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ABSTRACT

Combined buoyancy- and pressure-driven (i.e., forced) flow
through a horizontal vent is considered where the vent-connect-
ed spaces are filled with fluids of different density in an unstable
configuration (density of the top is larger than that of the
bottom). With zero-to-moderate cross-vent pressure difference,
Ap, the instability leads to bi-directional exchange flow between
the two spaces. For relatively large Ap, the flow through the
vent is uni-directional, from the high- to the low-pressure space.
An anomaly of a standard vent flow model, which uses Bernou-
1Ii’s equation with a constant flow coefficient, Cp, is discussed.
Thus, the standard model does not predict expected bi-direc-
tional flows at small-to-moderate Ap or non-zero flow at Ap =
0. Also, when Ap exceeds the critical value, Apg; , which defines
the onset of uni-directional or "flooding" flow, there is a
significant dependence of Cp, on the relative buoyancy of the
upper and lower fluids (i.e., Cp is not constant). Finally, the
location of the high-pressure side of the vent, ie., top or
bottom, can be expected to influence vent flow characteristics.

Analysis of the relevant boundary value problems and of
available experimental data lead to a general mathematical
model of the vent flow which removes the anomaly of the
standard model and which takes all the above effects into
account. The result is an algorithm to calculate flow through
shallow, horizontal, circular vents under high-Grashof number
conditions.

INTRODUCTION

Consider the flow through a horizontal vent where the fluids
in the ventconnected spaces near the elevation of the vent are
of arbitrary density. Assume that in each space, away from the
vent, the environment is relatively quiescent with pressure well
approximated by the hydrostatic pressure. As in Figure 1,
designate the spaces as TOP and BOTTOM and let subscripts

-

T and B refer to conditions in these respective spaces near the
vent elevation, but removed far enough laterally so that varia-
tions to the quiescent far-field environment, due to vent flows
that may exist, are negligible. Vi and Vp are the volume flow
rates through the vent from top to the bottom side of the vent
and from the bottom to the top side of the vent, respectively.
Flow through the vent is determined by: the design of the vent,
its shape and its depth, L; the densities, o and pg; and the
cross-vent pressure difference

Ap = py - pL = 0; py = max(py, pg); P = min(py, pg) (1)

Subscripts H and L will always refer to the conditions on the
HIGH- and LOW-pressure sides of the vent, respectively.
When Ap = 0, the high-/low-pressure designations are arbitrary.
In cases where gas flows are involved, Ap is assumed to be
small compared to pg and pr.

App << 1; p=(py + P2 = (pg + PP ®

FIGURE 1. THE HORIZONTAL VENT CONFIGURATION.



The objective of this work is to develop a mathematical model
for predicting, for arbitrary specified pr and pg, the rates of
flow though the vent under conditions involving unstable
configurations, where a relatively dense fluid in the upper space
overlays a less dense fluid in the lower space.

Ap:p-r-pB>0 ®

With zero-to-moderate Ap, the instability leads to bi-directional
exchange flow between the two spaces. As the flows enter the
upper and lower spaces they are upward- and downward-
buoyant, respectively, and they rise and fall as plumes to the far
field. For relatively large Ap, the vent flow is uni-directional,
from high to low pressure. Sufficiently deep into the low-
pressure space, the flow is dominated by buoyancy forces and
it continues to the far field as a buoyant plume.

Only quasi-steady features of the flows being studied will be
discussed and analyzed. Thus, even when the flows are
fluctuating it is assumed that time scales which characterize
their fluctuations are relatively small i.e., meaningful average
flow characteristics can be established, in principle, with integrals
over time intervals which are relatively small compared to
characteristic times of interest.

The Standard Vent Flow Model and Its Shortcomings

There exists a simple, effective model for estimating the flow
through both horizontal and vertical vents which is nearly always
used in practical applications, e.g., in the modeling of compart-
ment fire phenomena. The model, referred to here as the
standard model, uses Bernoulli’s equation and an orifice flow
coefficient, Cp,, to compute the rate of flow through the vent.
For horizontal vents, Ap and velocity are estimated to be
uniform across the vent.

There is a basic problem with the standard model in the case
of horizontal vents. According to this model, the flow through
the vent is always uni-directional, i.e., for any Ap

Vi = Vst = CpAu(28ppy)'3 VL =Visr=0 4

where: Vi and V| are volume flow rates through the vent from
the high- to low-pressure and from the low- to high-pressure
side of the vent, respectively; Ay is vent area; and Eq. (4)
provides flow rates for the STANDARD model (subscript ST).
This flow description seems reasonable, except it will always
predict, incorrectly, that there will be uni-directional flow when
Ap = 0, and that the flow is zero when Ap = 0.

To illustrate this, consider a condition of near-zero Ap, and
assume that pr > pg, e.g, the vent joins a relatively high-
temperature, small-density environment below from a relatively
low-temperature, high-density environment above.  This
condition is one involving a state of hydrodynamic instability,
where a two-directional exchange flow develops and a uni-dire-
ctional description of the flow is always invalid.

The Mixed Fiow Regime

The relevant fluid-dynamic instability for an unbounded
interface has been studied theoretically by Tayior [1]. For the

unstable configuration and for Ap = 0, Epstein [2] established
a correlation of exchange flow rate data from salt-/fresh-water
exchange-flow experiments and Brown [3] established heat
transfer correlations of data from analogous hot-air/cold-air
exchange-flow experiments.

For any unstable arrangement of densities, if JAp| is small
enough there will be a bi-directional or exchange flow though
the vent. However, if |Ap| is large enough the vent flow will
be uni-directional. Indeed, there will always be a value Ap =
Apgp, denoted as the critical or flooding value of Ap, which
separates a uni-directional or flooding flow regime (for Ap =
Apgp ), where \:/L = 0, from a mixed flow regime (0 s Ap <
Apg ), where V; = Vigy > 0. VEx is the above-mentioned
exchange flow. Also, associated with any particular Apg; value
is a corresponding volumetric flooding flow rate. This is
denoted by V.

Epstein and Kenton [4] extended the work of Epstein [2] to
Ap # 0. They studied the mixed flow regime with salt-/fresh-
water experiments, measuring flow rates and VFL, but not Ap.
Tan and Jaluria [5] carried out similar experiments, measuring
Ap directly. However, the major focus here will be on turbu-
lent, large-Gr flows, and, as will be shown, it seems that the
latter experiments, carried out with relatively small-D (D =
0.0127m) vents, were in the laminar- or transition-flow range.

Let Vy denote the net volume flow rate from the high- to the
low-pressure side of the vent.

Vy=Vy-V=Vy-Veg 20 ©)

This is the forced or pressure-driven part of the flow. At the
two extremes of the mixed flow regime, Vy = Vg at Ap =
Appp and Vy = 0 at Ap = 0. Similarly, VEx, the buoyancy-
driven part of the flow, reachs its maximum value, VEX,MX’ at
Ap = O and is zero at Ap = Apg; .

In view of the above, the standard model vent flow description
of Eq. (4) must be modified as follows: There is a mixed flow
regime, defined by 0 s Ap < Apgy, where V| = Vi 2 0. In
this regime

VH(8p = 0) = Vgy yx < Vg s Viy(Ap = Apgp) = Vg (6)
VL(Ap = App) = 0= V) < Vi(Ap = 0) = Vexmx (D)

The Uni-directional Flow Regime and the Significant
Dependence of C, on Relative Buoyanc

In addition to the difficulties of using the standard flow model
in the mixed flow regime, there is also a problem in the uni-
directional flow regime. In particular, use of a fixed value for
Cp, denoted here as CD’Qu and associated with the orifice
coefficient for high-Re flows through an orifice joining two
regions of like fluids (see Perry {6]), is generally invalid.

Using fire-generated hot-/cold-air experiments and unstable
horizontal vent configurations with high pressure at the top, it
has been shown by Heskastad and Spaulding [7] that, until Ap
>> Apgy, there is a significant dependence of Cp on the
relative buoyancy of the cross-vent environments, where CorLs
the value of Cp, at the flooding condition, was measured to only



be of the order of a few tenths.

The fact that there is a difference between Cp for stable and
unstable configurations is not suprising. For example, consider
expected differences in the entrance flow near the vent, and
their effects on Cp, for the two cases: 1) a less-dense fluid
below penetrating a more-dense-fluid above (unstable) and 2)
a more-dense fluid below penetrating a less-dense fluid above
(stable). In the former case, the entering fluid will tend to rise
from the vent to the upper space in a buoyant plume, whereas
in the latter case the entering fluid will rise to a maximum
elevation, move outward and downward to the bottom of the
upper space, and continue its outward movement there, away
from the vent opening, as a radial "floor jet."

For shallow (i.e., smali L/D) circular vents of length L, the
L/D = 0.011 data of Heskestad and Spaulding [7] indicate a
smooth dependence of Cp on the relative buoyancy as ex-
pressed by Froude number (below, subscript HS refers to the
names of the authors of [7]). From these data and from other
considerations, Heskestad and Spaulding [7] conclude that for
uni-directional flow

Cpus = Cpus(Frus, Grys) lim Cpys = Cp 8
FI'HS - 00

Frys = (Vi/Av)28D(er - pplerl

©®
Grys = gerler - PRID

w=u(Ty; p=wT) T=(Tr+ Tp)2 (10)

Eq. (8) indicates a general dependence of Cpyg on Gryg.
However, for the shallow circular-vent data of Heskestad and
Spaulding [7] (Gryg Of the order of 107), Cp s Was in fact
insensitive to changes in Gryg and no systematic variation of
Cp s on Gryg was observed. Beside determining the depen-
dence of Cpyg on Fryg, Heskestad and Spaulding [7] also
determined the flooding Froude number, Frg, , associated with
measured values of V. For shallow circular vents, these
results will be seen below to augment the previously mentioned
analogous results of Epstein [2].

Results of Heskestad and Spaulding {7] include limited data
on each of several vent designs other than shallow circular
vents. These data indicate that orifice coefficient represen-
tations analogous to Eq. (8) can likely be established for vent
designs other then shallow circular vents. In this regard, reliable
results will require additional testing.

Representating Flow Rates as Explicit Functions of Ap
The objective of this work is to obtain a general model for the
uni-directional and mixed flow regimes in unstable configu-
rations where the high pressure is either at the top or the
bottom. A desired characteristic of the model is that it predict
flow rates as a function of Ap. As mentioned, the Heskestad
and Spaulding [7] study provided data for flow rate vs Ap, but
only for uni-directional flow with high pressure at the top. Also,
in the mixed flow regime, flow rates, but not Ap were measured
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(a)

FIGURE 2. (a) CONFIGURATION 1 AND (b) CONFIGURA-
TION 2 ILLUSTRATING CONDITIONS ASSOCIATED WITH
BOUNDARY VALUE PROBLEMS 1 AND 2, RESPECTIVELY.

by Epstein and Kenton [4]. To establish the desired depen-
dence of flow on Ap for the mixed flow regime, other consider-
ations will be required in addition to the data.

The development of the flow model will be based on theoreti-
cal considerations of the relevant boundary value problems and
on the above-mentioned data. Theoretical considerations will
be presented in the next section. Following this, the sequence
of model development will be: establish estimates for the onset
of uni-directional flow, i.e., the flooding flow conditions;
complete the mode! for the uni-directional flow regime; and
develop the model for the mixed flow regime.

FLOW DYNAMICS FOR UNSTABLE CONFIGURATIONS:
THEORETICAL CONSIDERATIONS

An unstable configuration with pr = py > pg = P, i-¢., net
flow from top to bottom, is designated as Configuration 1.
Similarly, an unstable configuration, but with pg = py > pr =
pp, i.e., net flow from bottom to top, is designated as Config-
uration 2. Both configurations are sketched in Figure 2.

The Boundary Value Problems

The boundary value problems associated with Configurations
1 and 2 are identified as Problems 1 and 2, respectively.
Assume that the fluid media in the top and bottom spaces are
the same ideal gas. Then, in view of Eq. (2) the equation of




state for the gas can be approximated by

where R is the gas constant and temperatures Ty and Ty
correspond to specified o and pg through Eq. (11). With the
constraint of Eq. (3), Eq. (11) leads to the expected result

AT=Tg-Tt >0 (12)
Eq. (11) will be a good approximation if
Apg|X;]/p << 1 throughout the region of interest (13)

where Eq. (13) is always satisfied in practical problems, e.g.,
ventilated heated/cooled spaces and smoke spread (i.e., fire-
heated/-contaminated air) during fires in multi-room facilities.

Designate the dependent variables velocity, pressure, density,
and temperature for Problem N, N = 1 or 2, as Ui(N), p( ),
p(N), and TV, respectively. Then, through the equations of
conservation of mass, momentum (i.e., the Navier Stokes
equations), energy, and the modified equation of state, Eq. (12),
and for the specified parameters (which determine the boundary
conditions), all of these variables are functions of the co-
ordinates, Xi(N), and the temperature-dependent material
properties: Cp(T), specific heat at constant pressure; k(T),
thermal conductivity; and g(T).

Problems 1 and 2 can be put in dimensionless form by
introducing the following dimensionless dependent variables

Problem 1:
Ui = Uy O2gDe)'%; p” M) = (p - p + goX3)/(2g80D);

ptl(]) = ([’/ﬁ . 1)/5; Tt'(l) = (1 - T/T')/g

(14
Problem 2:

U@ = UP2gDe)'% p” @ = (p - p - g5X;)/(2g80D);
p" @ =(1-pp)e; T@ = (T/T- 1)

Neglecting pdV work and viscous dissipation in the energy
equation it has been shown by Coob})er [8] that the variables of
Eq. (14) are functions only of X;( ) and the parameters ¢, II,
Gr, and Pr where!

ISince e > 0, the absolute value designation for ¢ is unnecessary
here. However, it will be useful in later applications of Eq.
(15). A similar note is relevant below in the presentation of

Egs. (41) and (47).

Xi™ = XMN/D; e =2pfp = ATT <2, p = (o1 + PR)2
I = Ap/(4gapD); Gr = 2gD*|e|u(T)pp)5 (15)
Pr = C(T(T)K(T)

Thus, for example,

U;®™ = U®X™; 1, ¢, Gr, Pr) (16)

In addition, it has been shown by Cooper [8] that replacing e by
- € in Problem 1 leads to Problem 2, and replacing € by - ¢ in
Problem 2 leads to Problem 1.

Now assume that solutions to Problems 1 and 2 exist for both
negative and positive e. Note that there is no a priori reason to
suspect that solutions for ¢ < 0 for either problem are physically
meaningful. However, because of the above-stated relationship
between the N = 1 and 2 boundary value problems, it is evident
that a general solution to one of these, including results for both
positive and negative e, provides the general solution to the
physical problem of the other, ie., for e > 0. Thus, for
example,

UiOxiM; 1, ¥ e, Gr, Pr) = UOX;®; I, 7 e, Gr, Pr)
an

where similar equations can be written for the p" M), p" M),
and T" ™). Eq. (17) will used below to determine and extend
relationships between results of Configuration-1- and 2-type
experiments.

Dimensionless Volume Flow Rates
For N = 1 or 2, V™ and V{™ would be calculated from

VEY = 1 ofMX,M™ = 0ydA,;

Av
oy o | U where U060 = 0) <0
= Nyx (N) _
0 where U;M(X; M = 0) 2 0
(18)
VI(.N) =/ a{N)(x3(N) = 0)dAy;
Av
N UMy = U™ where Uy = 0) > 0
a£ (Us )) =
0 where U;™M(X,™ = 0) < 0

For example, for uni-directional flow, when I1 = Ilg; corre-
sponding to Ap = Apgp, Eqgs. (18) become

VY = - 1 UMM = o)Ay = - AvO®; v =0
Ay 19

where the integral is over the entire area of the vent and U;™)
is the average value of U3(N) at X3(N) = 0. Using Egs. (16),
the dimensionless version of Eq. (18) leads to the definition of
Fr

H



Fri™ = (V{/Ay)(2gDe)? = - U39 )

= - [T UNEN = 0; 11, ¢, Gryd(AyDA(Ay/D?)
Ay

In a similar way, carrying out the above proceedure on Egs.
(18) for the mixed flow regime leads to

I_‘;I'ISN)(H, €, (_}r, ?r) - (VI&N)/AV)/(ZgDE)UZ,

- - @n
Fr{™X11, ¢, Gr, Pr) = (V{™/Ay)/(2gDe)!?
Also, using the result of Eq. (17) leads to
iE‘rISIN)(H’ te Gr,Pr) = Fl‘éN)(H, - Gr, Pr);
@

Fef™, * ¢, Gr, Pr) = FrfN(1, ;& Gr, Pr)
UNI-DIRECTIONAL FLOW
The Flow Coefficient and the Large-Gr Assumption

The Cp, definition remains useful for uni-directional flow.
Using Egs. (15) and (21) in Eq. (4) leads to

CAN = [(oy PYAE)ZFr™; lim CON = Cpy o5

Fr{™W - » [02)
P 1+eRforN=1
PH = epforN =2
and Eqgs. (21)-(23) lead to
ci = ¢V, ¢, Gr, Pr);
24

C[Sl)(rl, ¥ €, (_‘zr, l_’r) = CISZ)(H, + 5 E‘xr, f’r)

Note that Cp, is for a particular vent design and would generally
vary from one design to another, e.g., for shallow circular vents
vs shallow square vents. UNLESS NOTED OTHERWISE,
THE REMAINDER OF THIS WORK FOCUSES ONLY ON
TURBULENT, LARGE-GR FLOW THROUGH SMALL-L/D
CIRCULAR VENTS, where "small-L/D" means, approximately,
L/D < 0.10, and where the "large-Gr" terminology will be
clarified below.

The Flooding Condition

The Reglon of Turbulent, Large-Gr Fiow. For fixed &, Gr,
and Pr there is a specific I, associated with Apg; and depend-
ing on N, that leads to flooding. This is designated as IT{}),
where

Hﬁf)(e, Gr, ﬁr) = Ap{,ff)/(‘;gApD);

P - - )
ngll‘)(t e, Gr, Pr) = Hﬁ)(; g, Gr, Pr)
and where the corresponding values FriN}, VN, and

-

CHYYy are
Fr("31(e, Gr, Pr) = Fr{O@fD), ¢, Gr, Pr)

= (VT h/AVY(2gDe) @
CNi(e, Gr, Pry = M), e, Gr, Pr) @n
Also, from Eq. (23)and from Egs. (25)-(27)
CEYL = [(1 + eI PRl ;
CAHyL = [(1 - er2Y(4TIEN) PFe %y @
Fr{'f1(X &, Gr, Pr) = Fr{® (5 &, Gr, Pr;

@)

CIST}:L(t £, (_}r’ I_)r) = C]S?%L(I E, (_}l', I_’I')

Heskestad and Spaulding [7] present data from Configuration-
1 experiments with air (Pr = 0.7) in the uni-directional flow
regime. Fr, II, ¢, and Gr corresponding to their data are
presented in Table 1. As indicated, of the 13 data points, the
first 6 are associated with the flooding condition. [The above
theoretical analysis is for perfect gas media and is valid for the
entire range - 2 < ¢ < 2. However, for |¢| << 1, when the
Bousinesque approximation is applicable, there is an analogy
between Figure-1-type problems involving perfect gases and
incompressible or nearly incompressible liquids. In the case of
small-¢ problems involving liquids, buoyancy effects which drive
the exchange flows can be the result of temperature differences
or of concentration differences of a solvent. This is the
justification for use of the salt-/fresh-water data (where |e| <
0.2) of Epstein and Kenton [4], Tan and Jaluria [5], and
Heskestad and Spaulding [7} in the data analyses to follow.]

Flooding conditions were measured in the salt-/fresh-water
experiments (Pr = 7) of Epstein and Kenton [4] and Tan and
Jaluria [5]. All small-L/D flooding data from Epstein and
Kenton [4], Tan and Jaluria [5), and Heskestad and Spauiding
[7] are presented in Table 2. As indicated in the table, the salt-
water experiments involved both Configurations 1 (referred to
by Epstein and Kenton [4] as "draining" experiments) and 2
(referred to in [4] as "injection" experiments). Since Ap was not
measured by Epstein and Kenton [4], IT and C{N}; are not
available for their data._ _

For the above data, Fr{"}; (Gr), as plotted in Figure 3, is
seen to be relatively insensitive to changes in Gr in the range
2.99(107) s Gr s 29]( 108). (As will_be explained below, in
this range the observed variations in Fr,ﬂ,’f};L are primarily a
result of its dependence on ¢.) However, there is a significant
increase in I.:rlS,N}L, over the larger-Gr values, for Gr <
1.42(107), ie., for the data of Tan and Jaluria [5]. Using
flooding data for square, rectangular, and circular vents,
acquired over a large range of Gr, Figure 10 of Heskestad and
Spaulding [7] indicates a similar insensitivity in the dependence
of Frﬁf’ﬁ on Gr for Gr > 2(107) and a similar, relatively-



Test{1} c ALY I ch? Griét Fr{ D1y, S cé’)/co'mm mf)) {5
541<} 0.521 0.216 0.601 0.156 2.99(10;) 0.924 0.261 1.10
5512} 0550 0243 0532  o0.188 a.49(107) 1.02 0.314 0.923
562t 0282 0186 0467 0146 4.64(10) 0.910 0.243 1.24
502} 0373 0227 0392  o0.198 4.74(10) 1.05 0.329 0.901
602t 0474 0238 0456 0196 4.06(107) 1.04 0.326 0.900
6112 0260 0248 0382 0214 4.66(107) 1.23 0.356 1.04

13} o521 0257 0657 0178  2.93(10 4 1.10 0.296 1.21
53{34} 0521 0474 0708 03t 299(107) 203 0.527 1.30
53134} 051 o661 0848 0403 299(10)) 283 0.671 1.56
53134} g.501 0.814  0.111 0434 299(10]) 348 0.723 2.04
544 o821 o461 0631 0326 299(107) 1.97 0.543 116
5518t 0559 0262 0455 0219 3.49(10)) 1.10 0.366 0.790
s6{4} 0282 0342 0603 0235 4.64(10") 1.67 0.392 1.59
oF See TABLES Ill and VI of Heskestad and Spaulding [7].
{2} Identified by Heskestad and Spaulding [7] as the flooding condition, i.e., the I_’r,S“, 11, and 061) values for this datum point

are Fr 1&1_, H&), and c{? L+ respectively.
{3} Same fuel and fuel flow rate as Test Condition 54.
{4} TT and TB are not presented by Heskestad and Spaulding [7]; it is assumed here that the values of these were the same as
the values measured in the same test, i.e., the same fuel and fuel fiow rate, but at flooding conditions.

{5} Cp,w i8 from Eq. (36); '_:'DSQL = ?r,&’ L& Gr — «) and_HH_) =1I |1_ (e, Gr - ) are calculated from Egs. (31)-(33).
{6} in éalculating Gr from Eq. (15), the kinematic viscosity, v(T) = u(T)/p, determined from Hilsenrath [9]

(1) = [0.04128(T/K%2(107)/(T/K + 110.4)Jm?s

TABLE 1. RESULTS DERIVED FROM THE CONFIGURATION-1 EXPERIMENTAL DATA OF HESKASTAD AND SPAULDING
FOR FLOW THROUGH A D = 0.153m, L/D = 0.011 CIRCULAR VENT, AND FROM EQS. (31) AND (32') FOR Fr{"}, AND T},

Reference & Configuration Fr,ST }L Gr C[S?}L HH_) rectangular vent of dimension 2.03mx0.91m.)

Number Number Consistent with the above observation, it is assumed that in
m 0.521 1 0216 2.99(10;) 0,156 0.601 the present problem, Gr > 2(107) defines a range o_f turbulent,
7 0.559 1 0.243 3.49(10 7) 0.188 0.532 buoyancy-driven, free-flow phenomena where the Gr-depen
1] 0.282 1 0.186 4.64(10 7) 0.146 0.467

g 0.373 1 0.227 4.74(10 ) 0198 0.392

4] 0.474 1 0.238 4.06(10 7) 0.196 0.456 0.5

7] 0.260 1 0.248 4.66(10 7) 0.214 0.382

[41 0.1426 1 0.1917 5.31(107) {1} {1} A

[4) 0.1410 1 0.1755 5.25(107) {1} {1} A

[4] 0.1378 2 0.1632 5.13(107) {1} {1} 04+ A

[4] 0.1487 1 02057  5.54(10 7) {1} {1} -

{4] 01339 2 0.1783  4.98(10') {1} {1} A

4] 0.1456 1 0.1826  291(10% {1} ) i

[4] 01329 1 01709  266(108) {1} {1} 03 |

(4] 0.1417 1 01618 2840105 {1} {1} ~T

5] 0.0469 2 02534  4.28(10% 0.0966 1.638 iy tﬁ

5] 0.0658 2 04383 6000105 0194  1.191 e

(s} 0.0898 2 0.3463  8.20(10% o0.168 0.970 0.2 +

[5] 0.1208 2 0.4132  1.10(10 7) 0.218 0.793 é;
[5} 0.1550 2 0.3877  1.41(10') 0.220 0.659

{1} This value is not available since Ap was not measured. 0.1 r

TABLE 2. SMALL-L/D DATA ON FLOODING CONDITIONS

FROM EPSTEIN AND KENTON [4], TAN AND JALURIA [5],
AND HESKESTAD AND SPAULDING [7].

abrupt increase in I_Tr,&f).l as Gr drops below approximately
2(10°). (In computing Gr for the square- and rectangular-vent
data of Heskestad and Spaulding [7], Eq. ( 15) was used, where
D is replaced by the width of the vent. Of these data, the one
with the largest Gr = 1.54( 1010), is for flooding flow through a

107 2(107) 108 2(108)
Gr

FIGURE 3. PLOT OF Fr{'l, AS A FUNCTION OF Gr FOR
ALL SMALL-L/D DATA OF TABLE 2 (O - EPSTEIN AND
KENTON [4]; A - TAN AND JALURIA [5); O - HESKESTAD
AND SPAULDING [70.



dence of the boundary value problem is generally negligible.

The above discussion ignores the Pr-dependence of Fri{N}; .
Here it is reasonable to assume that in the large-Gr range of
practical interest, molecular diffusion effects of Pr variations are
negligible, at least for the approximate range 0.7 < Pr < 7.

In view of the above, for large enough Gr it is assumed that
IE‘r N, I—?r](_N), and C]SN) are functions of IT and e, and that
Fr 1:1}1_1" CISI:JI)-‘L» and Hg) are only functions of ¢, i.e.,

For Gr > 2(107): Fr{"}; (e, Gr, Pr) = FrN}; (e);
- - = - 30)
FriN(, ¢, Gr, Pr) = Fr{N(I1, ¢); etc.

The Eq.-(30) assumption will also be adopted below in the
mixed flow regime. In contrast to this, it is assumed that Gr <
2(107) defines transition and laminar flow regimes of the
problem, where Gr- and possible Pr-dependence is important.

Practical vent flow problems of the type of interest here, €.g.,
problems related to fire safety and building ventilation, are
typically confined to the large-Gr range, Gr > 2(107). THE
REMAINDER OF THIS WORK FOCUSES ONLY ON
LARGE-GR PROBLEMS, AND, UNLESS NOTED OTHER-
WISE, GR- AND PR-INDEPENDENCE OF ALL THE FLOW
PHENOMENA IS ALWAYS ASSUMED.

_The Functions Fr{M) (e), 1M (e), and CD(',",),,__(Q)_. The
Fr{{'}1 (), I (), and C{'}; () data of Table 2 from Epstein
and Kenton [4] and Heskestad and Spaulding [7] are plotted in
Figures 4, 5, and 6, respectively. [Tan and Jaluria [5] data do
not satisfy the large-Gr criterion of Eq. (30).] In the plots, the
reciprocal properties of Egs. (25) and (29) are implemented.
Thus, the data and solution are plotted in terms of the Configu-
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FIGURE 4. PLOT OF Fr{'), (): DATA OF TABLE 2 (O - EP-
STEIN AND KENTON [4], O - HESKESTAD AND SPAULD-
ING [7]); ——, LEAST-SQUARES CURVE FIT OF EQ. (36).

-

ration-1 problem, with Configuration-2 results presented with €
< 0. Also plotted in Figure 4 is the following least-squares fit
(with proper analytic characteristics) of the Fré}):L(e) data.

Fr'}; (6) = 0.1754exp(0.5536¢) 31
As seen in Figure 6, C[ST}L data are very sparse, with no entries

for small |e| or e < 0. Also, the data scatter does not provide
qualitative insight on the "shape” of the C{!}; function. Until
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FIGURE 5. PLOT OF THE II{(6): DATA OF TABLE 2;
— LEAST-SQUARES CURVE FIT OF EQ. (38').
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FIGURE 6. PLOT OF C§'}, (€): O, DATA OF TABLE 2; —,
CURVE FIT OF EQ. (33).




more data becomes available, it is therefore reasonable to
approximate C{'}; () as a constant. A possible choice is the
average value, 0.1830. However, since Cp is derived from Eq.
(4), and since the C{!); entries of Table 2 are derived from the
Frf{'},(e) and TI{})e) data according to Eq. (28), a more
appfopriate, constant, representive value for C N}L is one that
provides a least squares fit of the ngll_)(e) data. From Eq. (28)

e = (1 + e)[Frf Yy (e)/Ch1y 14 (32)
Using Eq. (31) in Eg. (32), it was found that
CAM(e) = 0.1780 (33)

provides the least squares fit to the Hlﬁi)(e) data of Table 2.
Eq. (25), and Eqs. (31) and (33) in Eq. (32) lead to

I{{)(e) = Apfi(4gApD) = 0.2427(1 + e/2)exp(1.1072¢)

32)
Eq. (32’) is plotted in Figure 5 and Egq. (33) is plotted in
Figure 6.

In Figure 5, the sparseness of the available IIf})(e) data,
especially with the absence of entries for small |e]| or ¢ < 0,
and the predicted significant II{})(e)-variation of Eq. (32') in
the e-range of interest, is problematic. Nevertheless, the results
of Egs. (31)-(33) are plausible, and they fill a gap where
alternative choices are not available. These results will be used
thoughout the remainder of this work.

An Estimate for C,,
It is convenient to normalize Eq. (23) as follows

cih, &)/Cp o =

[C5 h(e)/Cp e (L, e)/Frfdy ()TATED (E)) 2

For uni-directional flow, II/II{Y)(e) = 1, where, independent of
€, the limit H/Hf.-ﬁ)(e) — o leads to the standard Bernoulli
orifice flow condition, i.e.,

(34

lim CO(I, £)/Cp, , = [CH' ) (6)/Cp o] = Voy(e);
gy =1 ’ ' '

€9
lim CAV(L, )/Cp o, =
e =~

[
—

and where Cp ,, is taken to be the value associated with sharp-
edged orifices and slots (Perry [6])
Cp, = 0.60 (36)

To obtain vent flow rate as a function of Ap, it wilt be conve-
nient to choose the functional form
Frd/Frilh, = (g ) (37

and to approximate CISI)(H, €)/Cp o of Eq. (34) as

CHV(, €)/Cpy., = (38)

Fr B OAESFE ) - 1+ 0,7 + 0% - 0,17

where Eq. (38) satisfies Egs. (35) and o, = a,(e) would be
determined from a fit of ]é?gl)(n, £)/Cp ., data.

As can be seen from Table 1, except for € = 0.521,
CHVICp ,, data for non-flooding conditions are limited to single
data points for each of ¢ = 0.282 and 0.559. Until further data
are available it is therefore reasonable to approximate o5(e) as
a constant. Using Eqgs. (35) and (36) and the CIS}}L approxi-
mation of Eq. (33), and choosing o, as the value providing a
least squares fit to all data of Table 1 leads to
oy(e) = 0.60/0.1780 = 3.370; oy(e) = 1.045 (39)
CEV(IL, €)/Cp ,, vs Frf{D/Fr(!); data of Table 1 and Egs. (38)
and (39) are plotted in Figure 7.

The Model for the Vent Flow in the Uni-directional Flow
Regime

Replacing the left side of Eq. (34) by the right side of Eq. (38)
and solving for Fr,S,l)/Fré}%L leads to the desired result for
predicting the vent flow rate in the uni-directional flow regime

For Ap/Apf]) = imif) = 1: (40)
VIV = FefUFrg!y
= 1-0,2 + [o05* + o %(Ap/ApED - 1))
VIOV = Fef Vel =0
1
| Cohu/Co.d = 0.1780/0.6 = 0.2967 = 1/,
0.8 -
. 06
[=]
&)
o~
Zna
O 04+
0.2967
0.2
o Il i
0 1 2 3 4
Fro/Frue
FIGURE 7. PLOT OF C{"/Cp , vs Fr{"/Fr{'): — EQ.

(43) AND (44); W, NON-FLOODING DATA OF TABLE 1: O,
FLOODING DATA OF TABLE 1.



where Eq. (39) gives o, and a,, Eq. (32’) gives Apxgll‘), and Eqgs.
(26) and (31) lead to

Vi kL = 0.1754(2gD || )2Aexp(0.5536¢) (41)

As required, Eq. (40) guarantees that V{"/V{!}; is a monoto-
nically increasing function of Ap/Ap{.{) for Ap/A’p i) = 1. [This
is a consequence of the chosen form of Eq. (38).] Also, Eq.
(40) satisfies the large-Ap limit, which is equivalent to the
standard Bernoulli orifice flow condition, i.e.,

im VIV = (Cpo/ChlapapE) 2 “2)
Ap/Ap}gll_) —- @ ’ ’ !

Eq. (40) is the model equation result for the uni-directional flow
regime. From this, a plot of VDV 1) vs Ap/Apf)) is pre-
sented in Figure 8 together with plots of the Table-1 data and
the Bernoulli-flow limit of Eq. (42). From the figure it can be
seen that at the flooding condition the standard Bernoulli-flow
equation over-estimates the expected flow rate by a factor in
excess of 3, and that only after Ap/Ap{}) exceeds 3 or 4 does
the standard model provide flow-rate estimates correct to within
a few tens of percent.

THE MIXED FLOW REGIME

Boundary Conditions for the Flow Components

For the mixed flow regime it is convenient to adopt the
following approximate representations of V{U/V§'}Y and
VDV, These are consistent with definitions and end-
point condition. of Egs. (5)(7), and with a requirement of
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FIGURE 8. PLOT OF V{"V{") = Fr{"/Fr{"}, vs apiapf)
= I/M{: ——, MODEL EQUATION FOR UNI-DIREC-

TIONAL FLOW REGIME, EQS. (44) AND (45); - — — ,
BERNOULLI FLOW LIMIT OF EQ (47); M, NON-FLOODING
DATA OF TABLE 1; O, FLOODING DATA OF TABLE 1.

continuity-of-siope (both V! and V§ as functions of Ap)
across the flooding limit boundary where, Ap/Apf}) = 1.

VOV = (M- [1 + (M? - 1)(1 - Ap/ApED)PH(M - 1)
@3)

or

Ap/ApED) = - (M - )M + DIVEINVEIY ) (43"
+ 2M/M + D)VEPV LD

ViVl = (44)

VexMx/VE LA + my(VE 5 Ve mx)2)(1 - Ap/ApfD)?

-[2 4+ my (Vi Ve x)21(1 - Ap/apE))?

or
VED Ve mx = (44"
[(1 + my/2)(1 - Ap/Apf))? - (2 + my2)(1 - Ap/Apt)
VDV = VIOV + VOV (45)
M =2m, - 1 = (0,/0)° - 1 = 9.400 (46)

where VEX,MX for shallow circular vents is obtained from
Epstein [2]

Vexmx = 0.055(4/m)Ay(gD |e[)1? (47)
and where the yet-undetermined values for m, and m, are

mae) = d(V{DVex Mx)/A(Ap/ApED) |
) ) ap/apEl) =0 (48)
m,(e) = my(e)Vex mx/ViiL

Following the above, V{U/V{hy , VIOV )y and VDVEY
vs Ap/ApH) < 1 are sketched in Figure 9.

Presented in Table 3 are flow rate data from Epstein and
Kenton [4] for circular vents or disks (L/D = 0.0190 and 0.113)
and tubes (0.39 < L/D < 5.0) in a limited portion of the mixed
flow regime. The reported data have "experimental uncertainty
... between 10 and 30 percent." Difficulty in acquiring accurate
data relatively close to the uni-directional flow regime
VIV > 06, 0 < VDV, < 0.1) apparently
precludcd’measurements of flow in this range.

Since the e-range of Table-3 is so narrow (0.12 < ¢ < 0.16),
the data cannot be used to determine e-dependence of m, that
may exist. Accordingly, m, is approximated as a constant.

Using Egs. (43') in (44') leads to V{D/Vey\x as a
function of V{D/V§! The m, value providing a least-
squares fit of this function to small-L/D data pairs of Table 3 is
found to be

m, = - 0.7070 (best fit for L/D = 0.0190 and 0.112
data of Epstein and Kenton [4]) (49)



Egs. (43)-(49) are the model equations for the mixed flow

regime.

Vent D D WONETH T vy o 1
Type

disk 0.02540 0.01902 0.5331 0.1743
disk 0.02540 0.01902 0.4329 0.2729
disk 0.02540 0.01902 0.1068 0.7588
disk 0.02540 0.1130 0.2996 0.5270
tube 0.02540  0.5000 0.09279 0.6917
tube 0.02540 0.5000 0.2936 0.3108
tube 0.02540 1.000 0.1957 0.5045
tube 0.02540 1.000 0.5661 0.1180
tube 0.02540 1.000 0.4541 0.1504
tube 0.02540 1.000 0.2113 0.4741
tube 0.02540 2.000 0.4659 0.1728
tube 0.02540 2.000 0.5088 0.1362
tube 0.02540 2.000 0.2663 0.2920
tube 0.02540 5.000 0.1992 0.5693
tube 0.02540 5.000 0.4456 0.2213
tube 0.02540 5.000 0.2442 0.4428
tube 0.04450 0.3910 0.0998 0.7067
tube 0.04450 0.3910 0.4983 0.1472
tube 0.04450 0.3910 0.3049 0.3706
tube 0.04450 0.3910 0.2190 0.4821
{1} \'/,S” and \'IIS” are from Table 2 of Epstein and Kenton [4];

VX Mx and VPSR:L are from Egs. (20) and (21) of Epstein
and Kenton [4], respectively.

TABLE 3. VI"N{'} vs V(DN o RESULTS -FROM
EPSTEIN AND KENTON [4] IN MIXED FLOW REGIME FOR
CIRCULAR VENTS OR DISKS AND TUBES.
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FIGURE 9. SKETCH OF V{"N{'} — - — vON (1), - -,
and V(" ('), —, AS FUNCTIONS OF ApiAp,, IN THE

MIXED FLOW REGIME.
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Additional Comments Regarding Mixed Flow Data

VE IjNEx,Mx vs VEISN;I, EL from Egs. (43'), (44'), (46), and
(49) is plotted in Figure 10. Also included are all data of Table
3. It is interesting to note that these data, the bulk of which
involve flow through tube-like vents (i.e., moderate-to-large
L/D) rather than shallow vents, are well correlated by the m, of
Eq. (49), established from the few, available, shallow-vent data.

The m, value providing the least-squares fit of all data of
Table 3 has also been determined

m, = - 1.8077 (best fit for all data of Epstein
and Kenton [4], 0.0190 s L/D < 5.0) (49")

and V{D/Vey vy vs VIV from Egs. (43, (447), (46),
and (49’) is also plotted in Figure 10.
It is of interest to define

m; = d(V{D Ve mx) VIV
3 ExMx)/A(V é,hvéw’%:o

i

[2mM/(M + 1)]
(50)

- 1.2781 [m, from Eq. (49)];

- 2.625 [m, from Eq. (49")]

These can be compared to m; = - 2.5 of Eq. (22), of Epstein
and Kenton [4], namely,?

1

0.8

VNNH,FL

o
¥,

VLNEX,MX ’
o
o

0 1 L 1 i
0 0.2 0.4 0.6

Ap/Apg,

FIGURE 10. PLOTS OF V{"Ngy \w AND V{UN{') AS
FUNCTIONS OF Ap/Apfld., ACCORDING TO EQS. (51)
(53", (54), AND (57).

The 2.5 exponent in Eq. (51) is different than that of Eq. (23)
of Epstein and Kenton [4] which seems to be printed incorrect-
ly. Eq. (51) corresponds to the correlating function plotted in
Figure 5 of [4].



ViOVE mx = (1 - VIV S

A plot Eq. (51) is included in Figure 11.

D

VENTCL2 - AN ALGORITHM FOR COMBINED BUOYAN-
CY- AND PRESSURE-DRIVEN FLOW THROUGH HORI-
ZONTAL VENTS

. For unstable cross-vent densities, the above leads to the

following algorithm, called VENTCL2, for calculating Vy, Vi,

and VYV through small-L/D circular vents:

1. Verify that pt > pgp, i.e., the configuration is unstabie,
and calculate Ap from Egq. (3); determine T from Eq.
(10) and p(T) from note {6} of Table 1; determine e
> 0 and p from Eq. (15).

2. Determine py and pp, Ap, and p from Egs. (1) and
(2); according to Figure 1 designate the problem type
as either Problem 1 or 2, involving Configuration 1 or
2, respectively; if it is Configuration 2, then replace e

by-£<0. _ _
3. Determine Gr from Eq. (15)_and verify that Gr
satisfies the large-Gr criterion, Gr = 2(10°).
4. Calculate Frf{!}; and then V') from Egs. (31) and

(41), Apﬁlr) from Eq. (32'), and Ap/Apfs).

5. If Ap/Ap{D) 2 1, expect uni-directional flow. Estimate
vy = VD = 0 and V; = VY from Eq. (39) and
(40). _

6. If AE’/APFL < 1, expect mixed flow. Estimate: Vy =
V§Y from Egs. (43) and (46); Vx v and then Vi

= ViV from Egs. (45), (44"), and (49); and Vy =
V4D from Eg. (50).
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FIGURE 11. PLOT OF V{"Ng, ux AS A FUNCTION OF

vi"N{'), FROM EQS. (52), (53'), (54), AND (57), ——'.

EQS. (52), (53), (54), AND (57"), - — —; AND EQ. (60),
PLOT OF DATA OF EPSTEIN AND KENTON [4],
I.E., TABLE 3 (/D = 0.0190 VENT, ®; L/D = 0.113 VENT, o;
AND TUBES WITH 0.39 < L/D < 5.0, O)

-
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The algorithm is suitable for horizontal vent flow calculations,
in general, and for use in zone-type compartment fire
models, in particular.
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NOMENCLATURE
Ay vent area
Cp; CHM; vent flow coefficient, Eq. (4); Cp for Prob-

lem N; Cpy of [6]; Cp at large Re number;

Cp,us Cp,w Cp, at onset of flooding
CprL .
G specific heat at constant pressure

D characteristic span of vent opening, diameter
Eq. (9), Froude number of {7]

Frzﬁ), Fr{™ Froude numbers for Problem N, Egs. (20)
. and (21); Fr{™ at onset of flooding
Frhh_

Gryg; Gr Eq. (9), Grashof number of [7]; Grashof

number, Eq. (15)
g acceleration of gravity
k thermal conductivity
L depth of vent
M Egs. (43) and (46)

my Egs. (46) and (48) for N = 1; Eqgs. (44')
and (48) for N = 2; Eq. (50) for N = 3

p; pP™; p” ™, pressure; p for Problem N; dimensionless
p(N), Eq. (14); far-field p on high-, low-pres-
sure py, pp side of vent, near the vent
elevation

p (Pu + PL2

Pr Prandtl number, Eq. (16)

R gas constant

T, T<N); T (N); absolute temperature; T for problem N;

Tr, Ty dimensionless T™), Eq. (14); far field T in

top, bottom space
(Tt + Tp)2
velocity for Problem N; dimensioniess USN),

T
UM, U,

U;N) Eq. (14); average UM at vent, Eq. (19)

Vexs VEX MX exchange flow rate, V| ; maximum Vgy, i€,
atAp=0

Vi VrL volumetric flow rate from high- to low-pres-
sure side of vent; Vy; at onset of flooding;

Vst Vy for standard flow model

Vi Vist volumetric flow rate from low- to high-pres-
sure side of vent; Vi for standard flow
model

VEN;, VY)Y,V for Problem N, Eq. (19); V™ at onset

' of flooding
Vg VY Vy - Vi; Vy for Problem N
X?k); X;(N) cartesian coordinates for Problem N, Figure

2; dimensionless X{™), Eq. (14)



Ap, Apgy; Py - P; Ap at onset of flooding; Apg; for
Ap,QN) Problem N

AT Tg - Tr
4 PT-PB

€ dimensionless Ap, AT, Eq. (15)

u; B dynamic viscosity; Eq. (10)

v kinematic viscosity, Table 1

IT; TN dimensionless Ap, Eq. (16); dimensionless

, Apf™, Eg. (25)
2; pPM; o~ M) density; p for Problem N; dimensionless

PT> PB p(N), Eq. (14); far-field p in top, bottom
space

p (er + pp)2

o™, of M Eq. (18)

oy, 03 Egs. (38) and (39)
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