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COMBINED BUOYANCY- AND PRESSURE-DRIVEN FLOW THROUGH A
SHALLOW, HORIZONTAL, CIRCULAR VENT

by

Leonard Y. Cooper
Center for Fire Research
National Institute of Standards and Technology
Gaithersburg, MD 20899

ABSTRACT

Combined buoyancy- and pressure-driven (i.e., forced) flow through a horizontal vent is considered where
the vent-connected spaces near the elevation of the vent are filled with fluids of different density in an
unstable configuration, with the density of the top space larger than that of the bottom space. With zero-
to-moderate cross-vent pressure difference, Ap, the instability leads to a bi-directional exchange flow
between the two spaces. For relatively large Ap, the flow through the vent is unidirectional, from the high-
to the low-pressure space.

An anomaly of a standard vent flow model, which uses Ap to predict stable unidirectional flow according
to Bernoulli's equation (i.e., flow-rate is proportional to CDAp""’, where Cy is an orifice coefficient), is
discussed. Such a model does not predict the expected bi-directional flow at small-to-moderate Ap or
non-zero flow at Ap = 0. Even when Ap exceeds the critical value, Apg oop Which defines the onset of
unidirectional or *flooding" flow, it has been determined experimentally that until Ap exceeds many times
ApPgoop there is a significant dependence of C, on the relative buoyancy of the upper and lower fluids.
Also, it has been shown theoretically that the location of the high-pressure side of the vent, i.e., the top
or bottom, can be expected to influence vent flow characteristics.

Previously published experimental data and results of an analysis of the relevant boundary value problems
are used to develop a flow model which takes all of these effects into account. The result is a uniformly
valid algorithm to calculate flow through shallow (small depth-to-span ratio), horizontal, circular vents
under high-Grashof number conditions. This is suitable for general use in zone-type compartment fire
models (e.g., an ambient temperature environment above the vent and a hot smokey environment below).
The algorithm is used in example applications where steady rate-of-burning in a ceiling-vented room is
estimated as a function of room temperature, vent area, and oxygen concentration. Results of the
analysis are seen to be consistent with previously-published data involving ceiling-vented fire scenarios.

Keywords: building fires; compartment fires; computer models; fire models; mathematical
models; vents; zone models



INTRODUCTION

Consider the flow through a horizontal vent where the fiuids which fill the vent-connected spaces near the
elevation of the vent are of arbitrary density. Assume that in each space, away from the vent, the
environment is relatively quiescent with pressure well-approximated by the hydrostatic pressure field.

As in Figure 1, designate the spaces connected by the vent as top and bottom. Subscripts TOP and
BOT, respectively, will always refer to conditions in these spaces near the vent elevation, but removed far
enough laterally so that variations to the quiescent far-field environment of vent flows that may exist are
negligible. Vop and Vgor are the volume flow rates through the vent from top to the bottom side of the
vent and from the bottom to the top side of the vent, respectively. Flow through the vent is determined
by: the design of the vent, its shape and its depth, L; the densities, prop @nd pgors @and the cross-vent
pressure difference

AP = Pigh - Prow = 0 (1)

where

Puicn = MaX(Props Por)i Prow = min(Prop: Pgot) 2

Subscripts HIGH and LOW will always refer to the conditions on the high- and low-pressure sides of the
vent, respectively. When Ap = 0, the HIGH/LOW designations are arbitrary. In cases where gas flows
are involved, Ap is assumed to be small compared t0 Pgor and Prop-

Ap/p << 1; P = (Pueu + Prow)2 = (Pgor * Prop)/2 ®

The objective of this work is to develop a mathematical model for predicting for arbitrary specified values
of prop @nd Pgor the rates of flow though the vent under conditions involving unstable configurations
where a relatively dense fluid in the upper space overlays a less dense fluid in the lower space.

Dp = prop - PeoT > 0 (4)

With zero-to-moderate Ap, the instability leads to a bi-directional exchange flow between the two spaces.
As the flows enter the upper and lower spaces they are upward- and downward-buoyant, respectively,
and they rise and fall as plumes to the far field. For relatively large Ap, the flow through the vent is
unidirectional, from high to low pressure, with a single upward- or downward-buoyant plume.

Only quasi-steady features of the flows being studied will be discussed and analyzed. Thus, even when
the flows are fiuctuating it is assumed that time scales which characterize their fluctuations are relatively
small i.e., it is assumed that meaningful average flow characteristics could be established, in principle,
with integrals over time intervals which are relatively small compared to characteristic times of interest.



THE STANDARD VENT-FLOW MODEL AND ITS SHORTCOMINGS

There exists a simple, effective model for estimating the flow through both horizontal and vertical vents
which is nearly always used in practical applications, e.g., in the modeling of compartment fire phenom-
ena. The model, referred to here as the standard model, uses Bernoulli's equation and an orifice flow
coefficient, Cp, to compute the rate of flow through the vent. For horizontal vents, Ap and, therefore,
velocity are estimated to be uniform across the vent. For vertical vents, Ap varies with elevation and
calculation of the flow-rate requires integration of the mass flux which varies from the top to the bottom
of the vent. For vertical vents, calculation for an arbitrary vent-area shape poses no practical problem.
For a rectangular vertical vent the calculation has been obtained in closed form (see, e.g., Emmons [1]).
Previous use of this in room fire models is discussed by Cooper [2] and Peacock et al [3].

Anomaly of the Standard Model for Horizontal Vents Near Ap = 0; the Mixed Flow Regime

There is a basic problem with the standard model in the case of horizontal vents. According to this
model, the flow through the vent is always unidirectional, i.e., for any Ap

Vier = Viienst = CDAV(ZAp/pHIGH)VZ; Viow = Viowst = 0 (5)

where: V6, and Vo are the volume flow rates through the vent from high- to the low-pressure side of
the vent and from the low- to the high-pressure side of the vent, respectively; A, is the area of the vent;
and Eq. (5) provides the values of these flow rates for the standard model (indicated by the ST in the
subscript).

The above flow description seems reasonable, except for one problem; namely, the prediction of a zero
flow when Ap = 0. In general the prediction is wrong. To illustrate this, consider a condition of "near-
zero* Ap, and assume that pyop > ppom €-9- the vent joins a relatively high-temperature, small-density
environment below from a relatively low-temperature, high-density environment above. This condition is
one involving a state of hydrodynamic instability, where a two-directional exchange flow develops and a
unidirectional description of the flow is always invalid.

The above phenomenon is illustrated by the following "bottle-emptying* experiment:

Consider a paper-capped narrow-necked bottle filled with liquid. The bottle is carefully turned upside-
down and the paper is removed quickly. For this situation the standard vent-flow model predicts a zero-
flow solution with the bottle remaining filled with the liquid, with a low-to-zero (vacuum) state at the top
of the column of liquid in the bottle, and with Ap = 0 across the free-boundary at the vent-like mouth of
the bottle. It is evident that the bottle will empty and that the zero-flow solution is not valid for this or any
other unstable Figure 1 configuration.

The relevant fluid-dynamic instability for an unbounded interface has been studied by Taylor [4]. For the
unstable configuration and for Ap = 0, Epstein [5] established a correlation for exchange flow rate data
from salt-water/fresh-water exchange-flow experiments and Brown [6] established heat transfer
correlations for analogous hot-air/cold-air exchange-flow experiments.

For any unstable arrangement of densities, if |Ap| is small enough there will be a bi-directional or
exchange flow though the vent. (This is the situation in the above bottie-emptying experiment, where
there is an exchange of liquid flowing out and air flowing into the bottle at its vent-like mouth.) However,
if |Ap| is large enough the vent flow will be uni-directional. Indeed, there will always be a value Ap =
AP 00p denoted as the critical or flooding value of Ap, which separates a uni-directional or *flooding* flow
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regime (for Ap = Apg oop) Where Vi ow = 0, from a "mixed" flow regime (0 < Ap < Apgoop) Where Viow
= Vg > 0. Vgyis the above-mentioned "exchange flow." Also, associated with any particular APg oop
value is a corresponding volumetric flooding flow rate, denoted by Ve oop:

Epstein and Kenton [7] extended the work of Epstein [5] to non-zero Ap conditions. They studied the
mixed flow regime with salt-water/freshwater experiments, measuring flow rates, but not Ap. They also
acquired measurements of Veoon thereby characterizing the onset of the flooding regime. Tan and
Jaluria [8] carried out similar experiments, measuring Ap directly. However, the major focus of this work
will be on turbulent, large Grashof number flows, and, as will be shown below, it seems that their data,
acquired with relatively small-diameter (D < 0.0127m) vents, were in the laminar- or transition-flow range.

Let Ve denote the net volume flow rate through the vent from the high to the low-pressure side of the
vent.

Vyer = Vhioh - Viow = Viiah - Vex = 0 (6)

This is defined as the forced or pressure-driven part of the vent flow. At the two extremes of the mixed
flow regime, Vyer = Veioop & AP = AProop and Ve = 0 at Ap = 0. Similarly, Vgy is the buoyancy-
driven part of the flow which is zero at Ap = Apg o0p @nd which reachs its maximum value, Vgy yax: a5
Ap and the forced part of the flow go to zero.

In view of the above, the standard model vent flow description of Eq. (5) must be modified as follows:

There is a mixed flow regime defined by 0 < Ap < APg oop: Where Viow = Vex = 0. In this regime
Vieu@p = 0) = Vexmax < Viien < Viuan(BP = BPrioon) = VeLo0D (7)
Vi owlBP = BPgoop) = 0 = Viow < Viow(dp = 0) = Vix max (8)

The Uni-directional Flow Regime and the Significant Dependence of C,, on Relative Buoyancy

In addition to the difficulties of using the standard flow model in the mixed flow regime, there is also a
problem in the unidirectional flow regime. Use of a fixed value for Cp, denoted here as Cp.. and
associated with the orifice coefficient for high Reynolds number flows through an orifice which joins two
regions of like fluids is, in general, not valid. As determined by Perry [9], Cp,, = 0.60 for low-mach-
number flows or for incompressible fluids.

Using fire-generated hot-air/cold-air experiments and unstable horizontal vent configurations with the high
pressure region on the top, it has been shown by Heskastad and Spaulding [1 0] that, until Ap is many
times larger than Apg, oop, thereis a significant dependence of C,, on the relative buoyancy of the cross-
vent environments, where Cp ¢ oop the value of Cp, at the flooding condition, was measured to only be
of the order of a few tenths.

The fact that there is a difference between Cy, for stable and unstable configurations should be no suprise.
Consider the expected differences in characteristics of the entrance flow near the vent and their effects
on Cy, for flows with less-dense fluids below penetrating more-dense-fluids above (unstable) to that for
flows with more-dense fiuid below penetrating less-dense fluid above (stable). In the former case, the
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entering fluid will tend to rise from the vent to the upper space in a buoyant plume, whereas in the latter
case the entering fluid will rise to a maximum elevation, move outward and downward to the bottom of
the upper space, and continue its outward movement there, away from the vent opening, as a radial *floor
jet.”

For *shallow* (i.e., small L/D) circular vents of length L, the data of Heskestad and Spaulding [10] (L/D =
0.011 in [10]) indicate a smooth dependence of Cp, on the relative buoyancy as expressed through use
of the Froude number. (in the following, the subscript HS always refers to the names of the authors of
[10]) The orifice coefficients measured in {10], and other data and theoretical considerations indicate that
under unidirectional flow conditions

Cpus = Cons(Frug Grug)i  fim Cpps = Cpw 9)
Fryg = «

where g is the acceleration of gravity, Cy , is the large Reynolds number value of C, typically used in the
standard model, and Fr and Gr are the Froude and Grashof numbers

Frus = Viarn/AW/128D(orop - Peor) prorl % Gy = Gprop(Prop - peorD%/° (10)

In Eq. (10), p is dynamic viscosity and

p=pM; p=p:T=rop + Teo)/2 (1)

where T is temperature. Although Eq. (9) indicates a general dependence of Cpyg ON Gryg, it is
noteworthy that for the range of Gr,,s values (of the order of 107) of the shallow circular-vent data acquired
by Heskestad and Spaulding [10] C ;¢ was insensitive to changes in Gr,q and no systematic variation
of Cp g ON Gryg Was observed.

Beside determinations of the Fr,s dependence of Cy g, the work of Heskestad and Spaulding [10]
focused on determination of the flooding Froude number Frg, oo, @ssociated with measured values of
Veoop: FOr shallow circular vents, these results will be seen below to augment the previously mentioned
analogous results of Epstein [5].

The results of Heskestad and Spaulding [10] include limited data on each of several vent designs other
than shallow circular vents. These data indicate that orifice coefficient representations analogous to Egs.
(9) and (10) can likely be established for vent designs other then shallow circular vents. In this regard,
reliable results will require additional testing.

As mentioned, Heskestad and Spaulding [10] provide data in the unidirectional flow regime for unstable
configurations where the high pressure is at the top of the vent. It is a major objective of this work to
extend these results and to use results from Epstein [5], Epstein and Kenton [7], and Tan and Jaluria [8]
to obtain a generalized model for the unidirectional and mixed flow regimes in unstable configurations
where the high pressure is either at the top or the bottom.



Representating Flow Rates as Explicit Function of Ap

This paper will develop a fully-general horizontal-vent flow model for unstable configurations which
removes the small-Ap anomaly of the standard model. The paper will extend a preliminary version of the
model, presented and used by Cooper [2, 10] and Peacock et al [3], which was developed without the
benefit of the results of Epstein and Kenton [7] and Heskestad and Spaulding [10}. The new mode! will
also account for the Froude number dependence of Cp,

The objective here is to predict vent flow rates as a function of Ap. As mentioned, flow rates, but not Ap
were measured in the experiments of Epstein and Kenton [7]. Therefore, in the mixed flow regime it will
be necessary to use the correlated flow rate measurements of Epstein and Kenton [7] to establish the
desired dependence of flow on Ap.

Similarly, for the unidirectional flow regime, a result like Eq. (9) does not provide the desired explicit
dependence of flow rate on Ap. This is because the desired dependent variable, Vyoy = Vighsm 1S
embedded on the right side of the first of Eq. (5) through the Fr- or Vuien-dependence of Cp,

in developing a uniformly valid flow model, theoretical considerations of the general problem will be
presented first. This will be followed by: 1) establishing an estimate for Vg, oop; 2) developing the model
for the unidirectional flow regime and the value for Apg oop COrresponding to ViLoop: @nd 3) developing
the model for the mixed flow regime.

THEORETICAL CONSIDERATIONS OF THE FLOW DYNAMICS FOR UNSTABLE CONFIGURATIONS

An unstable configuration with Prop = Puign > Pgor = PLows -6, net flow from top to bottom, will be
designated as configuration 1. Similarly, an unstable configuration, but with pgor = Pryign > Prop = PLow:
i.e., net flow from bottom to top, will be designated as configuration 2. The two configurations are
sketched in Figures 2a and 2b.

The Boundary Value Problems
The boundary value problems associated with configurations 1 and 2 are identified as Problems 1 and
2, respectively. Assume that the fluid media in the top and bottom spaces are the same ideal gas. Then,

in view of Eq. (3) and for the purpose of establishing the dependence of p on T, the equation of state for
the gas can be approximated by

pT = constant = propTrop = PeorTeor = P/R (12)

where R is the gas constant and where the temperatures Ty, and Tgor coOrrespond to specified pyop and
peor through Eq (12). With the constraint of Eq. (4), Eq. (12) leads to the expected result that the
temperature of the gas in the bottom space, Tgor, associated with the gas of relatively low density, is a
relatively high temperature, etc.,

AT = Tgor - Trop > 0 (13)

Eq. (12) will be a good approximation if



Apg|X,|/p << 1 throughout the region of interest (14)

where Eq. (14) is always satisfied in practical problems, e.g., associated with ventilation of enclosed,
heated/cooled spaces and with the spread of smoke (i.e., fire-heated and -contaminated air) during fires
in multi-room facilities.

Designate the dependent variables velocity, pressure, density, and temperature for Problem N, N = 1 or
2, as UM, p™, ,™, and T®, respectively. Then, through the equations of conservation of mass,
momentum (i.e., the Navier Stokes equations), energy, and the modified equation of state, Eg. (12), and
for the specified parameters (which determine the boundary conditions), all of these variables are
functions of the co-ordinates, X, and the temperature-dependent material properties: C,(T), specific heat
at constant pressure; k(T), thermal conductivity; and u(T).

Problems 1 and 2 can be put in dimensionless form by introducing the dimensionless variables

Problem 1: Problem 2:
XM = x"/D X;® = x®/D
Ui = UM/ (2gDe)'? U@ = u®/(2gDe)"?
(15)
p"® = (p - p + 9pXy)/(2gAD) p"® = (p - p - gpXy)/(2905D)
p M= (plp - 1)le p @ =(1-plp)e
T = (1-TM)/e TV® = (T/T - 1)/e
where
&= Bplp = ATIF <2 5= (orop + P2 (16)

Neglecting pdV work and viscous dissipation in the energy equation it has been shown by Cooper [12]
that the dimensionless dependent variables of Eq. (15) are functions only of X:(N), &, I, Gr, and Pr where'

Il = Ap/(4gheD);  Gr = 2gD%|e|/[u(M/p)%  Pr = C,(MNu(M/k() (17)

iSince £ > 0, the absolute value designation for € is unnecessary here. However it will be useful in latter
applications of this equation. A similar note is relevant below in the presentation of Egs. (47) and (51).
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Thus, for example,
U™ = UX®; 1, &, Gr, Pr) (18)

In addition, it has been shown by Cooper [12] that if the parameter & is replaced by - £ in Problem 1, then
that problem becomes identical to Problem 2 and if the parameter € is replaced by - € in Problem 2, then
that problem becomes identical to Problem 1.

Now assume that solutions to Problems 1 and 2 exist for both negative and positive €. Note that there
is no a priori reason to suspect that solutions for ¢ < 0 for either problem are physically meaningful.
However, because of the above-stated relationship between the N = 1 and 2 boundary value problems,
it is evident that a general solution to one of these, including resuits for both positive and negative ¢,
provides the general solution to the physical problem of the other, i.e., for € > 0. Thus, for example,

Ui 1, e, Gr, Py = UPX®; 1L, & G P (19)

Equations similar to Eq. (19) can also be written for the p”®™ ;"™ and T"™. Eq. (19) will used below
as the basis for to determining and extending the relationships between results of configuration 1- and
2-type experiments.

THE DIMENSIONLESS VOLUME FLOW RATES

For N = 1 or 2, V{\),, and V{§) would be calculated from

Viien =] {8, ™, %, XM = 0)dA; Vo) = A{v olou® ™ XM, X,® = 0)dA,  (20)
v

TAL Ny Ny Ny N _
o) U.M) = U," where U™ (X7, XM, X4 0) <0
HIGH\~3 e 8 v 00 0
0 where U, (X, ™, X, X, = 0 =0
N 1 U,™ where U;®x,®, X,™, X,™ = 0) > 0
o] U =
row(Us ) o v v
0 where U,MX,™, X, X;™ = 0) = 0

For example, for unidirectional flow conditions, when I 2 Il op COrresponding to Ap 2 Apg gop: ETS:
(20) become

= -1 U0, X 1 = o), = - DS V{8 = 0 e



where the integral is over the entire area of the vent and U,™ is the average value of UM at x,™ = 0.
Using Egs. (17), the dimensionless version of Eq. (20) leads to the definition of the Froude number Fryq;,
which is a dimensionless value of Vs, or Ug,

M‘.'f@;n/ AN/ (29D5)1/2

P UMG®, M, XN = 0; 11, &, Gr)d(A/D))/(A/D?) = - U5

= (N
Frl-(i |2=H
(22)

Carrying out the above proceedure on Egs. (20) in a similar way for the mixed flow regime leads to

Frifdy = (V{Nau/A/(2gDe) ¥ = Fridu(m, &, Gr, Pr)

= = = = (23)
FriN), = (V{8L/A/(2gDe) ' = Fr{g)(m, &, Gr, Pr)
Also, using the result of Eq. (19) leads to
Frill, @, * & Gr, Pr) = Fr{3h,@, 7 & Gr, Pn)
(24)

Frid)m, * & Gr, Pr) = Fri3)@ 7 & Gr, Pn)

UNI-DIRECTIONAL FLOW
The Flow Coefficient and the Large Grashof Number Assumption
The Eq. (5) definition of Cp, remains useful for the uni-directional flow regime. Using Egs. (17) and (23)

in Eq. (5) leads to

i = [onan /M@M)L lim ¢4V = Cp, (25)

Fr, 1GH ™ ®

1 +e2forN=1

PHIGH/f_’ =
1-g2forN=2

From Egs. (23) - (25) it follows that
ciV = c{Ma, ¢, Gr, Pr) (28)

cim, e, Gr, Pr) = C{2(m, ; & Gr, Pn) (27)



Note that Cy, is for a particular vent design and would generally vary from one design to another, e.g., for
shallow circular vents vs shallow square vents. UNLESS NOTED OTHERWISE, THE REMAINDER OF
THIS WORK FOCUSES ONLY ON TURBULENT, LARGE-GRASHOF-NUMBER FLOW THROUGH
SMALL-L/D CIRCULAR VENTS, where *small-L/D* means, approximately, L/D < 0.10, and where the
"large Grashoff number* terminology will be clarified below.

The Flooding Condition
The region of turbulent, large-Gr flow. For fixed values of , Gr, and Pr there is a specific value of T,

associated with Apg, oop @nd depending on N, that leads to the flooding condition. This is designated
as T{)'Yop Where
FLOOD!

18%0p = T 200l Gr Pr) = Bp{op/(4944D) (28)
n{op(t & Gr P = I op(7 & Gr, Pr) (29)
and where the corresponding values Fr{\1, rooor ViiianrLoon and C8 i oop are

= (N = (N = 54 _ E(N N = 55 _ 7N 2
FrDSH)SH,FLOOD = Frr(n();H,FLooo(s' Gr, Pr) = Frr(ﬂg;H(HéLéoo- & Gr, Pr) = (VFSHC)iH,FLOOD/AV)/(ZgDe)1

(30)
CiMooo = CEN I dop & Gr, Pr) = Cé'.dél.ooo(s- Gr, Pr) 31
Also, from Eq. (25)
Clhoop = (1 + €/2)/ @I 1P FLooo (32)
Clioop = (1 - €/2)/ @l o)1 4Fri T Froop (33)
and from Egs. (29) - (31)
Erl»(i}()sH,FLOOD(t &, Gr, Pr) = ErlgzléH.FLOOD(; e, Gr, Pr) (34)
C{hoon(t & Gr, Pr) = Ci%000(5 & Gr, Pr) (35)

in Heskestad and Spaulding [10], configuration-1 experiments with air (Pr = 0.7) in the uni-directional flow
regime resuited in 13 sets of steady-state data. The data for each set were used to calculate Fr, I, €, and
Gr. These are presented in Table 1. As indicated, of the 13 data points, the first 6 are associated with
the flooding condition.
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The results of the above theoretical analysis is for perfect gas media and is valid for the entire range -

2 < ¢ < 2. However, for || << 1, when the Bousinesque approximation is applicable, there is an
analogy between Figure-1-type problems involving perfect gases and incompressible or nearly
incompressible liquids. In the case of small-e problems involving liquids, buoyancy effects which drive
the exchange flows can be the result of temperature differences or of concentration differences of a
solvent. This is the justification for use of the salt-water/fresh-water experimental data (where || < 0.2)
of Epstein and Kenton [7], Tan and Jaluria [8], and Heskestad and Spaulding [10] in the data analyses
to follow.

Flooding conditions were measured in the salt-water/fresh-water experiments (Pr = 7) of Epstein and
Kenton [7] and Tan and Jaluria [8]. All small-L/D flooding data from Epstein and Kenton (7], Tan and
Jaluria [8], and Heskestad and Spaulding [10] are presented in Table 2. As indicated in the table, the
salt-water experiments invoived both configurations 1 (referred to by Epstein and Kenton [7] as "draining"
experiments) and 2 (referred to in [7] as "injection® experiments). Since Ap was not measured by Epstein
and Kenton [7], It and C§N), oop are not available for their data.

For all the above data, Fr{\4y roop s @ function of Gr is plotted in Figure 3. As can be seen, for this
data Fr{4. rLoop i relatively insensitive to changes in Gr in the range 2.99(107) < Gr < 2.91(10% (the
data of Epstein and Kenton [7] and Heskestad and Spaulding [10]). (As will be explained below, in this
range of Gr the observed variations in FriN), roop '€ Primarily a result of the dependence of
Fré),, rLoop ON €) However, there is a significant increase in Fr{Nin rLoon OVer the larger-Gr values, for
Gr < 1.42(107) (the data of Tan and Jaluria [8]). Using flooding data for square, rectangular, and circular
vents, acquired over a large range of Grashof number, Figure 10 of Heskestad and_Spaulding [10]
indicates a similar insensitivity in flooding Froude number for the arbitrarily-large range Gr > 2(10%) and
a similar, relatively-abrupt increase in flooding Froude number as Gr drops below approximately 2(1 0').
(in computing Gr here for the square- and rectangular-vent data of Heskestad and Spaulding [10], EgQ.
(17) is used where D is replaced by the width of the vent. Of these data, the one with the largest Gr
value, Gr = 1.54(10"9), is for fiooding flow through a rectangular vent of dimension 2.03mx0.91m.)

Consistent with the above observation, it is assumed that in the present problem Gr > 2(107) defines a
range of turbulent, buoyancy-driven, free-flow phenomena where the Gr-dependence of the governing
boundary value problem is generally negligible.

The above discussion ignores the Prandti-number-, or Pr-dependence of Fr{\{&,, ¢ oop: ThiS is consistant
with the reasonable assumption that in the large-Gr range of practical interest, molecular diffusion effects

of Pr variations are negligible, at least for the approximate range of, say, 0.7 < Pr < 7 (i.e., for air and
room temperature water).

In view of the above, it is assumed that for large enough Gr, Fr{},,, Fr{h), and C{M are functions of It
and &, and Fr{\2 rooor Ct FLoopr @nd n{Y'dop are only functions of ¢, i.e.,

For Gr > 2(10):
Erl-(i'?()'sH,FLOOD(s' Gr, Pr) = Err(i'rc)sH.FLOOD(e)' etc.

_ o (36)
FriNL(m, & Gr, Pr) = Fr{l, (@, &), etc.

The Eq.-(36) assumption will also be adopted below in the mixed flow regime.
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Note that the above terminology, “free-flow,* refers to the fact that boundary shear flows with no-slip
conditions play no significant role, e.g., the flow phenomena mainly involve free jets and free plumes, and
approach and exit flow dynamics near the surfaces X, = 0* or 0" are not significant.

In contrast to the above, it is assumed that the range Gr < 2(107) defines transition and laminar flow
regimes of the problem where Gr- and possible Pr-dependence is important.

Practical vent flow problems of the type considered here, e.g., problems related to fire safety and building
ventilation, are typically confined to the large-Gr range Gr > 2(1 0). THE REMAINDER OF THIS WORK
FOCUSES ONLY ON LARGE GRASHOF NUMBER PROBLEMS, AND, UNLESS NOTED OTHERWISE,
GRASHOF- AND PRANDTL-NUMBER-INDEPENDENCE OF ALL THE FLOW PHENOMENA IS ALWAYS
ASSUMED.

The functions Fr{\d, roon(El IIf) dopf€). and C{Mhoonl®):  The Friidyrioon(e). Mildople), and
CS L 00p(€) data of Table 2 from Epstein and Kenton [7] and Heskestad and Spaulding [10] are plotted
in Figures 4, 5, and 6, respectively. [The data from Tan and Jaluria [8] are not inciuded since they do
not satisfy the large-Gr criterion of Eq. (36).] In the plots, the reciprocal properties of Egs. (29), (34), and
(35) are implemented. Thus, the data and solution are plotted in terms of the configuration 1 problem with
configuration 2 results presented on the € < 0 side of the plot.

A least squares method was used to fit to the data of Figure 4 in the following convenient analytic form
Frél & FLoop = 0.1754exp(0.5536¢) (37)

and this is also plotted in Figure 4.

As seen in Figure 6, the available C[()f,):LOOD(e) data are very sparse with no entries for small || or & <
0. Also, the scatter of the available data does not provide qualitative insight on the “shape" of the desired
function. Under the circumstances and until more flooding data becomes available, it is reasonable to
simply approximate C[‘,T}Looo(a) by a constant value. One reasonable choice for this is the average value,
which is found to be 0.1830. However, since C is a derived property, i.e., from Eq. (5), and since the
C§!Lioop(E) entries of Table 2 are derived from the Fr{ld, rioop(€) and IIf{ dop(€) data according to Eq (32),
it seems more appropriate that the criterion for selecting a *best,” constant, representive value for ol _ ) 00D
is that it provides a least squares fit of the TI{ }op(€) data.

From Eq. (32)

I o) = (1 + 8/2)[Erlg}éH.FLOOD(E)/C[()T|)=LOOD]2/4 (38)

- Using Eq. (37) In Eq. (38) itis found that the constant value for C§'Lioop that provides the least squares
fit to the six {1 ,(€) data points of Table 2 is

Cihioople) = 0.1780 (39)
Eg. (28) and Egs. (37) and (39) in (38) leads to
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T op() = AP bop/(498pD) = 0.2427(1 + £/2)exp(1.1072¢) (38")

Eq. (38") is plotted in Figure 5 and Eq. (39) is plotted in Figure 6.

In Figure 6, the sparseness of the the available Hé“ o(€) data, especially with the absence of entries for
small |e| or € < 0, and the predicted significant T}, bopl€)-variation of Eq. (38) in the e-range of interest,
is problematic. Nevertheless, the results of Egs. (37) - (39) are plausible, and they fill a gap where
alternative choices are not available. These results will be used thoughout the remainder of this work.
An Estimate for C

It is convenient to normalize Eq. (25) as follows

cm, &)/Cp . = [CéT)FLooo(e)/Co,m][E"mc)w(n- s)/ﬁrfs}();H,FLOOD(e)]/[H/Hél())OD(a)]1/2 (40)

For uni-directional flow T/ ) oo(€) = 1 where, independent of €, the limit /I dop(€) — <« leads to the
standard Bernoulli orifice flow condition, i.e.,

lim CiMI, &)/Cp o = [C§'Hoon(e)/Cp u) = 1/04(€)
! dople) = 1
(41)
lim c{"(m, )/Cp,, = 1
nmf{dop@ — =

and where G, , is taken to be the value associated with sharp-edged orifices and slots (Perry [9])
Cp.. = 0.60 (42)

In terms of reaching the objective of an estimate for vent flow rate as a function of Ap, it is convenient to
choose the functional form

= (1) E.(1 1) .
Friiaw/ Frl'(lI)GH.FLOOD = {I/M{ dop: €) (43)

and to approximate C$(t, €)/Cp,,, of Eq. (40) as

e, €)/Cp eI Do €) (44)

1) /Er (1) =.(1) /5,1 2,2 2 441/2
(FrHI()EH/FrHIGH,FLOOD)/{[(FrIS|éH/FrIEHC);H,FLOOD) -1+ 0,7 1" +0,7-0,}

where 0, = 0,(¢) would be determined from a good fit of available ci"m, )/Cy , data. Note that Eq. (44)
satisfies the limits of Egs. (41).
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As can be seen from Table 1, except for & = 0.521, C§"/C,, , data for non-flooding conditions are limited
to single data points for each of ¢ = 0.282 and 0.559. Until further data are available it is therefore
reasonable to approximate o,(€) as a constant.

Using Egs. (41) and (42), and the constant- CD L 0op @pproximation of Eq. (39), and then choosing 0, as

the constant value that provides a least squares fit to all of flooding and non-flooding data of Table 1
leads to

0,(e) = constant = 0.60/0.1780 = 3.370; 0,(€) = constant = 1.045 (45)
A plot of Eq. (44) and (45) and the data of Table 1 for C{"(IL, £)/Cy ., vs Fr{1&/Friidu sLoop i Presented
in Figure 7.
The Model for the Vent Flow in the Uni-directional Flow Regime
Replacing the left-hand-side of Eq. (40) by Eq. (44) and solving for I/II{{ )0y, leads to the desired result
for predicting the vent flow rate in the uni-directional flow regime

for Ap/APEhep = Wiidop = 1:

HIGHNHIGH FLOOD = FrHIGH/FrHIGH Floop = 1-0,° + [0, + 0, 2(Bp/Bpidop - DI

= (1) =1 (46)
VI(_OWNHIGH FLOOD = FrLO\ZV/FrF(H()?:H,FLOOD =0

where 0, and g, are given in Eq. (45); Api)op in EQ. (38”); and V14, rLoop is found from Egs. (30) and
(37) to be

Vii&nroop = 0.1754(2gD |e])"2A exp(0.5536¢) @7)

From Eq. (46) it can now be seen that the functional form of Eq. (44) guarantees satisfaction of the
requirement that for Ap/Ap{ioy = 1, Vf,}GHNH,GH floop IS @ monotonically increasing function of
Ap/Apilep It can also be shown that Eq. (46) satisfies the large-Ap limit which is equivalent to the
standard Bernoulli orifice flow condition, i.e.,

lim 1V+(uGHNH|GH rrooo = (Cp, m/Clg1l)=LOOD (AP/Apéléoo)vz (48)
opidpflop — =

Egs. (46) are the recommended model equations for the uni-directional flow regime. A plot of
V,S}GHNH,GH FLoop VS Ap/ApFLOOD according to Egs. (46) is presented in Figure 8. Included in the figure
is a plot of the data of Table 1 and a plot of the Bernoulli flow limit of Eq. (48). From the figure it can be
seen that at the flooding condition the standard Bernoulli flow equation would over-estimate the expected
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flow rate by a factor in excess of 3, and that only after Ap/Apdibop exceeds 3 or 4 does the standard-
model provide flow-rate estimates which are correct to within a few tens of percent.

THE MIXED-FLOW REGIME
Boundary Conditions for the Flow Components
From Egs. (6)-(8), Vii1&w/Vii & FLoon: VW1 anpLoop @nd V{8V 14 pLoop @s functions of 8p/BpHdop

< 1 in the mixed flow regime are sketched in Figure 9. As indicated in the figure, in addition to the

specifications of these equations it is reasonable to expect that the slopes of both V,ﬂ‘,éHNﬂéH,FLOOD and

VISV roop @re continuous across the flooding limit boundary, Ap/Apdop = 1. Thus

at Ap/Ap{ dop = 0

7(1) n7(1) RVISRNVILY = V (1)
Viian/ViiaH FLoop = Viow/VigHFLoop = Vex max/ViiGH.FLOOD

= 0.055(4/”)(1/2‘/2)/Fr}EI1IC)SH,FLOOD(8)

(49)
Y (1) py (1 _ v p( 4(1) a7 (1) _
ViV roon = V&V Sk pLoon - ViV ik roo0 = 0
at Ap/oapi) o =1
P/BPfLo0D .
4 (1) 71 — v _ 4. vl ar(d -
V&V ki roon = VREJE}NtSIéH.FLOOD = 1; ViowNVidurioon = 0
{1 (1 1
I\AY r(uéH,FLooo)/ d(Ap/APfidop) = O (50)

d(VISI}()'sHN}g:();H,FLOOD)/d(Ap/ApéR‘)OD)I = d(Vh(l‘E)rNr(i:éH,FLooo)/d(Ap/Apélc)aoo)

d(vr(i}c)sHNr(i}c)aH,FLooo)/d(Ap/Apt(fILéoo) |
apispflbop = 17

m,(€) = (0,/0,)*/2 = 5.20

where Eq. (45) was used in the last of Eq. (50), and in Eq. (49) the value of \'/EX.MAX for shallow circular
vents was obtained from Epstein [5]

Vex max = 0.055(4/m)A(gD|e|)"? (51)

Analytic Approximations for the Flow Components

The following representations of V{I/V12 and V{ VL which satisfy Egs. (49) and (50
dooted NET/ YHIGH,FLOOD LOW YHIGH,FLOOD q
are adopte
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VSN I ki pioop = M - [1 + (M2 - 1)(1 - Ap/AR{ 30p)] Y}/ M - 1) (52)
or

Bp/Bpop = - [(M - 1)/(M + 1)](\7»(115%/\7»(411();&&000)2 + [2M/M + 1)](Vrfu1-:)TN+(111<)5H,FLooo) (52°)

1) nr (1
VIEOV{/Nk(HéH,FLOOD =
. ) - )
VEX,MAXNlEI:();H,FLOOD{[.‘ + mz(Vr(n)GH,FLooo/VEx,MAx)/z](1 - Bp/BP{dep) (53)

-[2+ mz(VIg}éH,FLOOD/VEX,MAX)/a(1 - Bp/Bp on) Y

or
VééV)VNEX,MAX = [(1 + my/2)(1 - Bp/Bpiaop)? - (2 + my/2)(1 - Ap/BAPLop)) (83")
M =2m, -1 = (0,/0,)° - 1 = 9.400 (54)

where Eqg. (45) was used to obtain Eq. (54), VEx,MAxNMc)aH.FLooo is given in Eq. (49), and the yet-
undetermined value for m, and the associated m, are

My(e) = dV{ow/Vex max)/ d(ap/Apibop) | (55)
spitpf{dop = 0

M,(€) = My(€)Vix max/V P(l}()SH,FLOOD = d(\'/éé‘)vN F(l1léH,FLOOD)/d(Ap/ApI(::.())OD)i a) (56)
Bp/Bpg pop = 0

Note that Egs. (53) and (53’ also satisfy the requirement that Vi ow is always positive.

The Eq. (52) or (52 ) representation of the V{EN| & rioop Sketch of Figure 9 involves a parabola with
axis parallel to the Ap/ApélgOD axis. This analytic form allows for the required monotonic increase of
VyerVeioop frOM zero at Ap/ApYidep = 010 1 at Ap/Apfdep = 1. It also satisfies the large-siope
requirement of the last of Egs. (50) at Ap/Ap{{dop = 1. Finally, the representations of Egs. (52) and (S3)
are in a convenient form for the curve-fitting analysis of the data of Epstein and Kenton (7], to be
introduced below.

Epstein and Kenton [7] provide flow rate data for circular vents or disks (L/D = 0.0190 and 0.113; 4 data
points) and tubes (0.39 < L/D < 5.0; 16 data points) in a limited portion of the mixed-flow regime. These
are presented in Table 3. Difficulty in acquiring accurate data relatively close to the uni-directional flow
regime, where V,Sé-}Né] ) w.rLoop > 0.6 (indicated by the datato correspond to the portion of the mixed-flow
regime where 0 < V{33 Vgx yax < 0-1), precluded measurements of flow in this range. According to
Epstein and Kenton [7], the reported data have *experimental uncertainty ... between 10 and 30 percent.”
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Note that all data of Table 3 are in the very narrow range 0.12 < & < 0.16. For this reason the data can
not be used to determine any significant e-dependence of m, that may exist. Accordingly, m will be
approximated by a constant vaiue.

Using Egs. (52’) in (53') leads to a solution of V{3\Ney yax as a function of VgV anrioop The

constant value of m, that provides a least-squares fit of this function to the four small-L/D data pairs of
Table 3 has been found to be

m, = - 0.7070 (best fit for L/D = 0.0190 and 0.112 data of Epstein and Kenton [7]) (57)
From Egs. (52), (53'), (54), and (57), V{shWVexmax and VNV idurioop re plotted in Figure 10 as

functions of Ap/APY dop-

Using Egs. (6) and (52)-(56), V5| is finally determined from
Viiian = Vi + Viow (58)

Additional Comments Regarding Mixed-Flow Data

VSN ex wax @s a function of VRNV, £ oop from Egs. (52), (53”), (54), and (57) is plotted in Figure
11. Also included is a plot of all data of Table 3. It is interesting to note that these data, the bulk of which
involve flow through tube-like vents (i.e., moderate-to-large L/D) rather than shallow vents (i.e., small L/D),
are weli correlated by the m, value that was established from just the few, available, shallow-vent data.
The value of m, providing the least-squares fit of a// data of Table 3 has also been determined

m, = - 1.8077 (best fit for all data of Epstein and Kenton [7], 0.0190 =< L/D < 5.0)
(677)

and V!V ex wax as @ function of VRN {IL, ¢ oop from Egs. (527), (53”), (54), and (57”) is also plotted
in Figure 11.

It is of interest to define

m, = d(vl(.év)vNEX,MAX)/d(thl:?}N}“éH,FLOOD)| = [2mgM/(M + 1)]
VA FLoop = 8p/8pfdop =0
= - 1.2781 [using EQ. (54) and m, from EQq. (57)] (59)

- 2.625 [using Eq. (54) and m, from Eq. (57)]
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The latter value for m, can be compared to the m4 = - 2.5 value associated with the correlating function
Eq. (24) of Epstein and Kenton [7] for all data, viz.2

Vfé\}VNEX.MAX = (1 (1)NHIGH FLOOD) (60)

A plot Eq. (60) is included in Figure 11.

VENTCL2 - AN ALGORITHM FOR BUOYANCY-DRIVEN FLOW THROUGH HORIZONTAL VENTS

For unstable cross-vent densities, all of the above leads to the following algorithm, called VENTCL2 (an
advanced version of VENTCL (Cooper [2 and 11]), for calculating Vyer, V| ows @nd Vg through small-L/D
circular vents:

1. Verify that prop > pgor. i-€-, that the configuration is unstable, and calculate Ap from Eq.
(4); determine T from Eq. (11) and u(T) from note {6} of Table 1; determine p and & >
0 from Eq. (16).

2. Determine p,y gy @nd Prow: AP, and p from Egs. (1)-(3); according to Figure 1 designate
the problem type as either Problem 1 or 2, involving configuration 1 or 2, respectively; if
it is configuration 2, then replace e by - € < 0.

3. Determine Gr from Eq. (17) and verify that Gr satisfies the large-Gr criterion, Gr = 2(107).

4. Calculate Fr!L, raop and then Viik roop from Egs. (37) and (47), Apf{dep from Eq.
(387), and Ap/ApP: sop

5. If A /Apidop = 1, expect uni-directional flow. Estimate Vo = Vi) = 0and Vg, =
VHIGH from Eq. (45) and (46).

6. If Ap/APgoop < 1, EXpect m|xed flow. Estimate: Vyzr = V\ig) from Egs. (52) a (54)
\E/Ex ,z,A,é)and then Vo = V{3 from Egs. (51), (53"), and (57) and Vo = Viiay from

a (5

The algorithm is suitable for general use in zone-type compartment fire models.

APPLICATIONS OF VENTCL2: STEADY BURNING IN A CEILING-VENTED ROOM

Direct flow rate data to validate the VENTCL2 model/algorithm are not available. However, there are data
from full-scale ceiling-vented fire scenarios which can be used to validate the model indirectly. These
scenarios are special cases of the important class of problem involving steady burning in a ceiling-vented
room. In this section VENTCL2 will first be used to obtain a general solution to this problem. Then, the
solution will be compared to aspects of previously published data from two full-scale experimental studies
involving the purely ceiling-vented fire scenario.

2The 2.5 exponent in Eq. (59) is different from that of Eq. (23) of [6] which seems to be printed incorrectly.
Eq. (59) corresponds to the correlating function plotted in Figure 5 of [6].

18



The Problem

Consider a room with a fire, fully-enclosed except for a shallow circular ceiling vent. Refer to Figure 12.
The outside air above the vent has ambient density, temperature, and oxygen mass concentration, T,yg,
pames @nd PYaye respectively. Assume steady conditions where the room environment immediately below
the vent has density, temperature, and O, mass concentration p, T > Tayg and ¥ < Ppyg, respectively.
YLow: the O, mass concentration in the lower part of the room at the elevation of the fire, must exceed
the minimum, extinction value, Yy, associated with the particular fuel. For example, for the combustion
of CH, diffusion flames from round burners with diameters D in the range 0.50 m < D = 0.089 M, Yy
was measured by Morehart, Zukoski, and Kubota [14, 15] as ranging from 0.140 (D = 0.50m, T = 1765
K) to 0.161 (D = 0.089 m, T = 1765 K). Note that under the conjectured steady state condition, the O,
that supplies the lower part of the room and maintains it at a y, o > y comes from the cool and relatively
O,-rich ambient air that enters the ceiling vent and drops toward the floor of the room in a negatively
buoyant plume.

In this section the VENTCL2 algorithm will be used to estimate the exchange flow through the vent and
the burning rate that can be supported by the net rate of oxygen inflow.

The Relationship Between Ap and T
Assume: the mass-flow-rate of fuel introduced by the fire is negligible compared to the mass-flow-rate of
the exchange-flow; the environment inside and outside the room can be modeled as a perfect-gas

approximation to air; and there is no mixing in the vent, i.e., all inflow is at the ambient condition and all
outflow is at the upper room environment. Using the approximation of Eq. (3), it follows from Eqg. (12) that

T/Tamg = Pame/P = Prop/Peor > 1 (61)

From Egs. (4) and (61) it is evident that the present problem invoives an unstable configuration, and that
the VENTCL2 flow algorithm is applicable.

Conservation of mass across the vent requires

PVgor = PameVrop (62)

where Vgo; and Vi, are the volume flow rates from the bottom to the top of the vent and from the top
to the bottom of the vent, respectively. Using Eq. (61), it follows from Eq. (62) that the high and low
pressure sides of the vent are at the bottom and top, respectively, i.e., the problem involves a Problem
2 scenario in the mixed-flow regime.

Vieh = Veor: Viow = Vror: PHich = Pi Prow = PamB (63)

According to the VENTCL2 algorithm, replace € by &’ = - € in the Problem 1 solution to obtain the
desired Problem 2 solution. From the Eq. (13) and (16) definition of &

g =-e=-20-NT +1)<0; T =TMyg=2-&)2+¢) (64)
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Also, define

8p" = Dp/BPHop (65)
where, from Eqg. (38”)

Apildop = 0.2427(4gApD)(1 + € /2)exp(1.1072¢7) (66)
VENTCL2 and Eq. (62) require the following functional dependence of &p” on e’

P(5p") = AE") (67)
where

A(e’) = - 2(0.282)e” exp(- 0.5536¢" )/(2 + €)
(68)

B(6p) = M- [1 + (M- 1)(1 - 8p)]PH{M - D[(1 + my2)(1 - 6p)° - 2 + my/2)(1 - 517}

and where M and m, are given in Eqgs. (54) and (57), respectively.

Using the numerical root-finder RTSAFE listed by Press [16], the solution of Eq. (67) for Sp” as a function
of &’ or T/T s Was found for a wide range of &’ < 0 (T > Taup): This is plotted in Figure 13.

The Energy Release Rate of the Fire as a Function of T and Its Maximum Possible Value

The energy-release rate, Q, of the fire is related to the net rate of oxygen inflow which is consumed
entirely by the combustion.

Egs. (51), (62), and (63) lead to

net rate of O, consumed = YamaPameViow - ¥PHicHY HigH

= 0.055D%?g"?| &’ |1/2¢AMBPAMB(1 - Y pame) ViowVex max

(69)
where, VionVexuax = ViowVexmmx @ function of 8p°, is given in Eq. (83").
From Huggett [17]
Cop = Q/(net rate of O, consumed) = 13.2(1 0%)kW/(Kgo,/S) (70)
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Using Eq. (69) in Eq. (70) and defining a dimensionless Q

Q" = Q1 - ‘/’/%"AMB)PAMB¢AMBCozAv5/4g1/2] (71)

leads to
Q" = 0.074|e” | "2V §M NV ex wax (72)

The previously determined sp° vs € solutions were used in Egs. (72), (63"), and (64) to obtain Q" vs
T/T \ug @nd this is plotted in Figure 13. From this it is seen that Q" is predicted to rise rapidly from 0, at
T/Taye = 1, to @ maximum value, Quax = 0.037, at T/T,,5 = 1.65, and to monotonically decrease with
further increases of T/T g Associated with Qu,y, let Qyuy be the maximum possible Q for a given .
Taking Ty = 300 K, pams = 1.2 kg/m’, g = (0.28 kg O,)/kg, and g = 9.8 m/s?, Egs. (70) and (71)
lead to

Quax = 0.41(109{1 - $/[0.23(kg O,)/kg]HA/M?)¥* kW (73)

The scenario, leading to the largest value of Q.. is one where ¥ is negligible. This would likely be
associated with ¥, o = Yexr- Thus, from Eq. (73)

Q < 0.41(10%(A/m?)%* kW = 0.41(10% kW, 1.3 kW, and 0.23 kW for A, = (74
MAX V! 2 4 > Vv
1.0 m3, 1.0(10%) m?, and 25.0(10%) m®, respectively

The results of Figure 13 are now related to data acquired in *full-scale" experiments reported by Steward,
Morrison, and Mehaffey [18] and Jansson, Onnermark, and Halvarsson [19]. In this it is assumed that
the present circular-vent results can be used to provide estimates for the square- and rectangular-vented
enclosures used in the experiments.

Experimental Validation of the Figure 13 Solution

Fire in Ceiling-Vented Ship Quarters. Steward, Morrison, and Mehaffey [18] report on a fire in a mock-
up of a fully-furnished three-person ship accomodation quarter (3.84 m by 2.82 m by 2.38 m high), fully
enclosed except for a single square vent, A, = 1.00 m?, in a corner of the ceiling, away from the
furnishings. The fire involved an initial interval of intense burning which rapidly decayed to smoldering
(10 minutes); an interval of smoldering (20 minutes), and a final interval of intense burning (30 minutes).
The final interval involved a 19-20 minute sub-interval in which the heat release rate was relatively constant
atQ= (025" 0.05)10° kW. It is reasonable to expect that the latter sub-interval was a time of steady
state during which the present example analysis of ventilation conditions is relevant. Indeed, the
measured burn rate does satisfy the criterion of Eq. (74), ie, Q = (0.25 * 0.05)10° kW < Quax =
0.41(10% kW. Also, » = 0.09 (kg O,)/kg was estimated from Eq. (73). There is no reported measured
value to validate the latter result. However, the result is plausible since, as required, it is clearly less than
the likely value of ¥ o = Yexr-
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Note that because of the original assumption of no mixing in the vent, the Q,,,x = 0.41(1 0)kWandy =
0.09 (kg O,)/kg estimates must be regarded as upper and lower bounds, respectively, to the actual
expected values. Thus, the actual rate of O, inflow would be less than y,yspamsVrop @and the rate of O,

outflow would be greater than ¥pVgr.

Wood Fires in a Ceiling-Vented 27 m*® Cubic Enclosure. Jansson, Onnermark, and Halvarsson [19]
report on 5 experiments involving wood fires located at the center of the floor of a cubic room (6.00 m by
6.00 m by 6.00 m), fully enclosed except for a single, centrally-located, celllng vent. Three different vents
were used: A, = 4.00 m? (square), 2.00 m? (1.00 m by 2.00 m), and 1.00 m? (square). The burn times
were 30 min. Measured and reported variables included: dM/dt, where M is the mass of the fuel; TUEAVE,
the average of the upper-enclosure temperatures; and C oy, o, 81d C o cop the molal fractions of O, and
CO, in the lower part of the enclosure, 1 m from the floor and 1 m from the combustion zone. The data
were studied to identify intervals that could be reasonably construed to represent quasi-steady-state
conditions for which the present example calculation would be relevent. The selected criterion for this was
that all measured variables reported by Jansson, Onnermark, and Halvarsson [19] were relatively constant
over an interval of at least 5 min.

The "best" steady state interval was found and analyzed for experiments 2, 3, and 4. No steady state
intervals were identified in experiments 1 and 5.

For the experiments the heat of combustion of the wood fuel was taken from Drysdale [20] to be 19.5 kJ/g
and it was assumed that the smoke yield was negligible. Then, for the intervals of steady state burning
the Figure 13 results and Egs. (70) and (71) were used to estimate y from Q,,c,¢ (the measured values
of Q as deduced from the measured values of dM/dt) and from T (estimated to be identical to T paye)-

The results of the analyses are summarized in Table 4. In the table, ¥, was estimated from C oy o0
according to ¥ oy = 0.23(C gy, 0/0-21).

Note that the low ¥, o, values of Experiments 2 and 3, approximately 0.15, indicate that the fire xn both
cases was close to extinction. The measured values of c 4, o, in these two cases were Q. 137 * 0.004
and 0.141 * 0.002 for experiments 2 and 3, respectively; these are the lowest O, concentrations measured
throughout the entire test series of Jansson, Onnermark, and Halvarsson [19]

As in the analysis of [19], there are no reported measured values of ¥ to directly confirm the calculated
results of Table 4. However, once again the calculated resuits are plausible, since, as required, they are
always less than y . As with the previous example, the results are also consistent with the original
assumption of no mixing in the vent in that it is reasonable to anticipate that actual values of y, expected
to be greater than the presently predicted values of Table 4, would, as required, also be less than the
corresponding values of ¥, o, Thus, in experiment 2, for example, it is expected that the experimental
value of ¥ was somewhat greater than 0.08, while still being less than 3, o = 0.15.
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NOMENCLATURE
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vent area

vent flow coefficient, Eq. (5); C,, for Problem N; C, of [10]; Cy, at large Reynolds number;
C,, at onset of flooding

Eqg. (70)

specific heat at constant pressure

molal fractions of O,, CO, in lower part of enclosure

characteristic span of vent opening
Eq. (10), Froude number of [10]

Froude numbers for Problem N, Egs. (22) and (23); Fr\'4, at onset of flooding

Eq. (10), Grashof number of [10]; Grashof number, Eq. (17)

acceleration of gravity

thermal conductivity

depth of vent

Egs. (52) and (54), also, mass of fuel [19]

Egs. (50) for N = 1; (53) and (56) for N = 2; (53") and (55) for N = 3; (59) for N = 4

pressure; p for Problem N; dimensionless p™, Eq. (15); far-field p on high-, low-pressure
side of vent, near the vent elevation

(Prien + PLow)/2
Prandtl number, Eq. (17) ¥

burning rate; Q measured in [19]; maximum of Q

dimensionless Q, Eq. (71)
gas constant
absolute temperature; T for problem N; dimensionless TV, Eq. (15); far field T in top,

bottom space; T of ambient; T/T s average of upper-enclosure T measured in [19]
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velocity for Problem N; dimensionless U™, Eq. (15); average U,™ at vent, Eq. (21)

exchange flow rate, V| ,; maximum Vg, i.e., at Ap = 0
Vhien @t onset of flooding

volumetric flow rate from high- to low-pressure side of vent; V,,,,, for standard flow model;

volumetric flow rate from low- to high-pressure side of vent; V, ., for standard flow model

Ve fOr Problem N, Eg. (21); V|2, at onset of flooding

Ve - Viow Vaer for Problem N
cartesian coordinates for Problem N, Figure 2; dimensionless X, Eq. (15)

PriaH - PLow: AP at onset of flooding; Apg oop for Problem N

Teor - Trop

PTop - PeoT

Ap/Apfidon

dimensionless Ap, AT, Eq. (16); Eq. (64)

Eq. (68)

dynamic viscosity; Eq. (11)

kinematic viscosity, Table 1

dimensionless Ap, Eq. (17); dimensionless Ap{Y).p, Eq. (28)

density; p for Promlem N; dimensionless »™, Eq. (15); far-field p in top, bottom space

(prop + PBOT)2

Eq. (20)

Eqgs. (44) and (45)

Eqgs. (67) and (68)

mass concentration of O, in enclosure, of ambient, in lower part of enclosure
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Test & Friidy 1 cg” & FriiduFréidn poon Cc§"/Cp . /M dop

542 0521 0216 0.601 0.156 2.99(107) 0.924 0.261 1.10

5522 0550 0.243 0532 0.188 3.49(107) 1.02 0.314 0.923

56?) 0282 0186 0467 0.146 4.64(10)) 0.910 0.243 1.24

5012 0373 0227 0392 0198 4.74(10") 1.05 0.329 0.901

6012} 0474 0238 0456 0.196 4.06(10)) 1.04 0.326 0.900

6112 0260 0248 0382 0214 4.66(10") 1.23 0.356 1.04

533 0521 0257 0657 0.178 2.99(107) 1.10 0.296 1.21

53134} 0521 0474 0708 0.316 2.99(10") 2.03 0.527 1.30

53034} 0521 0661 0.848 0403 2.99(10") 2.83 0.671 1.56

53134} 0521 0.814 0111 0434 299(10) 3.48 0.723 2.04

544 0521 0461 0631 0326 2.99(10)) 1.97 0.543 1.16

5514 0559 0262 0455 0219 3.49(10") 1.10 0.366 0.790

564t 0282 0342 0603 0235 4.64(10) 1.67 0.392 1.59

{1} See TABLES fli and VI of Heskestad and Spaulding [10].

{2} Identified in Heskestad ar_1d(S1oS:aulding [10(]1 as the flooding condition, i.e., the Frild,, 11, and C{" values
for this datum point are Fr{1L, o oop i dops and C§'E oop: respectively.

{3} Same fuel and fuel flow rate as Test Condition 54,

{4} Trop and Tgoy are not presented by Heskestad and Spaulding [10}; it is assumed here that the values
of these were the same as the values measured in the same test, i.e., the same fuel and fuel flow rate,
but at flooding conditions.

{8}  Co,,istaken to be 0.60; Frildy rioop = Friiidn rLoop(€: Gr — «) and T L op = M dop(E, Gr — «) are
calculated from Egs. (37) - (39).

{6} In calculating Gr from Eq. (17), the kinematic viscosity, »(T) = ¢(T)/p, determined from Hilsenrath [13]

»(T) = [0.04128(T/K)*2(107)/(T/K + 110.8)lm?/s
Table 1. Results derived from the configuration-1 experimental data of Heskestad and Spaulding [10]

for 1fl)ow through a D = 0.153m, L/D = 0.011 circular vent, and from Egs. (37) and (38') for
FrlSIIGH,FLOOD and I1{{ o,
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Reference & Configuration Fré1&H FLooD Gr cd'toon 14500
Number Number

[10] 0.521 1 0.216 2.99(10") 0.156 0.601
[10] 0.559 1 0.243 3.49(107) 0.188 0.532
[10] 0.282 1 0.186 4.64(10") 0.146 0.467
[10] 0.373 1 0.227 4.74(107) 0.198 0.392
[10] 0.474 1 0.238 4.06(107) 0.196 0.456
[10] 0.260 1 0.248 4.66(107) 0.214 0.382
(7] 0.1426 1 0.1917 5.31(107) N {1}
(7] 0.1410 1 0.1755 5.25(107) {1} {1}
7 0.1378 2 0.1632 5.13(10) {1} {1}
71 0.1487 1 0.2057 5.54(107) {1} {1}
7] 0.1339 2 0.1783 4.98(107) {1} {1}
(7] 0.1456 1 0.1826 2.91(10%) {1} {1}
(7] 0.1329 1 0.1709 2.66(10%) {1} {1}
[71 0.1417 1 0.1618 2.84(10%) {1} {1}
8] 0.0469 2 0.2534 4.28(10°) 0.0966 1.638
(8] 0.0658 2 0.4383 6.00(10%) 0.194 1.191
(8] 0.0898 2 0.3463 8.20(10°) 0.168 0.970
8] 0.1208 2 0.4132 1.10(10") 0.218 0.793
(8] 0.1550 2 0.3877 1.41(107) 0.220 0.659

{1} This value is not available since Ap was not measured

Table 2. Small-L/D data on flooding conditions from Epstein and Kenton [7], Tan and Jaluria [8], and
Heskestad and Spaulding [10].
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L (1) ny (1 1 S(1) p 1
¥ent D L/D VeIV rglc)sH,FLooo{ } véOV)V/VEX,MAX( }
ype

disk 0.02540 0.01902 0.5331 0.1743
disk 0.02540 0.01902 0.4329 0.2729
disk 0.02540 0.01902 0.1068 0.7588
disk 0.02540 0.1130 0.2996 0.5270
tube 0.02540 0.5000 0.09279 0.6917
tube 0.02540 0.5000 0.2936 0.3108
tube 0.02540 1.000 0.1957 0.5045
tube 0.02540 1.000 0.5661 0.1180
tube 0.02540 1.000 0.4541 0.1504
tube 0.02540 1.000 0.2113 0.4741
tube 0.02540 2.000 0.4659 0.1728
tube 0.02540 2.000 0.5088 0.1362
tube 0.02540 2.000 0.2663 0.2920
tube 0.02540 5.000 0.1992 0.5693
tube 0.02540 5.000 0.4456 0.2213
tube 0.02540 5.000 0.2442 0.4428
tube 0.04450 0.3910 0.09980 0.7067
tube 0.04450 0.3910 0.4983 0.1472
tube 0.04450 0.3910 0.3049 0.3706
tube 0.04450 0.3910 0.2190 0.4821
(13 V1) and V{2), are from Table 2 of Epstein and Kenton [7}; Vex max and V{144 rLoop are from Egs. (21)

and (22) of Epstein and Kenton [7], respectively.

Table 3. VARV rLoop VS VidwVex max Fesults from Epstein and Kenton [7] in the mixed flow regime
for flow through circular vents or disks and tubes.
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Exp't. no., interval, A, Tupave QuEeas Y Yiow

initial mass [m?] K] kW] [(kg O,)/kg] [(kg O,)/kg]

2, 15-20 min, 2 440 +/- 6 620. +/- 60 0.08 0.15 +/- 0.004
100 kg

3, 15-20 min, 1 386 +/- 1 250. +/- 10 0.07 0.15 +/- 0.002
100 kg

4, 5-10 min, 4 373 +/-5 550. +/- 100 0.16 0.21 +/- 0.003
25 kg

Table 4. Data on ceiling-vented wood fire scenarios of Jansson, Onnermark, and Halvarsson [19] and

application of Figure 13 and Egs. (70) and (71).
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Figure 1. The basic horizontal-vent configuration.
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Figure 2. (a) Configuration 1 and (b) Configuration 2 illustrating conditions associated with boundary
value problems 1 and 2, respectively.
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Combined buoyancy- and pressure-driven (i.e., forced) fiow through a horizontal vent is considered where the vent-connected
spaces are filled with fluids of different density in an unstable configuration (density of the top is larger than that of the bottom).
With zero-to-moderate cross-vent pressure difference, Ap, the instability leads to bi-directional exchange flow between the two
spaces. For relatively large Ap, the flow through the vent is uni-directional, from the high- to the low-pressure space. An anomaly
of a standard vent flow model, which uses Bernoulli's equation with a constant fiow coefficient, C,, is discussed. Thus, the
standard model does not predict expected bi-directional flows at small-to-moderate Ap or non-zero fiow at Ap = 0. Also, when
Ap exceeds the critical value, Apg, nop, Which defines the onset of uni-directional or *flooding"* flow, there is a significant
dependence of C, on the relative buoyancy of the upper and lower fiuids (i.e., Cp is not constant). Finally, the location of the
high-pressure side of the vent, l.e., top or bottom, can be expected to infiuence vent flow characteristics.

Experimental data and analysis of the relevant boundary value problems are used to develop a model which removes the anomaly
of the standard model and which takes all the above effects into account. The result is an algorithm, useable in zone-type fire
models, to calculate flow through shallow, horizontal, circular vents under high-Grashof number conditions. The algorithm is used
in example applications where steady rate-of-burning In a ceiling-vented room is estimated as a function of room temperature,
vent area, and oxygen concentration. Results are consistant with available data involving ceiling-vented fire scenarios.
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