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Heat Transfer From Radiatively
Heated Material in a Low Reynolds
Number Microgravity Environment

A mathematical model of the transient three-dimensional heat transfer between a
slowly moving ambient gas stream and a thermally thick or thin flat surface heated
by external radiation in a microgravity environment is presented. The problem is
motivated in part by fire safety issues in spacecraft. The gas phase is represented
by variable property convection-diffusion energy and mass conservation equations
valid at low Reynolds numbers. The absence of gravity and low Reynolds number
together permit the flow to be represented by a self-consistent velocity potential
determined by the ambient velocity and the thermal expansion in the gas. The solid
exchanges energy with the gas by conduction/convection and with the surroundings
by surface absorption and re-emission of radiation. Heat conduction in the solid is
assumed to be one dimensional at each point on the surface as a consequence of
the limited times (of order of 10 seconds) of interest in these simulations. Despite
the apparent simplicity of the model, the results show a complex thermalily induced
flow near the heated surface. The thermal exchange between the gas and solid
produces an outward sourcelike flow upstream of the center of the irradiated area
and a sinklike flow downstream. The responses of the temperature fields and the
associated flows to changes in the intensity of the external radiation and the ambient

velocity are discussed.

1 Introduction

This paper is a continuation of our analysis of heat transfer
phenomena associated with the radiative ignition of cellulosic
materials in a microgravity environment. The objective of this
work is both scientific understanding and the development of
a potential hazard analysis capability for spacecraft fire safety
studies. The use of a microgravity environment to study ra-
diative ignition eliminates the need to study simultaneously the
starting buoyant plume, which is itself a major task requiring
a time-dependent solution to multidimensional Navier-Stokes
equations. Previous radiative auto-ignition models avoided this
problem by limiting the analysis to one dimension (Kashiwagi,
1974; Kindelan and Williams, 1977; Baek and Kim, 1991), or
at a stagnation point (Amos and Fernandez-Pello, 1988). Al-
most any scenario of interest in a spacecraft potential hazard
analysis is both multidimensional and time dependent. Thus,
one of the goals of the present work is a formulation of a
computationally tractable model of the thermal transport that
can be used in transient three-dimensional ignition studies.

In a microgravity environment, the dominant vorticity cre-
ation mechanism in the bulk of the gas is absent. Vorticity is
still generated at the surface by the non-slip condition. How-
ever, at low Reynolds numbers the tangential velocity profile
near the surface is not important in the convective transport
of mass, momentum, or energy. Thus, the no-slip condition
was relaxed in our earlier study of radiatively induced deg-
radation of a thermally thin solid in a quiescent gas (Kushida
et al., 1992). This permitted the flow in this axially symmetric
configuration to be represented by a velocity potential. In the
present work, this approximation is used to investigate two
major extensions; the incorporation of a siow ambient flow
generalizing the analysis to three dimensions, and coupling this
to both thermally thick and thermally thin solid samples. These
extensions are motivated by the experimentally observed strong
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effects of ambient flow velocity on flame spread rate in a
microgravity environment (Olson et al., 1988; Olson, 1991).
It appears that a ventilation flow in a spacecraft should have
a strong effect on the flame spread rate. In the present study
only the coupled heat transfer processes are studied. Later
papers will describe the effects of the condensed phase deg-
radation reactions and gas phase oxidation.

2 Theory

2.1 GasPhase. The study of radiative heating or ignition
of solid fuels in a microgravity environment requires a de-
scription of time-dependent coupled processes in both the gas
and solid phases. The mathematical and computational com-
plexity inherent in such a study suggests that the simplifications
permitted by the microgravity environment and the small phys-
ical scale of the idealized experiment be built into the math-
ematical model. These simplifications principally affect the
gas phase processes. The absence of gravity removes the buoy-
ancy-induced vorticity generation mechanism. The small ra-
diatively heated surface area in the scenarios of interest together
with the slow externally imposed velocity implies a low Reyn-
olds number flow domain. Classical analyses of low Reynolds
number flows have demonstrated that using the Oseen ap-
proximation to the convective terms in the equations of motion
“‘constitutes an ad-hoc uniformization’’ (Van Dyke, 1964) of
the first approximation to the rigorous calculation of the flow
past isolated bodies. The central point that emerges from these
analyses is that diffusion dominates convection near the sur-
face, so the fact that the Oseen flow does not satisfy the no-
slip boundary condition is irrelevant at lowest order in the
theory. When the gasification of condensed fuels is included
in our future studies, the thermally induced surface blowing
velocity must be taken into account, even at low Reynolds
numbers. The generalization to a flow past an arbitrarily shaped
body with a prescribed surface blowing distribution can also
be accommodated by a potential flow, if vorticity generated
in the interior of the flow is not significant.

The potential flow description of the velocity field greatly
simplifies both the formulation and subsequent computation
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of a wide variety of low Reynolds number microgravity heat
transfer and combustion problems. Accordingly, the formu-
lation will be developed in a fairly general context and then
specialized to the specific case of the radiative heating of a
thermally thick solid. The starting point is the conservation of
mass and energy in the gas. Under low Mach number heat
transfer conditions, generalized governing equations including
gas phase oxidation reactions and radiative heat transfer can
be written as:

Dp
Dt+pV-v—0 1)
DT .
pCpE—V'(kVT)=qR(r, 1) 2

Here, gg(r, ?) is the net chemical and radiative heat release
per unit volume into the gas of density p, temperature 7, and
velocity v. The gas was assumed to be air. The specific heat
¢, and thermal conductivity k are in general functions of T,
and they are fitted by the fifth-order polynomial expression.
These equations are supplemented by an equation of state,
taken in a form appropriate for low Mach number flows:

ph=puhe 3)

The subscript o refers to suitable ambient or reference con-
ditions:

T
h= S ¢, (T)dT @
0

Now multiply Eq. (1) by # and add it to Eq. (2). The result,
after using Egs. (3) and (4), is:

Pl VoV~ Vo (kVT)=qgr(r, t) ®)

Equation (5) is the fundamental equation for determing the

velocity field v. Since v is a vector field, it can be decomposed
into the gradient of a potential ¢ and a solenoidal field u:

vV=Vé+u ©)
veu=0 N
Substitution of Eqs. (6) and (7) into Eq. (5) yields:
vip= (gr(r, 1)+ V¥) ®)
Pohlcn

T
v={_ Knar )

Te

Note that the second term on the right-hand side of Eq. (8)
can be eliminated by introducing a particular solution ¢, as:
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Fig. 1 A schematic illustration of coordinates and the flow field near
the heated surface area by external radiation
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Furthermore, it is convenient to introduce another particular
potential ¢, representing the effect of the ambient wind ve-
locity ue. Then, introducing a remainder of potential &(r, ),
¢ may be expressed in the form:

¢p= (10)

¢=¢p+¢pw+@(r’ 1) (11)
VZq,._.q_R(r’_t) (12)
Pahw

Equations (10), (11), and (12) relate the potential field to
the temperature distributions in the gas phase. Since it is nec-
essary to determine this quantity in any event, solution of Eq.
(12) represents the minimum additional work required to ob-
tain a self-consistent velocity field. Implied in this statement
is the assumption that the solenoidal velocity field u is not of
interest in its own right. If u is of interest, then there is no
alternative to solving the Navier-Stokes equations. However,
a large portion of both the combustion and heat transfer lit-
erature consists of calculations in which the details of the
velocity field are approximated, often crudely, in order to
understand the thermophysical phenomenon of direct interest.
In the present circumstances, the approximations have been
justified in simple geometries by detailed analyses, and interest
will be confined to temperature fields induced by radiative
heating.

Now consider the specific problem of heat transfer from
radiative heating of thermally thick solid with a slow flow
along the surface in microgravity environment. The geometry
is shown in Fig. 1. Let x, y, and z be the streamwise, spanwise,
and transverse coordinates in a three-dimensional Cartesian
coordinate system as shown in the figure. The center of the

Nomenclature
¢ = Stefan-Boltzmann con-
¢, ¢, = specific heat stant
G = Green’s function T = temperature $ = remainder potential
h = enthalpy t = time ) function
k = thermal conductivity u = solenoidal velocity vec- ¢ = potential function
Pe = Peclet number tor o = particular solution of
Pe; = 1/Pe u, = ambient velocity potential function
g = heat flux v = velocity vector ¥ = potential function re-
gn = net heat flux at solid x, y, z = Cartesian coordinates lated with heat conduc-
surface (streamwise, spanwise, tion
gr = net chemical and radia- transverse) .
tive heat release in the o = thermal diffusivity Subscripts
gas phase 6 = thickness of thin solid N = net
r, r = distance from origin, sheet rad = solid surface re-radia-
position vector € = emissivity tion
ro = width of Gaussian dis- At = time interval s = solid phase
tribution of external ra-  Ax, Ay, Az = grid spacing o = ambient or reference
diation p = density condition
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concentrated external radiant flux with a Gaussian distribution
impinging on the solid surface is set up at the origin of co-
ordinates. The ambient flow is parallel to the solid surface and
then ¢pe = Uxx. The gas is assumed to be transparent to the
radiation. Under these circumstances, the term gg(r, ?) in Eq.
(2) can be ignored. The gas phase energy conservation equation
takes the form:

pc,,(a—T+v-VT) =Ve(kVT) (13)

at
This equation is to be solved together with Eqgs. (10), (11), and
(12), subject to boundary and initial conditions.
At time ¢ = 0, the entire system is assumed to have uniform
flow at ambient temperature 7,,. Hence:

®(x, y, 2, 0)=0
T(x, 5.2, 0=Ts

Once the heating process has started, the temperature at the
solid surface T;(x, y, 0, t) rises above ambient, and the tem-
peratures at the flow inlet and open boundaries remain at T.,.
The gas phase boundary conditions for temperature and &
must be provided at the flow inlet x = — o and the flow exit
x = + oo, at the symmetric boundary y = 0, at the open
boundary y = o and z = oo, and at the solid surface z = 0.
The boundary conditions for temperature T can be expressed
as follows:

14

T(xo,p, 2, 1)=T,
9T (x, 0, z, t)
T=
T(x, 2,2, t)=Tg
T(x,»,0,)=T(x, 5,0, 0)

0

T(x,y,0,8)=T, (15)
The boundary conditions for & are:
é(—m: ¥, T, t) =Qx_w
&(, y,2, 1) =%,
0®P(x, 0, 2, 1)
— 2 70
dy
(x, 0,2, ) =d,
0®(x, 5,0, 1) aT(x, y, 0, )
pwho =-k
az a9z
®(x, y, =, 1) =0, (16)

where &, _ o, Prw, Py, and &, are the values at positions far
away from the solid surface. Far from the surface,  and T
must decay to their ambient values. Translating this into
boundary conditions suitable for numerical computation, how-
ever, requires some care. Numerical boundary conditions are
applied at the sides of a rectangular box shaped computational
domain. Since T decays exponentially to its ambient value,
using Eq. (14) is permissible until the first calculated non-
ambient contours of these quantities approach the computa-
tional boundary. However, the potential field decays slowly
away from the heated region, i.e., ®~(x*+y*+2)~". Thus,
putting @ or its gradient equal to zero at the computational
boundary would introduce unacceptable errors into the cal-
culation. These errors can be avoided by using Eq. (17) shown
below, that is, the solution to Eq. (12) subject to the boundary
condition given by Eq. (16).

Poha®P= g deS d}’og dz20q r(X0.Y0:20)C (X.Y,2,%0,Y0,%0)
- - 0

- o ,'t
eoehe iy, B0

3 G(X,)’,Z,Xo:}’oyo)
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Fig. 2 Time history of surface temperature distribution at y = 0 and
at the interval of 0.5 s for the case of linear problem (u. = 2 cmis, ¢
= 4 Wicm?® and difference between the analytical solution and the
numerically calculated results at 10 s: (a) grid size 128 x 32 x 32; (b)
grid size 64 x 16 x 16

2]1/2

G( )= - !
XPTXIO= =\ [x=%0)2 + = 30) + (2-20)
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G is a Green’s function satisfying Neumann boundary con-
ditions. Now a®(x, y, 0, 7)/9z is given by Eq. (16} at any
instant of time, and the temperature is an exponentially de-
caying function of the radial integration variable in Eq. (17).
Hence, the use of Eq. (17) to evaluate ¢ around the compu-
tational boundary provides a fast and highly accurate means
of applying computational boundary conditions to $.

2.2 Condensed Phase Model. In much of the present pa-
per the sample is thermally thick. Since it is expected that the
ignition event would occur within a relatively short time (less
than 10 seconds) after the beginning of external irradiation,
only heat conduction normal to the surface is important and
conduction along the y and x coordinates is assumed to be
negligible. Also, it is assumed that the condensed material is
opaque and there is no radiative transfer in the sample. Ther-
mal properties of the sample are assumed to be independent
of temperature. Then, the governing energy equations for the
condensed phase are given as follows:

aT, T,

a o (18)
where o, is the thermal diffusivity of the solid. The initial
condition and the boundary condition are as follows:

Ti(x,y,2,0) =T
Ti(x,y,-=,t) =T
k, aTS(J;,:,O,t) =Gn

Then, the solution for the surface temperature yields the fol-
lowing relation:

ks[Ts(x:yro’t) - Tw] = S (-n-(tai T)
0

Ts(x,y,0,t) = T(x,y,0,¢), 19

12
) gn(x,y,nydr - (20)

The subscript s refers to properties of the condensed phase,
and gy is the net heat flux to the solid surface.
The net heat flux at the material surface is

aT(x,y,0,)
az

where g, is external radiant flux and its distribution is defined
to be Gaussian. In the calculation reported here,

el )]

where r = (x*+y%)'2, r, = 1 cm and g, is a peak external
radiant flux. grq is the re-radiation flux from the material
surface and is given by the following expression:

dN=ézx—§rad+k (21)

(22)
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Fig. 3 The distributions of velocity vectors relative to ambient flow and the temperature contours {from
310 K at the interval of 20 K) for u,, = 2 cmis and Go = 4AWlcm?. (a)t = 2s; (D)t = 4s; ()t =6s;(d) it =

8s

1000

800

T [K]

600 —

400 —+

200 +

T T T T T
4 -2 0 2 4 6 8 10 12

x {em]

Fig. 4 Time hisfory gl the surface temperature distribution at y = 0
foru, = 2cmisand G = 4 Wicm? at the interval 01 0.5 s

érad = ea[ﬁ(x’y9o’t) - 7‘;] (23)

where the Stefan-Boltzmann constant ¢ = 56.7 x 1072 W/
(cm?<K*). The surface re-radiation is quite important when the
surface temperature becomes high. Therefore, the surface tem-
perature can rise to the value at which re-radiation flux becomes
equal to external radiant flux. The surface temperature reaches
as high as 919 K or 1091 K for go = 4 or 8 W/cm® with ¢ =
1.0 and 7, = 300 K, respectively.

Journal of Heat Transfer

Two other limiting cases of this heat transfer problem have
been studied for comparison purposes; the thermally thin solid
with the same gas phase description, and a simplified gas phase
heat transfer problem for which an analytical solution can be
derived to examine the accuracy of the numerical code. For a
thermally thin material, the governing energy equation, Eq.
(18), does not need to be solved and the following boundary
equation is used:

3T (x,y,0,1)

0T, (x,y,0,t
PiCs s(xy )05 2

at @4)

=Qex—qraatk
where & is the thickness of the thermally thin sheet. Since a
cellulosic paper has been used for the thermally thin material
in our previous studies (Kushida et al., 1991), the same thermal
properties of the cellulosic paper are used.

Heat transfer with an Oseen flow problem is selected to
obtain the analytical solution to test the numerical code. The
flow field is uniform with u., and only the energy equation in
the gas phase is involved as described in the appendix. Heat
is transferred by conduction and convection from the specified
energy flux at the surface. The analytical solution is derived
and expressed as
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Fig.5 Etlects of ambient flow velocity on the distributions of velocity vectors rglative to the ambient flow
and the temperature contours (from 310 K at the interval of20K)at?t =8sforg, = 4 wicm?, (@) u. = 0.5
cmis (Pe = 2.27); (b) u.. = 1.0 cmis (Pe = 4.55); (¢) u. = 10 cmis (Pe = 45.5)

7
[ VPeexp(~ G-+ 9721/ (1 + 4Pe) - @) /4Perrldr
[}]

0=

2 1(1 + 4Per)
(25)

where 6, %, 7, %, [ are nondimensionalized temperature, three
coordinates, and time as defined in the appendix. Pe; is a
reciprocal of a Peclet number, which is k/(pCpuwrg). The
integral in Eq. (25) is calculated numerically and the results
are compared with those calculated by a finite difference
method. The comparison is shown in the next section.

2.3 Numerical Methods. For the gas phase, the numerical
calculation is performed by using a finite difference method.
The Gaussian external radiant flux radius 7, is fixed at 1.0 cm.
The computational domain is taken to be x = —4.8-14.4 cm,
y = 0-4.8 cm, and z = 0-4.8 cm. Two different grid sizes
were used: 128 X 32 x 32 corresponding to a grid spacing Ax
= Ay = Az = 0.15 cm and 64 x 16 X 16 with cell size Ax
= Ay = Az = 0.3 cm. The equations to be solved for the gas
phase are those for the potential function ¢ and the temper-
ature 7. ,

The equation for @ is calculated using the FISHPAK direct
solver of the Poisson equation in Cartesian coordinates using
the standard seven-point finite difference approximation on a
staggered grid (VHS3 package, HS3CRT subroutine). The
boundary conditions for & are specified at the open boundary
by evaluating Eq. (17) at each time step. In the present problem,
since there are no volumetric source terms, only the surface
integral remains. This can be efficiently handled by ‘“‘coarse
graining”’ the integrals into clusters of 8 x 8 cells for the 128

% 32 X 32 grid and 4 X 4 cells for the 64 X 16 x 16 grid.
Each subintegral is then estimated by using the average value

422 [ Vol. 115, MAY 1993

over that portion of the surface, but with the source points of
the Green’s function evaluated at the centroid of the integrand.
This is formally equivalent to the first two terms of the asymp-
totic expansion of each ‘‘coarse graining’’ subintegral. The
errors introduced by this procedure are negligible compared
with the discretization errors. The equation for temperature
is solved using a second-order central difference scheme for
both convection and diffusion terms. The time advance is made
by using the DuFort Frankel method with a time interval Az
= 0.01 s (for Grid 64 x 16 x 16) or At = 0.005 s (for Grid
128 x 32 x 32). These values of time intervals are sufficiently
small to ensure that the Courant condition is satisfied.

For the solid phase, the equations of the temperature 7 also
have to be solved. Equation (20) was reduced to nonlinear
algebraic equations with the integral being converted to a sum-
mation. These nonlinear algebraic equations were solved by
using the Newton-Raphson method. In the case of a thin solid,
Eq. (24) is solved by using the Euler explicit method. The
computation time for the thermally thick case was about 17
seconds per time step on IBM RS6000/550 computer with 128
X 32 x 32 grids.

3 Results and Discussion

3.1 Comparison With the Linear Analytical Solu-
tion. The numerically calculated results for the simplified
heat transfer model were compared with the analytically cal-
culated results of Eq. (25) for the case of 4, = 2 cm/s (Peclet
number Pe = u.ry/ (k/pc,) = 9.1), §o = 4 W/cm” to examine
the accuracy of the numerical method. The results in Figs.
2(a) and 2(b) show the time history of the surface temperature
distribution along the x coordinate at the y = 0 plane calculated
numerically with the two different grid sizes, 128 x 32 x 32
and 64 X 16 X 16, respectively. The bottom of the figures
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Fig. 6 Time history of surface temperature disiributions at y = 0 at
the interval 0of 0.5 s for §o = 4 Wicm? (a) u.. = 0.5 cmis; (b) v, = 1.0
emis; (¢} u. = 10 cmis

indicates the difference in surface temperature between the
analytical calculation and the numerical calculation. These two
figures show that the errors in the numerical calculations are
within 1.5 percent for the finer grid size calculation and within
S percent for the coarser grid size calculation. The rest of the
results shown in this paper were obtained using the finer grid
size.

3.2 Fluid Flow and Heat Transfer Characteris-
tics. Typical examples of the distributions of velocity vectors
relative to ambient flow and temperature contours in the gas
phase are shown in Fig. 3 and surface temperature distributions
are shown in Fig. 4 for u, = 2 cm/s (Pe=9.1), g = 4 W/
cm?, e = 1.0, and the thermally thick solid. Typical values of
thermal properties for a plastic (Brandrup and Immergut, 1975)
are used for the calculation: ¢, = 1.3 J/(g<K), p; = 1.2 g/
em’®, and k, = 2.1 x 1073 W/(cm«K). The arrow indicates
the vector projected on each cross section. The length of arrow
indicates the magnitude of velocity with the reference value of
0.2 cm/s, and the starting point of arrow indicates the location
of velocity vector. The left corner figure in Fig. 3 represents
the flow:vector distribution in the half of the y plane at x =
0.075 cm. The top rectangular figure represents the distribution
in the x-z plane at y = 0.075 cm. The lower rectangular figure
represents the distribution in the x-y plane at z = 0.075 cm.
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Fig. 7 Energy balance at the surface along y = 0 for v, = 10 cmis
and g, = 4 Wicm?

The temperature contours are indicated at intervals of 20 K
from 310 K. Figures 3(a), 3(d), 3(c), and 3(d) show the
results of time ¢ = 2, 4, 6, and 8 s after the irradiation,
respectively. The distribution of velocity vectors represents the
flow component generated by heat addition from the irradiated
surface. This flow is much smaller than the ambient flow of
2 cm/s. There is an upward slow flow generated by the steep
temperature gradient due to heat addition. Its center is located
a short distance upstream from the center of the external ir-
radiation (x=0). This indicates that the steepest temperature
gradient occurs at the upstream location due to downward
pushing of the heated layer by the ambient flow. At a short
distance downstream from x = 0, there is a sink of flow due
to the steep temperature gradient resulting from heat loss from
the hot gas stream to the cold surface. Since the temperature
gradient drives the flow, the flow generated by the external
irradiation is limited to a region near the irradiated surface
area at an early time. As time increases, the flow velocity
gradually increases, but the magnitude of velocity remains at
most 0.2 cm/s due to the absence of combustion and buoyancy
induced flow. The heated region in the gas phase increases as
time increases. The heat in the gas phase is convected radially
and downstream by the gas flow due to expansion and ambient
flow.

Figure 4 shows the time history of the solid surface tem-
perature distribution T (x, 0, 0, ¢) in the x direction at ¢t =
0.5 s intervals. This distribution corresponds to the Gaussian
flux distribution of external radiation expressed by Eq. (22)
with slight modification by the ambient flow. However, the
modification by convective heating is not significant for the
results because the ambient flow velocity is small for this case.
The temperature increase slows down gradually because of the
heat balance between external radiation and the re-radiation
loss from the high temperature surface.

3.3 Effects of Parameters on Fluid Flow and Heat Transfer
Characteristics. The effects of several parameters, such as
ambient flow velocity, external radiant flux, condensed phase
thickness, and others, on distributions of velocity vector and
temperature in the gas phase were studied. The results are
discussed in this section.

3.3.1 Effect of Ambient Flow Velocity, u,,. Figures5(a),
5(b), and 5(c) show the distributions of velocity vectors rel-
ative to ambient flow and the temperature contours for the
three different ambient flow velocities of u, = 0.5 ¢m/s
(Pe=2.27), 1.0 cm/s (4.55), and 10.0 cm/s (45.5), respectively.
These results are at 8 seconds after the irradiation. The tem-
perature contours are plotted at intervals of 20 K from 310 K.
As the ambient flow velocity increases, the heated area is pushed
toward the surface and temperature gradients in the gas phase
near the surface become steeper. Steeper temperature gradients
generate larger flow velocities, as shown in Fig. 5. The center
of the heat-generated flow near the surface moves closer to
the center of the irradiated area with an increase in the ambient
flow velocity. The distributions of surface temperature along
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Fig. 8 _(a) The distributions of velocity vectors relative to ambient flow, and (b) the temperature contours
(from 310 K at the interval of 20 K) for §; = 8 Wicm*and u.. = 2cm/s at 8 s
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Fig. 9 Tlme history of surface temperature distribution at y = 0 for §
= 8 Wicm? and u,, = 2 cm/s at the interval of 0.5 s

= 0 corresponding to the above three cases are shown in
Fig. 6. There is no significant difference in surface temperature
in the upstream part (x=<0). The difference occurs only in the
downstream region, particularly, where the distribution of sur-
face temperature becomes close to the ambient such as around
2 cm in the case of u, = 10.0 cm/s.

The energy balance at the surface along y = 0 is calculated
at 8 seconds and the results are plotted in Fig. 7. The term Q,,
is external radiant flux, which is a Guassian shape as described
previously. Qg is re-radiation loss from the surface, Qgg is
the net of thermal degradation reactions that are not included
in this study, Qeq is convective heating to the surface, and
Q: is heat conduction loss to the interior of the material. The
largest heat loss term at this time is the heat conduction loss
followed by re-radiation loss. The convection term is negative
in the region about —2 cm < x < 0.8 cm due to higher surface
temperatures than gas temperatures. However, in the region
about 0.8 cm < x < 4 c¢m the convective heating term becomes
positive due to higher gas temperatures than surface temper-
atures. This transition in convective heating is caused by the
ambient flow. The amount of heat convection increases with
an increase in the ambient flow velocity. This could be im-
portant for the case from the transition from ignition to flame
spread with the ambient flow.

3.3.2 Effects of External Radiation Flux. Figure 8 shows
the distribution of velocity vector relative to the ambient flow
(4o = 2 cm/s) and of temperature in the gas phase with
external radial flux of 8 W/cm? at 8 seconds after the irra-
diation. Iti 1s clear that the heated gas region is larger than that
at 4 W/cm? shown in Fig. 3(d). Subsequently, the flow field
generated by the gas heating for 8 W/em? is larger than that
for 4 W/cm?®. The flow toward the surface and toward the y
= O plane in the immediate downstream region of the irradiated
area (almost like a flow toward a sink) shown in Fig. 8 is more
distinct than that for 4 W/cm?. The maximum surface tem-
perature shown in Fig. 9is about 950K, which is shghtly higher
than about 900 K for 4 W/cm This small increase in surface
temperature from 4 W/ cm’ to 8 W/cm? is due to an increase
in re-radiation loss from the surface as shown in the energy
balance at the surface.
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3.3.3 Effects of Solid Thickness. Figure 10 shows the
velocity distribution and temperature contours at 8 seconds
after irradiation of external radiant flux of 4 W/cm* with a
thermally thin solid with p; = 0.6 g/em?, ¢, = 1.26 J/(g=K),
and § = 0.025 cm. The ambient flow velocity is 2 cm/s. Figure
11 shows the history of the surface temperature distribution.
The comparison of these results with those shown in Fig. 3(d)
indicates the effects of the solid thickness. Since heat loss to
the interior of the solid by heat conduction is not included for
the thermally thin material, the surface temperature rises rap-
idly and reaches about 920 K compared to roughly 700 K for
the thermally thick material. After 7.5 seconds the surface
temperature distribution does not change significantly with
time. Therefore, more heat is transferred from the surface to
the gas phase and the heated region in the gas phase for the
thermally thin material is much larger than the thermally thick
material. The corresponding flow velocity induced by the heat
addition from the thin material is larger than that for the thick
material.

4 Conclusion

A time-dependent three-dimensional heat transfer model de-
scribing the flow field generated by the surface heated by an
external radiation was developed. This model is applicable to
the low Reynolds number flow in a microgravity environment.
The results show a complex flow field generated by temperature
gradients in the gas phase near the irradiated hot surface area.
The induced flow appears like a source of flow slightly up-
stream from the center of the external radiation beam. Then,
there is a sink of flow downstream when the hot gas stream
cools by heat loss to the solid surface. Higher external radiant
flux and a thermally thin solid enhance the induced flow and
enlarge the heated gas region due to larger temperature gra-
dients in the gas phase. Higher ambient flow velocity also
generates more vigorous induced flow due to an increase in
temperature gradient by compressing the heated flow stream
toward the solid surface. Therefore, the heated gas region
becomes smaller than that for lower ambient flow velocities,
although the induced flow is increased.
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APPENDIX

A three-dimensional time-dependent heat transfer problem
similar to the problem of interest is solved analytically to ex-
amine the accuracy of the numerical code used in this study.
This problem is based on the Oseen flow. Then, the linearized
energy equation is

aT aT
—_ - —t = 1
pC,{at +u ax} kAT (Al)
where T is the relative temperature with respect to an ambient

temperature.
The initial condition is
Att =0, T=T,
and boundary conditions are

At z=0, kdT/3z=—G(x, y)
At r=oo, T= Ten

where
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é=gf exp{ — (r,/ro)?)
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Then, Eq. (Al) becomes

(A2)

We take the Laplace transformation of Eq. (A2) in time and
then apply to the Fourier transformation in x and y. Then,
Eq. (A2) becomes

27 ~
d9p. 59 2) {52‘*‘7)2“'?1‘; (p+i£)}5=0 (A3)

az
and boundary conditions are
Ati=ce, 0=0
At£=0,  G(, n)=expl —(£*+n')/4]

The solution of Eq. (A3) with the above boundary conditions

becomes
_ 2 2. 1 e
exv{ J(E +n)+—Pei(p+tE)z} @D

6= e *

1
2, .2y, 2 :
pJ(E +7 )+Pei(p+zf)

(A4)

We invert the Laplace transformation of the above solution
using the convolution theorem and obtain the inverted solution

— 2 2 l- .
0'=exp[———(£ i )]S dr ’E exp
4 o T

_ 32
x [ 4P;] expl~ (Pedt+ ) +ig}r]  (AS)

Next we proceed with Fourier inversion of Eq. (A5) to obtain
the solution of Eq. (Al).

oo S‘ VPeexp( — [(£- 1)’ + 71/ (1 +4Pex) ~ £/4Per)
o x\1(1 + 4Pesr)

(A6)
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