) Surface velocity 47
Time=1866s {mm/s] I

Time of Cei”ng Spread: Room — particle board
Experiment: c. 105s

Prediction: c. 80s

Gasz temperature {degree C)
on soot concentration iso—surface {10% stoichiometric fuel carbon)
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Further work

e Careful validation for whole set of tests
- special consideration of more vitiated cases

e Sensitivity studies on numerical parameters (e.g. grid!)

e Need good representation of wood chemistry
- would like to generate a new flamelet

e Development of a CFD treatment for multi-fuel problems!
- currently treat everything as a single pure fuel
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Conclusions (1)

e Comprehensive fire growth and toxic products model
- predictive capability depends on comprehensive nature
- simple flame spread model capitalises on detailed gas-phase info
- fire growth behaviour intimately linked to gas-phase chemistry
- strong sensitivity to soot predictions

e Flame spread model

- very crude

- but reproduces fire growth phenomena sufficiently accurately in some cases
e Flamelet model

- can reproduce smoke concentrations in these cases
- scale soot surface growth by measured yields

« can reproduce carbon monoxide concentration for plastics in these cases
- need another flamelet representing a typical “wood chemistry”
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Conclusions (2)

e Requires material properties from tests
- critical net accumulated heat flux
« minimum flux
- heat of gasification
- scaling factors (function of accumulated mass 10ss)
- material and char densities
- char thickness

e \We don't really mind which tests you do!
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