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¢ High temperatures are a characteristic of combustion.

WHY MEASURE TEMPERATURE IN FIRES?

* High temperatures can generate large radiative fluxes which support
fires (e.g., pyrolysis or vaporization of fuels, flame spread, flashover)

¢ Temperature is an indicator of the potential for damage.

¢ Temperature is an indirect indicator of heat release rate.

« Rates of chemical reactions are highly dependent on temperature.
e e.g., reactions of solids, i.e., pyrolysis

¢ gas-phase combustion
¢ water-gas shift reaction

o Temperature is viewed as one of the easier to measure fire
characteristics.
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WHAT ACCURACY IS “REQUIRED” FOR TEMPERATURE
MEASUREMENTS IN FIRES?

» Very little guidance availablc in the literature.

« Little discussion of effects of uncertainty on models and/or correlations.

o Itis clear that required accuracy depends on how the data will be used:
» Estimate flashover time for compartment fire.

¢ Determine air flow rate through doorway to +10% by measuring velocity
and density (ideal gas law) of incoming gas.

* Validate temperature range where approach to thermodynamic
equilibrium leads to a significant increase in carbon monoxide formation
in rich high-temperature upper layers.
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WHAT TEMPORAL AND SPATIAL RESOLUTION ARE
“REQUIRED” FOR TEMPERATURE MEASUREMENTS IN

FIRES?
o Very little guidance available in the literature.

» Requirements depend strongly on fire dynamics and the
design goals for the experiment.

¢ In general, experiments designed to test and/or validate
field models should have higher spatial and temporal
resolution than required for similar tests of zone models.

« Special measurements such as using two temperature
signals for velocity measurement may require quite high
temporal and spatial resolution.
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TEMPERATURE MEASUREMENT APPROACHES TO BE
DISCUSSED

¢ Soot temperature based on resolving thermal radiation
« Holographic mterferometry
» Infrared imaging of surfaces.

* Thermocouples
¢ Bare Bead
» Agpirated

« Use of several variable-diameter probes
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SOOT TEMPERATURE MEASUREMENT
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FIGURE 1 Multi.waveleagth emistion/absorption probe.
¢ Two-wavelength pyrometry, similar to probe used by Sivathanu and Faeth.

* Measurements recorded inside 6 m x 6 m square pool fire by Gritzo,
Sivanthanu and Gill.

o Spectrally resolved thermal radiation at 1.0 and 0.9 pm.
e Two cm long sampling volume, data recorded at 250 Hz.

e Included error analysis, one of largest potential sources was uncertainty for
the index of refraction for soot.
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TEMPERATURE MEASUREMENT USING HOLOGRAPHY
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o Coherent optical technique

» Used to study fuel vaporization (Kashiwagi et al.) and flame
spread over solids (Tto et al.)

¢ Not widely employed, requires good optical access
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WALL TEMPERATURE MEASUREMENTS
USING INFRARED IMAGING

e Technique developed by Arakawa, Saito, and Gruver.

* Records infrared radiation from wall using infrared camera during
upward fire spread in a corner.

o Filter to observe radiation in window between 10 pmand 11 pm in
order to minimize thermal radiation from heated gases.

¢ Estimate radiation from soot is much less than that from the walls.

¢ No detailed uncertainty analysis was provided
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“TYPICAL” THERMOCOUPLE MEASUREMENTS IN
REAL-SCALE FIRE ENVIRONMENTS

e By far, the most numerous measurement made in fire tests

o Multiple bare-bead thermocouples positioned throughout
test space

e Data recorded digitally with data rates on the order of a few
seconds

e Variety of environments

e Generally employ thermocouples with diameters on the
order of 0.25 mm

e Usually do not attempt to minimize possible errors in
measurements
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WHAT IS THE PROBLEM?

A thermocouple, or any immersion device, can
indicate only its own temperature. In general, this
will not be equal to the gas temperature unless
special precautions are taken. It is the
responsibility of the investigator to determine the
difference which exists, and to correct for it, or to
design the probe such that the difference is
acceptably small.

--R. J. Moffat, 1962
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WHY DOES A THERMOCOUPLE JUNCTION

TEMPERATURE DIFFER FROM THE LOCAL
GAS TEMPERATURE?

Answers

Heating or cooling effects due to:
® Radiation
e Conduction Along Thermocouple Wires
® C(Catalytic Heating Due to Surface Reaction
® Acrodynamic Heating at High Velocities

Time Response Limitations
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Substitution gives:

T o

RADIATIVE HEAT TRANSFER TO A THERMOCOUFPLE
Yrat ™ OE(T:«_ Tt‘c

o is the Stefan-Boltzmann constant and ¢ is thermocouple emissivity.
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Picture of Enclosure Fire
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ASPIRATED THERMOCOUPLES

® Adopted design from Glawe, Simmons, and Stickney based on it
cffectiveness and ease of construction

® Double shicld design with flow over inner shield walls
® Both end and side opening versions were constructed

®  Also tested much simpler design of Newman and Croce which uses asingle
shicld and is most widely used design i fire testing

® Encountered a paradox: Newman and Croce recommended using an
agpiration velocity of 7.7 m/s and claimed “aspirated temperature also
appears to approach asymptotically a value which should correspond to the
true gas temperature™, carlier Jiterature on aspirated thermocouples
indicated that thermocouple “cfficiency” increases very slowly with
aspiration velocity and recommended use of the highest velocity possible,
values up to 150 m/s were employed
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400 kW Natural-Gas Fires
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Doorway, 22.9 cm Above Floor
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400 kW Natural-Gas Fire
Rear, 30 cm above floor
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THERMOCOUPLE RESPONSE TO A
CHANGING TEMPERATURE FIELD

drT,,
Tg -T,. = tk—:{T

where 7, is the time constant for the thermocouple response given by
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which can be rewritten as
P LVl
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Note the very strong dependence on the thermocouple diameter. Smaller diamete
thermocouples provide much higher time response. The time response also is
strongly dependent on local flow velacity, composition, and temperature.
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400 kW Natural Gas Fire
Rear Upper Layer
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SPATIAL AND TEMPORAL RESOLUTION FOR
THERMOCOUPLE MEASUREMENTS

e Time response for thermocouples typically used in fire
experiments vary from few tenths of to greater than one second.

o Is tempting to define the spatial resolution of the probe as the
effective size of the sampling area (e.g., bare thermocouple
diameter plus boundary layer, volume of gas sampled by
aspirated thermocouple).

* Most fire measurements are made in flow field. Effective spatial
resolution is most often determined by response time of
thermocouple. Consider thermocouple with 0.5 s response time
in a flow of 1 m/s. Measurcment is madc over a length of
roughly 0.5sx 1 m/s=0.5m,
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FINAL THOUGHTS

» Approaches need to be developed for estimating errors and
uncertainties of temperature measurements in fire environments.

¢ Effects of spatial and temporal averaging on measured
temperatures must be considered.

¢ Experiments should be designed from the beginning with
uncertainty limitations in mind.

¢ New modeling advances should be used to guide design of
experiments and help evaluate uncertainty requirements.
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