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1. INTRODUCTION

An experimental study of the motion of hot gas through vertical shafts and
passages under the influence of buoyancy forces is being made with the
support of the Building and Fire Research Laboratory of the National Institute
of Science and Technology, the Department of Commerce. The aim of this
work is to derive the information required for the preparation of models
which can be used to describe these flows in computer-based models of fire
spread through structures.

As a part of this work, this review has been made of the experimental and
analytic study carried out from 1973 to 1976 by Drs. Jonnie B. Cannon and
Edward. E. Zukoski under a grant from the program entitled Research
Applied to National Needs sponsored by the National Science Foundation .
The aim of this work, reported in detail in Cannon and Zukoski (1976) !, see
foot note, was to study the vertical penetration of hot buoyant gas into a shaft
initially filled with colder and more dense air. The movement of light gas is
produced by a turbulent mixing mechanism that is related to the Rayleigh
Taylor mixing process.

The origin of Cannon's and Zukoski's interest in the flow discussed is the
motion of buoyant masses of hot gas produced during accidental fires that are
confined within vertical shafts. Buoyant flows of this type occur in spaces
such as shafts, stairwells, and atria, in which the height-to-width ratio of the
space is large. In many of these situations, the location of openings between
the shaft and the outside world and the nature of the source of the buoyant
fluid can have a critical effect on the flow. The flows are important since
they transport toxic gases vertically thoughout a building and the transport
process is independent of the stack effect and hence does not depend on the
presence of openings connecting the interior and exterior of the building.

Two mechanisms are primarily responsible for vertical motion of buoyant gas
within a building: The first occurs in shafts that are open at various levels to
the surrounding atmosphere. The gas motion is produced by pressure

1 Cannon, Jonnie. B. and Zukoski, Edward. E., (1975), Turbulent Mixing in Vertical
Shafts Under Conditions Applicable to Fires in High Rise Buildings, Technical Fire
Report No. 1 to the National Science Foundation, California Institute of Technology,
Pasadena, California.
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differences that result from density differences between the gas on the inside
of the shaft and the ambient atmosphere on the outside. This mechanism is

often called the stack effect.

This mechanism is well understood and has been the subject of many studies
and is used extensively in solving flow problems involving heating and
ventilation systems as well as in making computations regarding the motion of
smoke. The first section of this review is a very brief over view of the motion
produced by the simple adiabatic stack effect. This section is included so that
its effect and that produced by the buoyancy driven mixing can be contrasted
and compared.

The second mechanism arises because the interface between an upper layer of
cold and therefore more dense gas, and a lower layer of hot and therefore less
dense gas, is unstable to small disturbances in the interface position. The
instability leads to a rapid mixing between the two gas layers, and this
mechanism operates in the absence and presence of leaks in the shaft.

This second process is identified here as the turbulent mixing process and it
is related to the Rayleigh-Taylor mixing process? that has been studied
extensively. However, this earlier work has usually involved systems in
which the vertical dimension was much smaller than the horizontal where as,
for the flows of interest her in the fire context, the vertical dimension is much
larger than the horizontal. We are also interested in the transient
development of the mixing process and the emphasis in earlier work has been
on steady processes.

The second mechanism is the focus of the present review. The much better
understood and better known stack effect is discussed below in Section 1 so
that its effect can be contrasted with the second mechanism discussed here.
Up to this time, the turbulent mixing process has not been studied to the
depth required to suggest simple models that include heat transfer between
the gas involved in the flows and the surrounding walls.

2 Koschmieder (1993), Benard Cells and Taylor Vortices, Cambridge U. Press
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2. ADIABATIC STACK EFFECT

Flows of buoyant gas within buildings depend in detail on the location of
leaks in walls, floors and ceilings that connect internal compartments, the
effects produced by forced ventilation systems, and the external pressure field
that results from wind. Several greatly simplified examples are discussed
here to illustrate the flows of interest to us.

Shaft with openings at bottom and top: The flow in a well sealed shaft
resembles that in a chimney when the turbulent mixing process of primary
interest to us is ignored. A simplified configuration, shown in the sketch of
Figure 1, is analyzed in the following paragraphs. Here, the shaft is sealed
except at the bottom and at an window near the top at elevation H. The
bottom of the shaft is open to a very large area filled with hot gas that is
exposed to the ambient atmosphere.

r 1 \Z
o —> V,, Ay, —H
As—\ a
H S Ambient air, P,
—— Z,
P e
- ambient
P Hot Gas, ph :
Zf shaft
Large hot gas
reservoir
z,

Figure 1. Adiabatic Stack Effect.

E. E. Zukoski, Caltech Review of Shaft Flows, October 1994 page S



The sketch shows the flow some time after the hot gas has entered the shaft.
The pressure distribution within the shaft, Py = Pghaf , and that outside the
shaft, Pambient = (the ambient pressure) = Py, are shown at the right. Heat
transfer effects are ignored here completely. In the absence of strong
dynamic effects, the pressure distributions in the shaft and ambient

atmosphere are fixed by the gravitational term, (%) = —pg , and thus the

pressure falls more slowly in the regions in which the density is smaller.

We assume that the reservoir of hot gas at the bottom is so large that, as gas
flows from it into the shaft, the upward motion of the interface with the
ambient air 1s negligible. We also ignore heat transfer effects between gas
and wall that would change the density of the hot gas. The first of these
approximations can easily be taken into account as accurately as required and
without greatly complicating the results; the second can not easily
accommodated because the inclusion of the heat transfer processes
complicates the computation.

The sharp pressure drop at elevation Zj is produced by the flow of hot gas
from the large reservoir and into the shaft. The drop is assumed to be equal
to the dynamic pressure qg of the flow in the shaft with velocity Vg,

(12 pavs2) , and any complexity resulting from flow separation at the bottom
of the shaft in the entrance region is ignored here. In the following
calculations, we assume that dynamic pressure is not recovered. The shaft
and window have cross section areas of A¢ and 4, and for simplicity in
notation, 4y, includes the vena contracta area reduction at the window exit.
The flow is assumed to be one-dimensional; p, and py, are the density of the
ambient gas and that of the hot gas in the shaft; Z¢is the elevation of the front
of the hot gas flow; and Pg{Z¢} and P, {Zf} are the pressures inside and
outside of the shaft at elevations Zg

A simple pressure balance gives the result,

Ps{Zf} _Pa{Zf} =4q,= (Pa—Ph )ng - 4

Whell qw = %—pa Vn:} and qs = %ph I/Sz

(1)
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For the configuration shown here, continuity arguments give:

dz,

P.AYV. = p A (_dt—) = p AV, 2)

We have assumed here that the front of the hot gas acts like a piston that
drives the unheated gas in front of it with the speed of the front and without
mixing. Since we ignore the effect of the pressure on the density of the gas,
the velocities of the hot and cold gas within the shaft are equal. Using the
definition that

(Ap;i/ pw) = (Pa-pPn)/Pa = (1-[pn/pPal) = (I-[Tq/Tp]),

these equations can be combined to give the results that

2\ p.,

oo = [ I

I1+—
AS

When Z; and 4,/ Ag are small enough, this equation can be rewritten in
terms of the time required for the front to rise from the bottom of the shaft to
reach height of the window at Zras:
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The height of the shaft, H, drops out of this result.

The time required for the front to reach a given elevation is proportional to
the area ratio and the square root of the elevation above the starting position
of the front. Thus, if the leakage area Ay is reduced by a factor of 10, the
time required will be increased by this factor.

The results in Equations 3 and 4 are useful for comparison with the times
required for the mixing layer to propagate up shafts. However, remember that
heat transfer results are not included here.

Example 1: Consider a shaft with an open window at H =30 m = Zfifinal},
with Ag =10 m? and Ay, =1m2, i.e., with A5/ A4y, = 10, and with
Pa/pPh= 133 or d4p/ps= 0.25. We find from Equation 4 that the time
required by the front to reach 30 m level will be about 50 s.

If the area of the leak were reduced to 1% of the shaft cross section area, the
time would increase to 500 s.

Distributed Leaks from Shaft: Most structures have leaks that average a
few percent of the surface area of the shaft per floor. A simple calculation,
similar to that described above, based on the assumption that the shaft wall
has an opening with a constant width ¢ that extends from the bottom at Z = 0
to the top of the shaft at Z = H, leads to the result that, for a given total open
area, Ay = HJ, the time required for the front to reach a given height will
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be as given by:

)

which reduces to the previous result when (Zf/H) < < 1.0. However, H
does not drop out of this equation.

Example 2: If the shaft described in the previous case has a perimeter of 12
m and is 30 m high, and if 1% of the surface area is open, the total open area,
Hé would be 3.6 m? distributed over the height of the shaft. If Z;/H = 0.8,
or 0.9 then t{Zg will be about 40 or 50 s. These values are comparable with
those found in Example 1, for which the single window had a much smaller
area. If the window in Example 1 had been 3.6 m, the time required for the
smoke to reach that level would have been about 14 s.

This difference is caused by the reduction in open area available for the exit
of air from the shaft, that occurs in the second example, as the hot gas rises in
the shaft.

Affects of Wind: The effects of winds on the flow of gas within the building
can be dominant and they are illustrated by returning to the problem of
Example 1. Here the pressure difference between the inside and outside of
the building at the window level AP was approximately (4p; g H) and the
dynamic pressure gy, of the wind with a velocity W will be [(1/2)(p, W?)]. If
the wind speed is 10 m/s and the other parameters are as given in Example 1,
the ratio of the pressure difference produced by the stack effect to the
dynamic pressure of the wind, ( 4P / gy, will be about 1.5. Since the
pressure difference across a building due to wind can be from 1 to 1.5 gy, 1t
is clear that the wind effects can be comparable to the stack effect. Thus, in
general, wind conditions can have an important effect on flows throughout the
building and, in particular, in shafts that are ventilated by leaks into the
building or to the outside.
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Computation of the pressure field imposed by wind effects on the exterior
surfaces of buildings is complicated process and depends in detail on the
geometry of the building, the direction and magnitude of the wind velocity,
and the influence of adjoining structures and topography on the flow field.

A very large body of data, computer programs, and reports has been
developed concerning the stack effect, with and without wind effects, and the
influences of building design on motion of gas within a building. See, for
example, the on going work by John H. Klote at NIST and also:

Klote, J. H., A Computer Program for Analysis of Pressurized Stairwells and
Pressurized Elevator Shafts, National Bureau of Standards (U.S.),
NBSIR 80-2157.

Klote, J. H. and Bodart, X., Smoke Control by Pressurized Stairwell -
Computer Analysis Put to the Test, Journal of CIB, Vol 12, No. 4,
July/August 1984.

Klote, J. H. and Fothergill, J. W., Design of Smoke Control Systems for
Buildings, National Bureau of Standards (U.S.), NBS-Handbook 141,
June 1983.

Kusuda, T. and Ochifugi, K., Air Leakage and Smoke Migration
Calculations for NBS Administration Building, Bldg. Thermal System
Div., Center of Building Tech., Nat. Eng. Lab., NBS, October 1979.

Lawson, D. L. (editor) Symposium No. 4, Movement of smoke on escape
routes in buildings, Proceeding s of the Symposium held at Watford
College of Technology, U.K., on 9th and 10th April, 1969.

Veers, E. and Waterhouse, A. A computer model for analyzing smoke
movement in buildings, Building Research Establishment Current
Paper, Fire Research Station, Borehamwood, Hertsfordshire, WD6
2BL, England, November 1978.
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3. The TURBULENT MIXING PROCESS

Important features of the turbulent mixing process that can occur in an
accidental fire within a shaft are identified in the scenario shown in Figure 2
in which a fire is startedat the bottomo of a vertical shaft. Pressures, both on
the centerline of the shaft and outside of the shaft, and density maps that
apply to the conditions shown in Figure 2(c) are shown in Figure 3 . The
assumptions made here that the pressure at the bottom of the shaft is the
ambient value, that dynamic effects are negligible, and that the densities in the
upper layer, py , and ceiling layer, pg, are less than that in the ambient

atmosphere, pj .

At first, the shaft is only open to the outside air through a large door at the
bottom floor level and the window at the top right-hand side of the shaft
remains closed until sketch of Figure 2(d). Thus, leaks are ignored and the
stack effect is absent until the window is opened.

Front —

Front—

—Front

(= (b) © (d)
Figure 2. Fire Plume in a Shaft, Open at Bottom.

In 2(a), a small fire has been ignited and a plume has started to rise into the
cooler air in the shaft. This plume can entrain unheated air all along its
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border and behaves like a freely rising buoyant plume until the edges of the
plume approach the walls of the shaft. During this phase of the flow, the
plume grows in volume due to heat addition from the fire and entrainment of
cool air from the room. The unsteady growth of the plume can be modeled
satisfactorily as long as wall effects are ignored, but interactions between the
plume and the wall can not be handled satisfactorily now.

The growing plume in Figure 2(a) entrains some of the gas originally in the
room and also displaces unheated air in the shaft and forces it to leave the
shaft through the door. The heat added to the gas within the shaft must be
equal to the enthalpy carried out of the room by the gas that leaves through
the doorway. Much of this displaced air comes from above the head of the
plume and the total mass that must leave the shaft to maintain atmospheric
pressure within the shaft is proportional to the net heat transfer to the gas
within the shaft.

P, P, \ \é—' P —\Z
z, — Front \ Zf

Poutside

Turbulent
mixing region Pms](]e

Z — Ceiling layer top \ z

Ceiling layer —

Interface Z.

Plume rise region

P =P ——
P p

4, bottom a

p=0
Figure 3. Pressure and Density Distributions in Shaft, See Figure (2C).

In sketch 2(b), the edges of the head of the plume reach the walls of the shaft
at an elevation called Z,, and cut off the possibility that gas from above the
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plume can flow around the plume and eventually through the door.
Consequently, no air from above the plume can now leave the room through
the door and the upward motion of the plume gas is blocked.

In the space above this Z, level, mixing between the plume gas and air is no
longer controlled by simple plume-rise processes but is fixed by the turbulent
mixing process that is associated with the Rayleigh-Taylor instability. This
instability occurs in the present context because low-density, hot gas in the
plume lies beneath the higher-density, cooler air in the shaft.

After the plume reaches the walls of
the shaft, air is still entrained along
the sides of the plume (see sketch
2(c) and sketch at left), and this
additional gas then returns toward the
fire source in the form of a ceiling
layer whose interface with the cooler
air (Z; in the figure) moves down
toward the floor.

7
2
4
5
.
.
Z
.
7
5
7
.
.
%

TS

The development of this ceiling layer
proceeds almost as if a porous ceiling
were present near the level at which
the plumes intersect the side walls at
elevation, Z, . The location of this
front and the rate of energy and mass across this poorly defined boundary
control the rate of transport of the gas originally in the shaft toward the exit.

The gas properties in the ceiling layer region are approximately uniform due
to the mixing between the plume flow and gas in the ceiling layer. The
motion of the interface and the top of the plume are now controlied by
different processes.

Finally, in sketch 2(d), we suppose that the window near the top of the shaft
breaks and allows the hot gas to communicate with the outside world.
Because the average density within the shaft is less than that outside, the rate
of decrease of pressure with elevation will be less inside the shaft, (see Figure
3). Consequently, the pressure within the shaft at the window level in Figure
2(d) will be greater than that outside the shaft at the same elevation.
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Because the pressure at the window level is higher inside the shaft than
outside, hot gas within the shaft will flow out of the window and in general
the interfaces at levels Z, and Z; will rise within the shaft. The consequences
of this flow will affect the entire flow field and, in particular, the levels Z; ,
Ze and Zf.

Heat transfer from the gas in the shaft to the walls of the shaft is important
element in this flow field because heat transfer from the gas changes the
buoyancy of the gas, which is the driving force for the turbulent mixing
process. Finally, viscous losses at the walls and the development of natural
convective flows may also influence the development of the mixing process
by damping the turbulent motions of the gas.

Three regions, defined for the flows in both Figure 2 and 3, are illustrated in
Figure 3: First, the buoyant plume region, second the ceiling layer region and
finally the turbulent mixing region. Both the buoyant plume region and
ceiling layer region have been studied in detail and current models may be
adequate to describe them when the stack effect is absent. However,
mteraction of the freely rising plume with the sides of the shaft, the boundary
conditions applicable at the interface at level Z,, and the turbulent mixing
processes in the presence of the effects of heat transfer have not been
adequately described.

The focus of the work reviewed here is a study of the turbulent mixing region
for flows in which the effects of heat transfer were neglected. A description
of the flow processes that occur in the turbulent mixing region requires that a
model for the turbulent mixing process be developed that will predict the rate
of rise of the front at Zrand the density of the gas below the front. This
description includes models for the entrainment rate of the mixing process at
the front and the density distribution within the turbulent mixing region. The
energy and mass exchange across the interface separating the ceiling layer
and the turbulent mixing region, defined schematically in Figures 2 and 3 are
not considered here.

In 1ts simplest form, the flow under study involves the motion of a light fluid
from a large reservoir upward mto a vertical shaft that is open only at its
bottom and that is initially filled with a heavier fluid. See the sketch shown in
Figure 4.

E. E. Zukoski, Caltech Review of Shaft Flows. October 1994 page 14



In much of the work reviewed here, the experiment was carried out as
suggested in Figure 4, and the light and heavy fluids were primarily water and
a salt-water mixtures with densities from 1 to 10% greater than that of water.
However in a few experiments gases with different molecular weights were
used. Only a few experiments were carried out in which buoyancy was
produced by heating the lighter gas, and the heat transfer effects were not
examined in any detail.

/\Hea"y fluid

Light Fluid
Reserveir

Initial state Intermediate state Final state
Figure 4. The Problem Examined Experimentally.

A typical experiment started when the bottom of the shaft was suddenly
opened and exposed to a large reservoir filled with lighter fluid. The
experiment was allowed to continue until the density differences between the
ambient fluid and that in the shaft became too small to measure.

This configuration had the advantage that it was clearly defined and was as
simple as we could study while still keeping the most important features of
real flows with the exception of heat transfer. The aim of the work was to
provide the information required for the scaling of the motion of the front of
the mixed region, the density profile within the shaft, and the subsequent
removal of all of the heavy fluid from the shaft.

The flow configuration for the experimental program is shown in the
schematic diagrams in Figures 4. Using a large reservoir of low density as
the boundary condition at the bottom of the shaft simplifies the boundary
condition at the bottom of the shaft and removes problems involved with the
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description of the development of the ceiling layer region discussed above
and shown in Figures 2 and 3.

The simple boundary conditions used in these experiments were expected to
aid us in developing an understanding of the mixing process. Flows in which
‘the low density fluid 1s introduced into the shaft by way of a plume and flows
with various wall openings such as those described above have not yet been
studied in detail.
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4. EXPERIMENTAL APPARATUS

The fluids used in most of the experiments reported in Cannon and Zukoski
(1976) 3 were water and salt-water mixtures. The density of the fluid within
the shaft was measured as a function of the time with electric conductivity
probes located at various elevations on the centerline of the shafts and the
motion of the front was also visualized by dying either the salt-water initially
in the tube or the ambient water.

The tubes were right circular cylinders and were transparent so that the dye at
the front could be followed by eye or with TV cameras. Tubes with
diameters from 3.8 to 18 cm and lengths from 29 to 89 diameters long were
used in the experiments.

Before the beginning of the experiment, the tubes were filled with the more
dense fluid and closed with a thin rubber membrane held under tension. The
tubes were held in a vertical position and the mouth of the tube was held
under the surface of a large reservoir of fresh water. The experiment was
started when the membrane was ruptured and pulled away from the mouth of
the tube.

The effect of the initial disturbance caused by the rupture of the membrane
was not thought to strongly influence the experimental results except in the
first few diameters of the shaft and was ignored in the analysis of the data.

Density measurements were made with standard hydrometers that were used
as the primary standards to calibrate electrical conductivity measurements.
The latter data were then used to obtain the density of the salt water mixtures
through a second calibration.

3 Cannon, Jonnie. B. and Zukoski, Edward. E., (1975), Turbulent Mixing in Vertical
Shafis Under Conditions Applicable to Fires in High Rise Buildings, Technical Fire
Report No. 1 to the National Science Foundation, California Institute of Technology,

Pasadena, California.
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5. MODELING

Analysis of the Basic Problem: The analysis of the results was based on
dimensional considerations and a simple estimate of the turbulence produced
by the positive density gradient in the tube. The notation used in the
following analysis is shown in the left hand side of the sketch in Figure 5.
Here p; and pq are the initial density within the tube or shaft and the density
in the ambient or reservoir fluid at the bottom of the shaft..

at (t) at (t+At)
p > P

Figure 5. Sketch Defining Notation for the Analysis.

The analysis depended on several restrictive approximations. The most
important of these were that:

1. the viscosity of the fluids were ignored.

2. the fluid was treated with the Boussinesq approximation that ignores
density variations except when the density difference is considered.
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3. the density at the bottom of the shaft, p{Z = 0, t} was taken to be the
ambient density, p,. A better assumption here would probably be to
place this condition at a point at least one diameter, d, below the

bottom of the shaft.
and

4. the shafts were all right circular cylinders.

Two phases of the experiment must be analyzed here. In the first, the front of
the disturbance propagates up the tube and reaches the top at ¢ = #5. In the
second, the density distribution in the tube changes with time until the density
difference, between fluid within the tube and the ambient value, becomes
very small throughout the tube. In the following paragraphs, we first describe
a simple model for the turbulent mixing process and then apply this result to
compute the flows generated by several geometric configurations of shafts
and reservoirs.

Turbulent Diffusion Model: The basic idea used in the analysis is to
assume that the molecular diffusivity is negligible, a most reasonable idea,
and that the turbulent diffusivity is given by the product of a velocity
fluctuation w’ and a length scale A. The value for w' is determined from an
energy balance, see right hand side of Figure 5, based on the potential energy
released when a mass of fluid with a vertical scale AZ and with density p;,
moves downward in the shaft and displaces a mass with the same scale but a
smaller density, p; . Here we assume that p;, > pj. The value for w' is then
calculated using the idea that the change in potential energy between the two
configurations appears as the kinetic energy of the fluctuations:

7
p(w) « (p,-p)gAZ and (p,—p,) = [——’—)—)AZ

ZA
1{ Jp 2
! — | = AZ
v e (2]t

The turbulent diffusivity is then estimated from the product of w’ and an
appropriate scale length, 4, to give

Thus,
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1{ dp
L= wa -1 == 1g (AZ)2
= w12 42

The most natural selection for AZ and A is the tube diameter, d. However, the
experimental results are best fit by making:

1 I\
AZ)2 < |(d) L]t = a*| =
(82)2 < [(a) 2] = (2]
where L is the length of the tube. The dependence of the turbulent diffusivity
on the length of the tube was unexpected and still has not be resolved to our
satisfaction. However, it may be due to the neglect of the convective
transport terms in the differential form of the continuity equation discussed
below.

The final approximation involves using the Boussinesq approximation that the
density that appears in the denominator of the diffusivity equation can be
taken to be the ambient density. This does not cause great problems for the
water/salt-water modeling, but probably will for a hot/cold gas model.

However, if we use these results and approximations, the final form for the

diffusivity is
0 L :
1 P 4
§ —|—=l|g d* = 5
o pa(azjg (d) ©)

and the proportionality constant must be determined from experimental
results.

For the water/salt-water modeling work, the assumption that ( p ~ p, ) in the
above equation is a good approximation. Given this assumption, the mean
velocity of the fluid in the shaft can be shown to be small. When the
convective transport is neglected, the continuity equation becomes:

op _ I dp
ot 2z\ 1tz
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and therefore is reduced to

PN P
op L | |84 (ﬁ)‘ op (6)
EY, p, \d) |\oz
in which the square bracketed term is a constant for a given experiment.

If we define the dimensioinless parameters,

ZIL=X, [(p-p)(p-p)]=06, and 7 = [ Ao g (-[i)ZJt :

the approximate continuity equation becomes:

28 _, 0 (59)5 o

51 " ax\ox

This form will now be used to examine a number of flow configurations in the
following paragraphs.

Here, k is the constant of proportionality for the diffusion equation. Note that
the nonlinear dependence on the gradient of density in Equation 7 indicates
that a wave like front can be present even though the flow is dominated by a

diffusive process.

Equation 7 can be solved by the separation of variables and the solution put in

H{z’ }F{x}.

the form: @

We find that:

L aH _ (z_k_)/sfch_f‘ - .
(H): 9 2F \Ndx dx’
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and consequently that:

)
~

ﬂ
e

I
[

daF
dx

(s-()()r)

A numerical solution for F{x} 1s usually necessary.

Density changes in a shaft after the front reaches the top of the shaft:
We assume that the front of the mixing region reaches the top of the shaft at
t = ty. For the simple shaft problem illustrated in Figures 4 and 5, the

boundary at times after ¢, are:

o0

{7, x} =0 at x =0 and (———-—
oX

) = 0 at x=1
In terms of the functions H and F these conditions become:
0: F{x}=0

1: Fix} =1 and (ﬁ) = 0
ox

At 7 = 1, H{1}=1

At x

S
*
I

Application of the boundary conditions leads to the solutions:

1
[1+a (z' - 2'0)]2

H{r}-—-

and
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2

& - (25 -y (8b)

dx 6 k

A numerical solution for F{x}, defined by Equation 8b, is shown in Figure 6
with experimental data discussed in a later section. A close approximation to
this numerical solution can be put in simple algebraic form:

Fix} = (1_(1_x)%) (9a)
Thus, for the basic configuration:
9 - F{x} < (1_(1_36)5) (9b)
[ (r—zr(,)Jrl]2 [ (r—-ro)+1]2

This solution depends on the value for the ratio ('@ / k ) which was found
from analysis to be about 2.72 for the geometric configuration studied here.

A consequence of the solution obtained here is the separation of the
dependence on time and elevation in the tube. For example:

6 {x,t} 3 1
F{x} - [a(r —’Z'O)+l] (10a)
(p-p.) (ap)

and . since 06 = ——m— =

(£§§77F{} [ (£ = 5)+1] (10b)
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Thus, this model predicts that the term on the left hand side of Equations 10a
and 10b must depend linearly on the time after the mixing region reaches the
top of the tube.

I.O

t Increases ")
0.9F & °
0.8 r
APZ O? ~
A
PL 0.6 -
0.5
THEORETICAL CURVE
0.4 -
0.3} d la
o 35 153
o.2r A .5 15.2
& 5.4 1.4
0.1 1
1 ! 1 ! i 1 i | !

o) Ol 0.2 03 04 05 06 07 08 09 10
X

Figure 6. Density Distribution Function F{x} for Configuration of
Figure 5 and 7(A).
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Finite Reservoir Problems for £ > #): Several other problems can be solved
with this approximate solution by changing the boundary conditions. The
most easily changed parameter involves the boundary conditions at the
bottom or top of the shaft and the problems to be solved are illustrated in
Figure 7:

Dense fluid Finite
/ \ Reservoir
Less Dense
Fluid Infinite
Reservoir

(A) (B) ©

Figure 7. Initial Conditions for Configurations with Finite Reservoir
Volumes. (A) The basic problem with an infinite reservoir at bottom
of shaft, (B) finite reservoir at bottom of shaft, and (C) finite reservoir
at top of shaft and infinite reservoir at bottom.

In the left hand sketch, 7 (A), the volume of the reservoir beneath the shaft is
infinite. In sketch 7 (B), a finite reservoir replaces the infinite reservoir at the
bottom of shaft. Experiments and calculations have been carried out with this
configuration with the volume of the reservoir ranging from 2 to 24 times that
of the shaft. Only calculations were performed for the configuration shown in
sketch 7 (C).

The assumption made for the finite size reservoirs is that they can be treated

as a homogeneous or perfectly region with uniform density. This simple
boundary condition for the bottom or top of the shaft is now a function of the
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time. This condition is applied at the exit of a shaft next to the reservoir and
can be written in terms of the cross section of the shaft Ap as:

or| _ op
4,8 ( 3 ZL: = (¥ eor )( Y )N (11)

The ratio of the volume of the finite sized reservoir to the volume of the

shaft, Vi =(Vyeservoir’ Vshaft ) , now appears in the solutions because the
volume of the reservoir appears in this boundary condition. When the
separation of variable solution described above is applied again here, the
differential equation for & {x, 7} and result for H{t} is as before in Equations 8
and 9. The equation for F{x} in Configuration 7(C) becomes:

) (fe-r

Here, C is a constant. The boundary conditions become:

(4] - (2] me

F{x} =0 atx=0 and F=1 at x=1-

Both F{x} and (a/ k) now depend on V. The solution again has the form:

Ap{x,7} _ F{x}

°= g [a (2 -2)+1]

The dependence of (a/ k) on V. and the form for F{x} are shown for the
problem in 5(C) in Figures 8a and 8b. Here, V= corresponds to the
basic problem. The reservoirs make surprising little difference for this
configuration until 7} is near 1.0.
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Figure 8a. Values of (a/k) versus V. for Configuration 7(C).
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Figure 8b. Density Distribution Function F{x} for Configuration 7(C).
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pyfe]

Solutions for the configuration 5 (B) were obtained in a similar manner and
are shown in Figure 9a and 9b. Again, V; makes a difference only when the
Vy<3.

(2r
1or M
P"
8- Y
¥
o NG 3 AN WELL MIXED
QLS ,";‘275’./4 REGION
6..
4.—
2 1 1 1 | 1 1
O [ 2 3 v 4 5 6
_ WELL MIXED REGION
=
VSHAFT

Figure 9a. Values of (a/ k) for Configuration of Figure 7(B).
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Figure 9b. Density Distribution Function F{x} for Configuration 7(B)
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Density changes in a simple shaft for (0 < ¢ < tp): The problem here
is to calculate the motion of the front of the turbulent mixing region as it
propagates up the shaft. First, Equation (5) is modified by changing the
dependence on the length from L to Zf where Zfis the location of the front.

This exchange gives:
1
- )
p.\8Z d
and the corresponding form for Equation 7 is then:

96 _ (e )i 2 (20)
é‘r'_k(xf) 5x'(5x') (12)

Where: x', = Z,/d, x'= Z/d, t's /%A-pt
Pa

The boundary conditions are that: 6 {x',,z'} = LO and — = 0
ax' Ji,
X

f
This equation is integrated with the aid of an integral technique based on the
form for F used in the successful representation for the basic problem:

(1Y
o (w0} = 1[1_.._] (13)
X, {T }
The solution indicates that 7’ is the correct correlation parameter and that

x', <z ')g. Unfortunately the experiments suggest that the power should be

nearer 0.60 than 0.44. Thus, the model for the spreading process is not useful.
(Certainly, a more general approach than that suggested buy the use of
Equation 13 needs to be made here.)
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6. Experimental Results

The results of experiments carried out with the water/salt-water modeling
technique and described in the report by Cannon and Zukoski ¢ will be
discussed here.

Motion of the Front in a Simple Shaft: The motion of the front made
visible by dying the ambient fluid was irregular and appeared to be the result
of waves of turbulence that originated at the exit of the shaft. They
subsequently propagated up to and pass beyond the front, and propelled the
front into the unmixed fluid at the top of the shaft. Fingers of mixed fluid
frequently moved several diameters up one side of the shaft and then fell
back to completely fill the tube with mixed fluid.

The data for the location of the front as a function of time shown in Figure 10
for a range of values for the shaft diameter, d, and length, L. The data are
correlated by the expression:

% = (0.97)[/%% t} | (14)

The correlation improves as the distance from the open end of the shaft
increases and the weak scatter of the data for the 6 fold increase in diameter
suggests that viscous effects are not important.

Because the data correlation by Equation 14 is very good, the proposed
scaling parameters for the elevation and time appear to be appropriate
scaling parameters although the power law is different from that suggested
by the model. Given the differences between computed and experimental
results, the application of this empirically derived model to fire flows, even
when heat transfer is not a dominant feature, should be made with caution.

4 Cannon, Jonnie. B. and Zukoski, Edward. E., (1975), Turbulent Mixing in Vertical
Shafts Under Conditions Applicable to Fires in High Rise Buildings, Technical Fire
Report No. 1 to the National Science Foundation, California Institute of Technology,
Pasadena, California.
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Figure 10. Elevation of the Front as a Function of the Time
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Example 3. As an example of the use of Equation 13, return to the problem
discussed earlier involving a 30 m shaft with a width of about 3.2 m and with
( Ap;i/ pg)=0.25. The turbulent front will move up the shaft in about 66 s
compared with the 50 s required for the stack effect example with a simular
geometry that was discussed in Example 1 of Section 1. However note that
in the stack effect problem, gas with the full density jump is delivered to the
window area in 50 s; here, the front of the turbulent mixing region arrives in
a comparable time, but substantial density changes will arrive later.

Density Distribution for ¢ > #;in a Simple Shaft: The dependence of the
density profile function F{x} onx =(Z/L) is shown in Figure 6 for a few
examples and the agreement between data and prediction is good. However,
the measured values do change with time and do deviate from the predicted
values for the L/d = 5 example.

In Figure 11a the square root of the density ratio, (4p;/ 4p) is shown as a
function of the dimensionless time for 6 positions within a 9.5 cm shaft. In
Figure 11b the same data is shown as the square root of the function

([ F{x} 4p;i ]/ dp{x. 1} ) .
The separation of variable solution, see Equation 9 and 10 reproduced here,

indicates that in general for this flow the density difference at (Z /L) =x and
at the top of the shaft, where x =1 and F = 1.0 could be written as:

Ap, _ -7 and ————Api = -
\/F{x}(Ap{x’r}J—(Ha[f 3)) \[[Ap{m,r}} (l+alr - g])

Thus, the square root of the reciprocal of density difference ratio, the left side
of in these two equations, should be linear functions of time.

This stringent prediction that is tested against the experimental results in
Figures 11. In Figure 11a, the data are presented as a function of the
reduced time but without including the function F{x) as required in Equation
10a, shown on the left side above. At any given elevation the data are linear
as required by the model after the front reaches the top of the shaft.
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Figure 11a. Dependence of Density-Difference Ratio on Reduced Time.
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When the function F{x} is included, the correlation of the data, shown in
Figure 11b, is excellent at any given value of the reduced time and are a
linear function of 7, the reduced time, after the front of the turbulent mixing
region reaches the top of the shaft. This good agreement gives confidence in
the general structure of the computations leading to equations 10a and 10b.

B (0 1.0
A .87 o}

T

2.2

i I 1 H 1 ! 1 i 1 1 1 1 { . H 1

O 4 .8 .2 (.6 2.0 24 28 32
9

V(22) = (&),

Figure 11b. Normalized Density Ratio for Data of F igure 11a.
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Similar data are shown in Figure 12 for the density difference ratio measured
at the top of the shaft and for a range of values for d and L. Again the data
are linear as required by equation 10 and are well correlated.

dll L/d (L)i
i N 7% (56 1100 ° {
o 7§ 1.6 1086
v 7§ 754 1050
>ol a 5% (14 1125
o 5% (1.4 1.036 /a
3
o 37 153 ozl TN
| O 35 206 LIS /
D 2 156 1.050 o
o xé 51 1076 /
- %
i 9
AP g [/ d /4
Pa d L f
[.O / 1 ‘ 1 1 . 1
0 1.0 20 3.0

Figure 12.. Normalized Density Ratio for Range of Initial Conditions and
Shaft Geometry
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Data from the few experiments in which gas mixtures were used to obtain
the density differences are shown in Figure 13, and the same general results
are obtained although the data for the higher density ratio are offset from
those with density ration less than one.

3.0 7
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Pag
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g 038

o
@ *%% a0
o

2p ).
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20
-
{Line From Fig.6.11) — .
— -
_ =
o b
- -
e
I 1
L0 Xe 2.0 30 1 e
Api g (3)9/4
Pa d L

Figure 13. Normalized Density Profile for Gas-based Experiments
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Example 4. For an example, return to the problem discussed at the end of
the last subsection. The time required for the density difference at the top of
the shaft, 4p{x=1.0, ¢} to reduced to half of the initial density difference,
A4p; ,is given by:

Hap{x=1,7}= 0.5(Ap,) } = (3.0) [(Af (Ei__&_)}

d g Ap,

Here, the constant 3.0 is taken from the data and corresponds to
(4p/4pj) = 0.5. For the current example, with L/d =10,d =32 m,
4p;=0.25 p, , the time is about 600 s. Thus, although the arrival time of
the front of the turbulent mixing region is comparable to that for the stack
effect with a large window, the delivery of gas with a substantially different
density to the top of the shaft is slower.

Finite Reservoir Problems for ¢ > ¢): Three examples of data obtained
with a finite reservoir volumes at the bottom of the shaft, Configuration 7(B),
are shown in Figures 14 and 15 for volume ratios 2, 12 and 24. The general
form of the solutions is again in agreement with our predictions. The value
for the ratio («/ k) that best fits the data is in good agreement with the
predicted value for V; values 12 and 24 but is less satisfactory for /3. of 2.
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Stairway Model: Finally, a set of experiments was
carried out with a very simple model of a stairway,
shown in the sketch at left. The model was made up
of a 9.5 cm diameter shaft with an L/d of 7.9 and with
semicircular baffles spaced one diameter apart and
placed alternatively on opposite sides of the shaft as
indicated in the sketch.

In these experiments, flow visualization suggested that
a vortex like motion was established in the space
bounded by two adjacent baffles and that the transport
of mixed fluid up into the next level was greatly
delayed.

The effect of the baffles is shown in Figure 16 as a
plot of the density-difference ratio at the top of the
shaft versus the reduced time. Note that the unbaffled
and baffled cases have different time scales, shown at
top and bottom of the graph, and that the time scale
for the unbaffled flow is roughly ten times smaller
than that for the baffled case.

This result indicates that the interior geometry of shafts and stairways can
have a significant effect on the upward spreading rate of the hot gas plume.
Although viscous effects may have an effect on these results, the baffles
clearly have a very large effect and we should expect that the contents of
stairwells will have a marked influence on the turbulent mixing process in
real fire-scale configurations.
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Figure 16. Influence of Baffles on Propagation of the Front
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10. Conclusions

The turbulent mixing process examined here can transport hot gases
vertically in buildings through shafts or other vertical openings with and
without the stack effect. Models for the turbulent mixing process developed
here are not entirely satisfactory but they give a reasonable picture of the
experimental results and the limited success of these modeling efforts
suggests that better models that include heat transfer can be developed.

The final forms for the diffusion coefficient and the mass flux across a
horizontal surface within a shaft with area 4, are given by

b = k _L(gﬁ)g dz(ﬁ)z and A ﬂt(éﬁ)
p.\9Z d F oz

and the experimental data suggests that k ~ 0.28.

Z

The analysis discussed above gives the general trends for the data and does
lead to relatively simple and accurate models of the flow in several
configurations of interest. The basic dimensional representations of the
variables appears to be satisfactory and the model predicts the decay of the
density difference within the shaft remarkably well given the simplifications
used in the derivation of the solutions.

Data correlations based on the simple model are not completely consistent.
For example, the dependence of the local turbulent diffusivity on the length of
the tube and the variation from the predicted values (a / k ) are problems. At
least in part, these problems are thought to be caused by the simplification of
the continuity equation as discussed above and a more rigorous treatment will
be required to eliminate them. Thus, we believe that the primary problems
with the current analysis are that the Boussinesq approximation is made in the
diffusion term and that the convective transport due to density changes is
neglected.

These approximations can be corrected although numerical rather than
algebraic solutions will be required. A computation scheme that will correct
these deficiencies in the model, and that will allow large density differences
and heat transfer to the walls of the shaft is currently under development.
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