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ABSTRACT

Window glass breaking plays an important role in compartment fire
dynamics as the window acts as a wall before breaking and as a vent
after breaking. Previous work suggested a model for the time to
breakage of a window glass exposed to a particular fire. In this paper,
the glass thermal fields obtained using that model are examined in detail.
The temperature field dependence on heat transfer coefficients, radiative
decay length and flame radiation is explored. The results show that the
glass surface temperature increases with a decrease in the decay length
and increases with an increase in flame radiation heat flux. Early in the
fire, the glass temperature may be higher than the hot layer temperature
due to direct impingement of flame radiation. Later the glass tempera-
ture lags the hot layer temperature. The variation of the tinme 1o
breakage as a function of the shading width and decay length is also
presented and the results indicate that the breaking time decreases with
an increase in the shading width and decreases with a decrease in decay
length. Heat flux maps for typical conditions indicate that most of the
heat influx is stored in the glass, increasing its temperature.

NOTATION
A-G Constants
Bi Biot number, hL/k
c Specific heat capacity
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Young’s modulus
Kernels

Heat transfer coefficient
half-width of the window
Radiant heat flux directly from the flamc
=I(t)L/kT, scc eqn (6)
Thermal conductivity
Decay length

Glass thickness
Dimensional heat flux
Energy

Shaded length
Temperature

Dummy variable

Thermal diffusivity

Thermal expansion cocfficient
Dimensionless decay length, //L
Emissivity

Dimensionless temperature
Dimcensionless x coordinate
Stress

Dimensionless time
Dimensionless heat flux

Subscripts

Qe v =m0 TN —

Ambient (outside) side of glass pane
Compartment side of glass pane
Breakage

Characteristic, convection

Flame radiation

Initial

Radiation

Stored in glass

Diffusion in shaded portion
Ambient

INTRODUCTION

Windew glass breaking in fires is an important practical problem, since
a window acts as a wall before breaking and as a vent after breaking.
Thus, the knowledge of the time to window breakage is crucial in order
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to predict the evolving compartment fire dynamics. Emmons' high-
lighted the importance of glass breaking in fires, and, based on Harvard
experiments,”> suggested thermally induced tensile stresses as the
mechanism for glass breakage. All window glass has its surrounding
edge covered by an opaque frame or gasket. Glass is a relatively poor
thermal conductor. The central portion of the window is heated by
infrared radiation and hot gas convection, while the frame protects the
shaded edge so that it remains near its initial temperature. The thermal
expansion of the central portion places the covered edge in tension until
it cracks. These cracks then bifurcate and quickly propagate, causing
the window to become a vent. This scenario suggests a simple criterion®
for the temperature rise required to break glass windows in fires which
follows directly from Hooke’s law:*

B AT =0o,/E (1)

where AT is the temperature difference between the glass edge and
center; B is the thermal cocfficient of linear expansion; o, is the
breaking stress; and E is the Young’s modulus for glass. Keski-
Rahkonen did excellent analyses™® of the limiting cases where: (1) there
are no temperature gradients across the glass thickness so a constant
heat input can be treated as a volumetric heat source; (2) convective
and linearized radiative heat losses are constant and identical on both
sides of the glass so it can also be treated as a volumetric heat sink; and
(3) all gas temperatures, the initial temperature and the temperature of
the outer edge are constant and identical. His analytic results confirm
eqn (1) as a lower limit for AT. While the restrictions make it difficult to
apply these analyses directly to compartment fires, they do describe
small-scale experiments with large, constant radiative heat influx.”

Skelly et al” did an experimental study of glass breaking in
compartment fires. They burned liquid fuel in pans inside a compart-
ment which had a glass window and recorded the temperature historics
of the glass and hot gas layer inside the compartment. This experimen-
tal study also indicates that eqn (1) is a reasonable first approximation
for the glass temperature at breakage. What remains is to model energy
transfer between the fire, the window glass and the ambience, in order
to predict the time at which the glass breakage tcmperature is reached.
Techniques to calculate accurately the history of the central glass
temperature profile, T(x, ), by taking the Laplace transform of the
temperature and numerically integrating the resulting equations, have
been described.® Two-dimensional temperature histories, T(x, y, ), and
miean stress histories, o..(y, t), were also presented.

This paper examines in detail the thermal fields obtained from that
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model.* The following probleins are addressed: (1) the nature of kernels
arising from Laplace transform of the tempcrature] (2) parameter
effects on the temperature profiles within the glass thickness; (3) the
dependence of the temperature histories of the central exposed glass
surfaces on the Biot number, the dimensionless decay length, v, and the
unsteady dimensionless incident radiative flux, j(7); and (4) the
dependence of the dimensionless breaking time, 7,, on the dimension-
less shading width, s/L. The dependence on the heat transfer coefficient
at the outer surface is not explored because it is not expected to vary
significantly in a fire environment.

THEORY

Consider the window shown in Fig. 1. For large shading, s/L =2, and
fast hea ‘ng, at,/s* =1, where s is the width of the shading and L is the
glass thickness, the temperature difference AT in eqn (1) corresponds to
the temperature difference between the initial temperature of the
unhcated outer edge and the transient temperature of the uniformly
heated central section of the glass.® The goal then is to determine the
temperature in the large central section of the glass as a function of
depth into the glass, x, and time, ¢ Significant temperature gradients,
9T Jax were shown to exist since the heat source is on the inside of the
window and the sink is on the outside. The unshaded glass is uniformly
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Fig. 1. Window geometry showing the coordinate, x, and length parameters. x, Depth
into the window: s, width of the shading: H, half-height: L, glass thickness.
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heated, so d/dy and d/dz are zero. The governing equation is:

aT o*T e !
—=k—+I(
pe At dx? ) !

(2)

where I(z) is the incident radiative flux directly from the fire which is at
sufficiently short wavelengths that its distributed internal absorption
needs to be included;” and / is the decay length in the glass. With the
assumption that the glass is grey to other radiation, the initial and
boundary conditions are:

att=0, T=T, (3)

atx =0, —k g= ho(Tox(t) = T(0, 1)) + 2.0 T2.(1) — £aT*0, 1) = g2(1)
(4)

atx =L, —k Z—ZZ hi(T(L,t) = T.(1)) + eocT*(L,t) — €. oT}.(t) = q,(t)
(5)

where side 1 is toward outside ambience and side 2 is toward the hot

layer inside the compartment.
With the definitions:

f__ ,L__i[- _i Q—T_TI
U L T T
TI.=o0w/EB — T, d)l:le/L; qﬁz:kT?L’ (T):kT/L ()

the dimensionless governing equation is:

a6 9’0 et
—=—+j 7
o e O ™
with dimensionless initial and boundary conditions:
att=0, =0, (8)
a0
at §:O, _—6—524)2(1-), (9)
00
at £ =1, —£=¢x(f)- (10)

Explicit expressions for the dimensionless heat fluxes, ¢,(7) and ¢,(7),
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are given in the Appendix. This cquation is solved using a Laplace

transform on time:

9*=J fe rdr
0

The solution for both surface temperatures is given by:
VT Vvt

00, )= ZJ’ F(0, u)d (1 —u?)du + Zf F(0, u)d,(t —u?) du
0 0

2
+— j F(0, u)j(t — u?)ydu
Y Jo

and:

o(l, r)=2f F(Lw)d(t—u’)du +2J (L, w)d(t — ) du
[§]

j F(1, u)j(t —u’)du

)

(11)

(12)

(13)

where the F(&, 1) are kernels which are functions of y, § and u and are

for short time, u <(-4:

F(¢é u)= __._[Ee (6 2k - 11 +Ee (£02A+l)/4u:|

k=0 k=0

F(& u)= [2 (€ R | 2 o 2,\_)3,4“:]

k-0 k-1

and:

F(&u)= u[e ervguy’

(14)

(15)

1 = 2k+1-¢ 1u?
+-¢ u/y|:§: (,I‘fC( 1)er(z/\n»g)/y
2 £ 0 Vi e
2k+1— ¢ 1’
—erf (___‘+ >\(2/~'l'{)/7
erie Va2 v ©

- 2k+1+¢ "’
+ er C< _j>e~(2/\elr§)/y
;, Vi -
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2k +1+¢& 12
—erf (———w—— + _> (2k H+£)/y:|
‘ Vdu- \/;

., [ " (Zk + ¢ uz> ,
— -t fc — e Qk+EVyY
26 E)er ,——-4”2 72 €

2k + ¢ w .
—erfc (——— ,4le+ \/;> (Rh+&)y
= 2k — & u2>
+ e S At PEe 7 S 12
Z] erfc ( e \/; e

2k — 2
—erfc <_\/Z—u—2§+ @)emé)/v]] (16)

and for long time, « > 0-4:

F(&u)= —u(1 +2 2 (—1)* cos (k7r§)e""z”z“3> (17)

E(é u)= u(l +2 i (—=D*cos (krn(l — 5))6’*2”"“1) (18)

and;

2 2 (—1)F k L
penfer] 125 G

2 & (=) cos(km(l =€) opey
_[_Y+;,(E:1 _kznz_(l/,YZ) € ]] (19)

The numerical procedure was the trapezoidal rule with constant time
steps and thus variable Au, since the ¢, are functions of 6 which is
known only at each time step. Newton-Raphson’s method for finding
roots of non-linear equations was also utilized.

KERNELS

Figure 2a shows the variation of F(0, u) and £(0, ) w*'' u. From eqn
(12) it is evident that the area under the curve £(0, u) from u =0 to Vi
is equal to the temperature of the inner surface 8(0, 7) for ¢, =3 with
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Fig. 2a. Variation of kernels F(0, ) and (0, 1). The arca under the curve F(0, u)

from 0 to VT is the temperature of the inner surface for the sample case, ¢, =14 and

j=d>=0. The arca under the curve F(0, u) from 0 to V7 is the temperature of the
inner surface for the sample case, ¢» = Land j=¢,=0.
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Fig. 2b.  Variation of (1/y)}/3(0, 1) with i« and y. The arca under this curve from 0 to
VT is the temperature of the inner surface for the sample case, j = Land &, = ¢ =0.
The symbols indicate the numeric. data points at fixed w intervals (Au = 0-01).
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Fig. 2c. Variation of (1/y)F(1, u) with v and y. The area under this curve from 0 to
/T is the temperature of the outer surface for the sample case, j = Land ¢, =¢,=0.
The symbols indicate the numerical data points at fixed « intervals (Au = 0-01).

$,=j=0. Since ¢, represents heat loss from the outer surface, (0, 1)
should decrease with time when ¢,>0. Thus, F(0, ) monotonically
decreases with u«. Also, since the initial condition is 6(0,0)=0, a
positive ¢, implies that 6(0, 7) should become negative. Therefore,
F(0, 1) is negative. The magnitude of F,(0, «) remains close to 0 till u
approximately reaches 0-4. The reason is that the thermal diffusion
wave emerging at the outer surface due to the sudden heat loss at 7 =0
takes some time to reach the inner surface.

The variation of £(0, 1) also shown in Fig. 2a, is analogous to that of
F(0,u) for ¢, =;j=0 and ¢, =; except that now ¢, represents heat
gain at the inner surface when ¢,>0. Thus, FE(0, u) increases with u
since the area under this curve from u =0 to VT is equal to the
temperature at the inner surface, 6(0, 7). Also, the temperature of the
inner surface instantaneously increases at 7 =0 when ¢, >0. Therefore,
F(0, 1) begins with a positive value. This result can also be obtained by
noting that the limit of (0, ) as u— 0 is equal to 2/Vr. The plots of
F(1,u) and Fy(1, u) are not shown here since F(l,u)=—F(0,u) and
F(1, u) = —F(0, u).

Figure 2b shows the variation of (1/y)F(0, u) with u for different
values of the dimensionless decay length, y. As suggested by eqn (12),
the area under the curve, (1/y)F(0, u) from u =0 to V7 is equal to
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0(0, 7), the dimensionless temperature of inner surface for j =1 with

¢, = ¢, =0. For a constant value of y, (1/y)f(0, u) increases with u,
since the imposed radiative flux increases the temperature of the inner
surface, x = 0. At a particular value of u, (1/v)F5(0, 1) decreases as y
increases because a smaller amount of net radiation is absorbed in the
glass. In the limit as 7 — %, the variation of F;(0, «) with respect to u is
linear since the diffusion effects cease.

The variation of (1/y)F(1, «) with « for different values of y is
shown in Fig. 2¢c. The arca under this curve from « =0 to V1 is equal to
6(1, 1), the dimensionless temperature at the outer surface, when j =3
and ¢, = ¢, =0. Here again, (1/y)F(1, 1) increases with u because the
imposed radiative heat flux increases the temperature of the glass. In
the limit as 7 — o, the variation of Fi(1, u) with respect to u is linear
due to no diffusion effects. Figure 2c however, differs significantly from
Fig. 2b in the variation with respect to y. This can be explained as
follows. In Fig. 2¢, two different time zones, # <0-4 and v >0-4 can ¢
identified. The earlier time zone occurs when the thermal diffusion
wave emerging at x =0, resulting from the temperature difference
between the surfaces, has not reached x = L. In this time zone, the
temperature of the outer surface, 6(1, ), increases only due to the
radiative flux. Therefore, as y increcases, more radiation reaches the
outer surface, and 8(1, t) and (1/y)f3(0, u) increase. In the later time
zone, the thermal wave emerging at x =0, reaches the outer surface
x = L. Here, 8(1, t) decreases with an increase in y because a smaller
amount of net radiation is absorbed by the glass.

EXACT SOLUTION

An exact solution to eqn (7) subject to eqns (8)—(10) can be obtained
for the case of lincarized radiation and constant heat transfer
coefficients, ambient temperatures and emissivitics on both sides of
glass. Here, the radiative heat loss from both surfaces of the glass is
linearized giving effective heat transfer coefficients. Therefore, all terms
in eqns A(3)-A(9) of the Appendix which contain emissivities are
dropped. The technique used to solve this problem is separation of
variables. First, the solution is divided into a steady state and a
transient part. The steady-state part of the solution is then trivial and
the transient part is obtained by solving the resulting eigenvalue
problem. The solution is:

0(¢, 1) =u(, ) +v(é) (20)
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where:
v(§)=pétq (21
and:
Bi,Biz(sz—le) Bi19|-£+Bi282x+Bi|Bi292x
p=—7 : —= and g¢= , : — (22)
Bi, + Bi, + Bi,Bi, Bi, + Bi, + Bi,Bi,
The constants 8.., 8,.., Bi, 'nd Bi, are defined as:
.- T T,.— T, - h,L - h,L
6,, = ZTC D 0= ‘Tc : lez—}(— and Bi, = ;{ (23)

where h, and h, are the heat transfer coefficients. The solution for
u(§, t) is given by:

w=3 e [ myan [o.6) ()
n=0 0

where the characteristic functions ¢,, are:

$.(£) = A, cos (A,€) + Birsin (A, €) (25)
and the eigenvalues A, are obtained from the solutions to:

A2 — Bi,Bi
COt A, =—.—ll"‘l.i (26)
A, (Bi, + Bi,)

The constants C,, weight functions w, and norm N(A,) appearing in the
equation for u(¢, t) are defined as:

Lo TR
= TN v(€)d.(¢) d¢E, W"(T):yN()\,,) ) J(r)e 7 (§)dE (27)
and:
I, Bi, .
N =5 [()\,, + Bzz)(l Thrr Bl_%) ; B,Z] (29)

Comparison between exact and numerical solutions showed that, for
a dimensionless time step of 0-002, the agreement was within 0-5%. The
exact solution, however, cannot be used to simulate real evolving fire
environments.
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Fig. 3. Temperature profiles as functions of 6,,. Here, j=1, t=03, Bi,=05,
Bi,=0-1and 6,, =0.

Profiles

In this section, the temperature profiles obtained in glass using the
exact solution are explored as functions of different parameters to
estimate the temperature distribution within the glass. Figure 3 shows
the temperature profile as a function of the dimensionless hot layer
temperature, 6,,. Here, 6,. =0, j=1, Bi,=0-1, Bi, =05 and T =0-3.
These values are chosen because they are typical of real fires. For
example, for a glass window of Smm thickness, and thermal conduc-
tivity of 0-:76 W/m-K, Bi, = 0-1 would correspond to i, =152 W/m-K
which is typical of natural convection in air on the outer surface
exposed to ambicnce. The inner surface heat transfer coefficicnt would
then be equal to 76 W/m’-K which is typical of forced convection by the
hot fire gases and / = 28 kW/m", which is typical of a compartment fire.
For these parameters, the temperature of the glass increases with an
increase in 6., duc to a larger heat influx. The maximum temperature
of the glass occurs at the inner surface as long as the gas temperature
remains higher than the glass temperature otherwise it occurs in the
interior of the glass since the glass loses heat on both the sides due to
convection.
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Fig. 4. Temperature profiles as functions of j. Here, 8., =50, 6., =0, Bi,- 15,
Bi,=0-1and 1=0-3.

Figure 4 shows the temperature profiles as functions of j. Here
0,.=5, 0,.=0, 1=03, Bi,=05 and Bi,=0-1. The temperature
increases with an increase in j as expected. The variation of tempera-
ture profiles with Bi, showed that the temperature at the inner surfacc
increases with an increase of Bi, when 6., = 5. This is a typical value of
hot gas temperature in real fires at the time of breakage. In all the cases
considered, significant temperature gradients exist within the glass
thickness, implying that a uniform glass temperature approximation is
not valid in real fire situations.

PARAMETERS

Figure 5 shows the temperature history of the inner glass surface, for
different values of dimensionless decay length, y. Biot numbers are held
constant and the hot gas temperature was calculated from FIRST' for a
recent full scale fire.® Here /=10kW/m* and represents a window
adjacent to the fire. The temperature of the inner surface increases with
a decrease in y because a small value of y implies that most of the
incident radiation is absorbed within a short distance into the glass
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Fig. 5. Dimensionless temperature history of the inner surface as a function of vy.
Here, Bi, =040, Bi;=0:04, j(t)=1-14, T\, =7,=300K and the T,, variation was
calculated using FIRST" for a recent full-scale fire.”

thickness, thus increasing the temperature of the inner surface. For
large valucs of . less net radiant flux is absorbed in the glass and the
glass behaves more like a transparent medium. A similar calculation
was carried out to observe the effect of Biot number Bi, on the inner
surface temperature. Here, /=0 and the variation of the hot gas
temperature was the same as in Fig. 5. The inner surface temperature
increased with an increase in Bi, due to a higher heat influx as
expected.

The temperature history of the inner glass surface with respect to
varying input radiative flux function, y{7) was also explored holding all
other parameters constant. The temperature history of the inner surface
was seen to roughly follow the integral with respect to time of the
incoming radiation.
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Fig. 6. Variation of the dimensionless breaking time, t,,, with dimensionless shading
thickness, s/1., for different values of absorption length, y. Here, ¢, =10, ¢,/ =}
and j/¢,=1.

TIME TO BREAKAGE

The time to breakage is defined as the time at which the tensile stress at
the shaded edge of the glass reaches the breaking stress. Figure 6 shows
the variation of the dimensionless time to breakage as a function of the
dimensionless shaded width, s/L, and the decay length, 7y, with
b./Pp>=033, ¢,=0-5 and j/¢d,=1:0. The thickness of the window
glass is assumed to remain constant. The time to breakage increases
with a decrease in shading thickness. The reason is that the tensile
stress at the shaded edge is proportional to the difference between the
exposed central and the shaded edge temperatures. If the shaded width
is small, the edge temperature increases due to thermal diffusion, thus
decreasing the tensile stress. Therefore, the central exposed surface
temperature must be higher to reach breaking stress and hence the
breaking time is longer. The breaking time also increases with an
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increase in decay length because more radiation is transmitted through
the glass as y increases.

ENERGY AND HEAT FLUX MAPS

In this section, the magnitudes of energy and heat flux from various
inputs and outputs for the window glass are represented in terms of
stacked bar charts. The heat inputs are convection and radiation from
the gases, Q. and ¢. and Q, and ¢, respectively, and radiation from the
fire, O; and ¢,. The outputs are defined a> heat losses from the outer
surface, Q, and ¢,, radiative heat loss by cmission from the inner
surface, O, and ¢»,, heat diffusion into the shaded portion of the glass,
Q. and q,. and the rate of energy storage in glass, Q, and ¢,. The heat
diffusion into the shaded glass was estimated by assuming a hyperbolic
tangent temperature profile for the temperature averaged from 0to L
under the frame.

Figure 7a shows the energy distribution evolution for the case of Fig.
5 where the glass is far away from the fire so that j(z) = 0. The hot gas
temperature variation was calculated using FIRST' for a recent
full-scale fire. "t hus, the glass heats up only by convection from hot
gases. It is clear that very little heat diffuses into the shaded portion

30 — . .
IN ouT
B Q (gasconvection) 02 (radiation 1oss) N OUT
r
E 20+ Q (lgas radiation) O Q1 (loss to ambicnt) —
x B Q 1(ﬂumc radiation) B O (hencath frame)
=~ y
© B Q (stored in glass)
O s
I
10
ouT IN  QUT N ouT
e OUT IN
. —— =
0 50 100 150 200

Time (s)
Fig. 7a. Energy map representing the different heat sources and sinks for the
compartment fire shown in Fig. 2 of Ref. 8. The parameters are the same as in Fig. 5
cxcept here j=0.
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Fig. 7b. Heat flux map representing the different heat sources and sinks for the
compartment fire shown in Fig. 2 of Ref. 8. All parameters are the same as in Fig. 5
except here j =0.

of the glass. This occurs even though the heat flux is quite substantial
(Fig. 7b) due to the very small cross-sectional area of the window glass.
The heat loss from the outer side (side 1) is also quite small as the
temperature of the outer suriace remains near the ambient tempera-
ture. The radiative heat loss from side 2 (the inner surface) is the
largest loss since the glass temperature is a maximum at the inner
surface. Most of the energy is stored in thc glass, increasing its
temperature. The heat flux distribution evolution is similar to that of
the energy distribution with the exception of the heat flow under the
frame. The storage heat flux was calculated as the rate of change of
internal energy integrated over the glass thickness.

CONCLUSIONS

The variation of the kernels obtained in the solution of the glass surface
temperatures are explored as functions of time and decay length. The
magnitudes of all kernels increase with time as the area under the
kernels represents the temperaiure of the glass surfaces. Tiic kernels
(1/v)F(0, u) and (1/y)F(1, u), which represent the temperatures of
inner and outer surfaces, respectively, when insulated to convection,
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decrease in magnitude as vy increases because a smaller amount of
radiation is absorbed in the glass. The dependence of temperature
profiles on various parameters is also examined and it is concluded that
in a fire environment, a uniform approximation for the glass tempera-
ture distribution with depth is not valid due to the presence of large
temperature differences between the inner and outer surfaces. The
dependence of glass surface temperaturce histories on various para-
meters is investigated. The surface temperature increases with a
decreasc in the decay length, y. The temperature also increases with an
increase in dimensionless heat transfer coefficient on the inner side, Bi,,
if the hot layer gas temperature is higher than the glass temperature.
Also, the inner surface temperature varies roughly as the integral with
respect to time of ¢ unsteady radiative flux, j(7).

The variation - ' the breaking time of glass windows is determined as
a function of decay length, y, and window geometry, s/L and H/L.
Breaking time decreases as decay length decreases, since more net
radiation is absorbed. A large shading also decreases the breaking time.
The magnitude of the energy and heat {lu. from different sources and
sinks is compared in bar charts and it is observed that most of the heat
is absorbed within the glass, increasing its temperature. The most
significant loss term is radiation from the interior glass surface. The
heat diffusing into the shaded edge is quitc small because the
cross-sectional area of the glass is small. The heat loss from the outer
surface is low because the temperature differcnce between the outer
glass surface and the ambience is usually low.
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APPENDIX: HEAT FLUX EXPRESSIONS

The heat fluxes in eqns (9) and (10) are:

b,(1) = A + BO(0, 7) + COX0, ) + DO 0, 7) + E6*0, )  (Al)

and:
b, (1)=F+Go(1,1t)—CO* (1, 7)—-D6(1, 1) — EO*(1, ) (A2)
where:
A= hy L(T,.(t) = T) N £2-0L13.(1) €oLTy (A3)
kT, kT, kT,
h,L 4ecTiL
B= — S b A4
P P (A4)
6e0T.THL
C= _L‘_ (AS)
k
4eoTTL
D=0z (A6)
k
eoTlL
E=——1— (A7)
k
F:h,L(Ti— T,x(t))_glxa’l“}x(t)L+gaLT? (AS8)
kT, kT, kT,
h,L. 4decoTiL
G=—+—— (A9)
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