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_ Introduction. Turbulence models are often used to analyze practical fires due to the computational
intractapility of fully resolved three-dimensional time-dependent simulations of practical buoyant trbulent flows.
Developing reliable turbulence models, however, has been inhibited due to the absence of measurements;
therefore, the objective of the present investigation is to complete measurements within round buoyant turbulent
Plumes, emphasizing self-preserving conditions far from the source. Present considerations include classical
similarity concepts [1) and turbulence models of varying complexity [2,3]. Detailed discussion of the
investigation can be found in [4-6]. o

Experimental Methods. Dense gas sources (carbon dioxide and sulfur hexafluoride) in still air were used
to generate the test plumes. Mixture fraction and velocity statistics were measured using laser-induced iodine
fluorescence (LIF) and laser velocime: tl')'(LV).\'%lillie‘:tiﬁ\':g;l

Results and Discussion. The most significant g has been that
reach self- ing conditions [4-6]. This difficulty was not recognized
impeding dcvelopmcntofnn'buleneemodels.'Ihepmblemisillum:edinl’ig.l.whueaﬁnﬁluityvuinbk
for mean mixture fraction, F, is plotted as a function of the radial plume similarity variabie. The plots include
turbulence model calculations and earlier measurements summarized in [2], as well as the present measurements.
In order to match predictions and earlier measurements, the model constant, Cy;, was increased from 0.09, its
well-established value, to 0.15-0.18 [2). In contrast, present measurements of truly sclf-preserving plumes
indicmannmwaﬂowandagreewithptedicdonsusingthemndndvnlueofq;;considemionofveiciﬁu
yielded similar results.

Quantities like the rms mixture fraction and streamwise velocity fluctuations, & and ', must be known in
order to treat developing flows but finding I is problematical for buoyant flows. This difficulty is illustrated in
Figs. 2 and 3 where T, and f* are plotted for self-preserving conditions [4-6]. The behavior of T, (Fig. 2) is
similar to nonbuoyant flows [3] and is given reasonably well by the models used in [2]; however, T (Fig. 3) has
large values near the axis due to buoyancy-turbulence in: ions not treated in [2]. The difficulty is caused by
the large streamwise gradient of mean mixture fraction which contributes a production term for f' that normally is
ignored using the conventional boundary-layer approximations.

Temponlpowerspecmmanothcinmﬁngfeamofhwymmb\ﬂgmﬂows Examples of temporal
spectra of T in the self-preserving region are illustrated in Fig. 4 but results for f* are similar [4-6). The spectra
initially decay according to the -5/3 power of frequency similar to the inertial-convection region of conventional
nonbuoyant turbulence, but then exhibit a -3 power decay rate within an inertial-diffusive subrange that only is
observed for buoyant turbuleat flows [4-6).
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Fig. 1 Predicted and measured mixture frac- Fig. 2 Radial profiles of streamwise velooity
tions. fluctuations
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- Fig. 3 Radial profiles of mixture fraction Fig. 4 Temporal power spectra of stream-
fluctuations. wise velocity fluctuations.
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