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ABSTRACT

The objective of this study is to demonstrate the applica-
tion of several classification techniques to the problem of
detecting and diagnosing faults in data generated by a vari-
able-air-volume air-handling unit simulation model and to
describe the strengths and weaknesses of the techniques
considered. Arrificial neural network classifiers, nearest
neighbor classifiers, nearest prototype classifiers, a rule-
based classifier, and a Bayes classifier are considered for both
Sault detection and diagnostics.

Based onthe performance of the classification techniques,
the Bayes classifier appears to be a good choice for fault detec-
tion. It is a straightforward method that requires limited
memory and computational effort, and it consistently yielded
the lowest percentage of incorrect diagnoses. For fault diag-
nosis, the rule-based method is favored for classification prob-
lems suchas the one considered here, where the various classes
offaulty operation are well separated and can be distinguished
by asingle dominant symptom or feature. Results also indicate
that the success or failure of classification techniques hinges
to a large degree on an ability to separate different classes of
operation in some feature (temperature, pressure, etc.) space.
Hence, preprocessing of data to extract dominant features is
as important as the selection of the classifier.

INTRODUCTION

It is generally accepted that the performance of heating,
ventilating, and air-conditioning (HVAC) systems often falls
short of expectations. Sensors and actuators degrade and fail,
valves and dampers leak and stick, coils become fouled, and
other problems arise. Some faults are easily isolated, while
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others may only be apparent at certain operating conditions.
Thus, different approaches (some simple, some sophisticated)
can be taken to detect and diagnose faults.

The acknowledgment of the presence of faults in HVAC
systems and the fact that faults can lead to occupant discom-
fort, increased energy use, and shorter equipment life have
resulted in considerable effort being devoted to the develop-
ment of fault detection and diagnostic (FDD) methods for
HVAC systems. Numerous studies report the use of expert
systems to diagnose faults in HVAC components and systems.
Papers by Haberl and Claridge (1987), Anderson et al. (1989),
Bagby and Cormier (1989), and Kaler (1990) are a represen-

“tative sample of this work. Pape et al. (1991) identified faults

in a variable-air-volume (VAV) system by comparing the
power consumption obtained from a simulation model with
embedded faults to predictions based on a near-optimal
model. Haves et al. (1996) used a condition-monitoring
scheme based on physical models to detect valve leakage and
water-side coil-fouling faults in a simulated cooling coil
subsystem of an air-handling unit (AHU). Dexter and Benou-
arets (1996) described a fuzzy model-based fault detection
scheme and presented simulation results demonstrating the
capability to detect the faults considered by Haves et al.
(1996). Artificial neural networks have been examined in
several HVAC FDD studies (Li et al. 1996; Lee et al. 1996,
1997). Pernot et al. (1997) compared a rule-based and a neural
network classifier for detecting and diagnosing faults in a
heating system. Rossi and Braun (1997) described a statistical,
rule-based FDD method developed for vapor compression air
conditioners and used the method to detect and diagnose five
simulated faults. The method also successfully detected and
diagnosed these same faults in an experimental test rig. Dodier
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et al. (1998) used Bayes’ rule to predict the state of operation
of a fan-powered VAV box. This literature review, though not
comprehensive, does provide evidence of the v:iriety of FDD
approaches that are being examined for HVAC systems.

All FDD methods use classification techniques. In fault
detection, a pattern of variables or parameters (also called
features) representing current operation are classified as either
normal or faulty. In some cases, a third class representing
unknown operation may also be used. In fault diagnosis, the
analysis involves classification of faulty conditions to a
specific type of fault. This often involves comparing the
current pattern of conditions to patterns that are deemed repre-
sentative of each of the faults considered and labeling the
current pattern according to the fault type that it resembles
most. Thus, classification involves pattern recognition.
Bezdek (1993) provides an excellent overview of the subject
of pattern recognition and describes various statistical, fuzzy,
and neural network models for pattern recognition that can be
found in the literature.

Because all FDD methods employ classification tech-
niques (i.e., assigning data to a class is classification, whether
a heuristic rule or a sophisticated algorithm makes the assign-
ment), one would like to use the “best” classification tech-
nique available. Identifying what technique is “best” is a
difficult task involving subjective criteria. One criterion that
does not appear to be subjective is the number of correct diag-
noses out of a set of labeled test data. Subjectivity can creep
into this criterion through biases in the data. For instance, the
effectiveness of a technique may depend on whether the fault
considered involves performance degradation or a complete
failure. If the training and testing data do not contain faults of
both types, results may be misleading. Other criteria might
include the training effort required for a particular technique,
computational resources required for a technique, and how
well the technique is understood where techniques based on
simple concepts and algorithms might be favored over more
sophisticated techniques. Because of this subjectivity, the
selection process sometimes becomes a process of elimination
where problem constraints lead naturally to a particular tech-
nique.

The objective of this study is to demonstrate the applica-
tion of several classification techniques to the problem of
detecting and diagnosing faults in data generated by a VAV
AHU simulation model. Determining the “best” classification
technique is outside the scope of this study and may, in fact, be
an exercise in futility. Instead, an attempt is made to describe
the strengths and weaknesses of the techniques considered.

The first part of this paper briefly describes the considered
system and simulation model. Next, residuals that character-
ize the operation of the system are defined and the faults
considered are described. An overview of c-means clustering
and several classification techniques is then presented. Fault
detection and diagnosis results obtained by applying the clus-
tering and classification techniques are then discussed.
Finally, conclusions from this study are presented.
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Figure 1 Schematic diagram of a variable-air-volume
air-handling unit.

SYSTEM AND MODEL DESCRIPTIONS

Figure [ is a schematic diagram of a VAV AHU. The AHU
consists of fans, dampers, coils, sensors, and controllers. The
simulation model used in this study also includes three rooms
and three VAV boxes (not shown). The static pressure in the
main supply duct was maintained at a constant setpoint value
of 249 Pa (1.0 in. of water) by controlling the supply fan speed.
The supply air temperature was maintained at a varying
setpoint value by adjusting the cooling water control valve.
The setpoint temperature was determined from a reset sched-
ule based on the room temperatures and varied from 11°C
(51.8°F) to 18°C (64.4°F). The difference between the supply
and return airflow rates was maintained at a constant setpoint
value of 472 L/s (1000 ft>/min) by controlling the speed of the
return fan. The room air temperature was maintained at a
constant setpoint value of 24°C (75.2°F) by controlling the
damper position of the VAV box serving that room. A PID
algorithm was used to control the cooling coil control valve
and the supply fan, and PI algorithms were used to control the
return fan and the VAV box dampers.

A simulation model of the VAV AHU was used to gener-
ate the data used in this study. The model is based on steady-
state characteristic equations and approximate first-order
dynamics. Component models (Wang 1992) were calibrated
to fit experimental data obtained from a laboratory AHU. Lee
et al. (1997) provides an overview of the simulation model.

RESIDUALS

Definition

Residuals are defined as the difference between the actual
and expected values of a variable or parameter. An expected
value could be a set point or a model prediction. Lee et al.
(1996, 1997) identified patterns of residuals to use as signa-
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tures for various faults. The approach is the same in this study,
although some of the residuals have changed. The residuals
used here are:

Rpy=T,-T,,, (1)
R = T T @)
Rr. =T, -‘T‘r,jp )
Rps=F Py )
Roa =24~ %, 3

where R denotes residual, T is temperature, P is pressure, and
Q is volumetric airflow rate. Subscript s denotes supply air
parameters, m denotes mixed air, » denotes room air, d denotes
flow difference, sp denotes setpoint values, and ev denotes
expected values.

To compute residuals Ry, Rp,, and Rp,, models are
needed for the expected value (under normal operating condi-
tions) of the supply air temperature, mixed air temperature,
and supply air pressure, respectively. The expected values of
T,, T, and P, are obtained from steady-state regression equa-
tions. Details of the regression equations are not presented
because the same set of residuals is used to compare the vari-
ous classifier techniques. It should be noted, however, that the
coefficients of the regression equations were determined using
simulation data for two separate Washington, D.C., weather
days. A third weather day was also simulated to obtain data
that could be used to test the sensitivity of the regression equa-
tions and classifier techniques to a variability of this type.
Because the classifier techniques classify patterns of residuals
obtained using models, models are an important aspect of
FDD. More accurate models will allow smaller faults to be
detected but may also require more modeling and tuning
efforts.

Normalization

Residuals defined by Equations 1 through 5 are normal-
ized so that the dominant symptom residuals have nearly the
same magnitude for all fault cases. The residuals are normal-
ized as follows:

Re| R

If R>1 thenset R =1 (6)

mean

where R,.., is the mean value of the considered residual
computed using fault data for which that residual is dominant.
- Values of the normalized residuals are truncated at one to
compress the fault data into a smaller region in residual space.
The mean value for each residual was determined using only
the first day of the three-day data set.
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Steady-State Detector

The residual pattern used to classify each fault was devel-
oped assuming steady-state conditions prevail when classifi-
cation is performed and no other fault that could affect the
residual pattern exists simultaneously. One advantage of using
steady-state patterns is that it is possible to determine the state
to which the system will evolve, even when faults exist. The
dynamic evolution is harder to predict. Thus, a steady-state
detector is used to eliminate transient data. The drawback of
using a steady-state detector is that faults causing persistent
dynamic operation (unstable controller) are difficult to find
because the system does not reach steady state.

Five variables were used in the steady-state detector,
namely, T,, T,,, T, P, and Q,. Using least squares regression,
straight lines were fit through data from the past minute for
each of these variables. If the absolute value of the slope of
each line is less than its associated threshold value, the system
is deemed to be in steady state.

FAULT DESCRIPTION

Seven faults are considered. At normal operating condi-
tions, the residuals defined by Equations 1 through 5 are
expected to be nearly equal to zero. Faults cause one or more
of the residuals to increase, thereby making it possible to
distinguish normal operation from faulty operation. Ten-hour
simulation runs were performed with data computed at 10-
second time intervals. Data used for analysis were collected
starting atz= 10,000 s, where ¢ denotes time. The initial 10,000
seconds of data were discarded from each data set because
they demonstrated obvious transient behavior. Unless other-
wise noted, faults were introduced at the beginning of a simu-
lation run.

The first fault is a stuck cooling coil valve. This fault
becomes evident as varying loads cause VAV boxes to open
and close. This affects the amount of air flowing across the
cooling coil, and the control signal to the cooling coil valve
will modulate in an attempt to maintain the supply air temper-
ature at the setpoint value. Eventually the control signal will
saturate at one of its limits. Because the estimated value of the
supply air temperature 7 ,, is a function of the cooling coil
valve control signal, T, ,, will be driven to a value well above
or below the actual supply air temperature 7. Thus, the
primary symptom of this fault is seen in the value of Ry;.

The second fault is a fouled cooling coif. Deposition of
dirt and scale on a coil surface can increase the resistance to
heat transfer. This thermal resistance can be represented by a
fouling factor. Because fouling occurs gradually, performance
changes are difficult to detect for some time. Rather than
changing the fouling factors gradually, a step change in the
values was introduced to expedite data collection. Specifi-
cally, the air-side fouling resistance r, was changed from 0 to
0.4 m>K/kW (0.00227 h-ft>-°F/Btu), and the water-side foul-
ing resistance r, was changed from 0 to 0.5 m?* K/kW
(0.00284 h-ft>-°F/Btu). When the cooling coil is fouled, the
cooling coil control signal increases in order to increase the
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flow rate of water, thereby achieving the heat transfer neces-
sary to maintain the supply airflow rate at the set point.
Because the expected value of the supply air temperature is a
function of the control signal to the cooling coil valve, T, ,,
decreases relative to 7;. Thus, Ry, is once again the main
feature of this fault.

The third fault is a leak in the heating coil valve. In the
presence of this fault, the air temperature at the exit of the heat-
ing coil is higher than the mixed air temperature, and the cool-
ing coil valve control signal must increase to compensate for
the fault. Because the expected value of the supply air temper-
ature is a function of the mixed air temperature and not the
temperature at the exit of the heating coil, the value of T, will
be lower than the actual supply air temperature. Thus, Ry, is
also the main feature of this fault.

The fourth fault is a stuck VAV box damper. The fault is
simulated by causing the damper to stick in the position it
occupies at#=10,0005s. The fault causes the room temperature
to drift away from the setpoint value, causing Ry, to increase
or decrease, depending on the room load.

The fifth fault is a performance degradation of the supply
fan that might be caused by belt slippage or a decrease in the
motor efficiency. For a fixed control signal to the fan, the fault
causes the rotational speed of the fan to decrease relative to its
value for normal operation. To maintain the supply air static
pressure at the setpoint value, the control signal to the supply
fan must be increased. Because the expected value of the
supply air pressure P, is a function of the control signal to
the supply fan, P, ,, will be greater than P, in the presence of
this fault. Thus, Rp, is the main feature of this fault. To expe-
dite the collection of data, a step reduction in the rotational
speed of 2% for a given control signal was introduced at ¢ =0.

The sixth fault is a failure of the return fan controller. The
fault causes the fan to stick at a fixed speed at ¢ = 10,000 s.
Because the fan is unable to respond to the control signal, the
flow difference between the supply and return airstreams will
either increase or decrease depending on the operation of the
supply fan. Thus, Ry, is the main feature of this fault.

The seventh fault is a failure of a linkage in the mixing
box dampers. This fault affects the airflow rates in the mixing
box and, therefore, the expected value of the mixed air temper-
ature T, ,, is different from the actual value T,,. Thus, Ry, is

m,ev m’
the main feature of this fault.

c-MEANS CLUSTERING METHODS

Clustering algorithms are typically used to assign unla-
beled data (data for which the class of operation is unknown)
to one of c classes, where ¢ is two or more. Data points clus-
tered using a hard c¢-means clustering algorithm (Bezdek
1981) have crisp membership functions. That is, if data are
clustered into two classes, each data point will have a member-
ship of unity in one class and zero in the other. Furthermore,
each of the c classes can be represented by a single prototype
data point, which is typically just the mean value of all
members of the class.

1080

Unlabeled data can also be clustered using a fuzzy c-means
clustering algorithm (Bezdek 1981). Data clustered using this
algorithm have fuzzy membership functions. In this case, each
data point will have membership ranging from zero to unity in
each class, with the sum of the membership values for a given
data point being unity and the sum of the membership values
for a given class being greater than zero and less than the total
number of clustered points n. Data points that fall midway
between the cluster centers tend to have nearly equal member-
ship in each class. The fuzzy c-means algorithm yields proto-
type data points for each of the ¢ classes; however, the prototype
data points are weighted mean values of the class members.
This point will be further developed later in this section. The
membership functions obtained from the hard c-means and
fuzzy c-means clustering algorithms can be used in nearest
neighbor algorithms to classify new data points. Likewise, the
¢ prototype data points can be used in nearest prototype algo-
rithms. The membership functions and prototypes can also be
used to train an artificial neural network (ANN) algorithm.
These algorithms are described in the next section.

In this study, the training data are labeled, that is, the class
of operation of each data point is known a priori. Thus, the util-
ity of a clustering algorithm may be questioned. It is true that
crisp labels can be assigned to each data point without any
analysis and that prototype data points for each class can be
determined by simply computing the mean value of the
members of each class. However, if fuzzy membership func-
tions are to be assigned to each data point, it is necessary to use
a fuzzy c-means algorithm to determine these membership
functions. Fuzzy membership functions may be desirable if
there is significant overlap of the data between classes. In this
scenario, it may be more meaningful to assign the data point
to partial membership in more than one class than to assign it
to complete membership in a single class.

Fuzzy membership functions and prototype data points
are determined by minimizing the objective function J,,
(Bezdek 1981):

2

n c
a0 =2 Z )" e M
where x; is the jth g-dimensional training data point (for data
characterized by five residual values, g = 5), v; is the ith g-
dimensional fuzzy prototype data point, u;; is the membership
of the jth training data point in the ith class, U is a matrix of
membership functions containing a c-dimensional member-
ship function for each of the r clustered points, V is a matrix
containing a g-dimensional fuzzy prototype data point for
each of the ¢ classes, m is any real value greater than or equal
to unity, and || is any inner product-induced norm on g-
dimensional real space. In this study, |-

by
[y B
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From Equation 7 it is clear that the larger the distance
between x; and v;, the smaller the membership function u.
Also, if m = 1, J,, simplifies to the hard c-means objective
function. Finally, as m increases, J,, becomes insensitive to
distance and membership functions become more “fuzzy”
(i.e., for c = 3, membership in each class approaches 0.333 for

all data points).
CLASSIFICATION METHODS

k-Nearest Neighbor Classifier

Nearest neighbor classification (Bezdek 1981; Schalkoff
1992) is based on the premise that data from a specific class of
operation should fall within the same region of feature (resid-
ual) space. Using training data that has been assigned either a
crisp or a fuzzy membership label (or membership function),
the distance from a test data point to each training data point
is determined. The training data points are then sorted based
on their distance to the test point. Classification of the test
point is performed by computing the average membership
function of the k-nearest neighbors (k training data points
closest to the test point) in the training data set and assigning
the test point to the class having the largest average member-
ship function value.

The k-nearest neighbor (k-NN) method is a conceptually
straightforward method that can be used effectively for pattern
recognition. The main drawbacks of the approach are related
to training data storage and computational efficiency. Larger
training data sets result in a better classifier; however, storage
and computational problems are exacerbated.

k-Nearest Prototype Classifier

Nearest prototype classifiers (Bezdek 1981) are similar to
k-NN classifiers in the sense that a measure of distance is once
again used to assign a test data point to a class of operation.
The main difference in the k-nearest prototype (k-NP) and k-
NN classifiers is that the training data used in the k-NN
method are replaced by prototype data points representing
each of the classes of operation. For 1-NP classification, a test
point is assigned to the class of operation of the closest proto-
type data point. This can be extended to a more general case
of multiple prototypes for each class of operation. For 1-NP
classification, prototype data points have membership in a
single class of operation (crisp membership). For k-NP clas-
sification, prototype data points can have either crisp or fuzzy
membership functions.

The 1-NP classification method alleviates the computa-
tional difficulties that limit the application of the k-NN
method; however, it seems obvious that some information
contained in the training data set is lost with this technique. If
significant overlap in the classes occurs, a data point would
seem more likely to be improperly classified by the 1-NP
method than the k-NN method. Thus, k-NP classification may
represent a reasonable compromise between the two methods;
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however, the results presented in this paper were obtained
using a 1-NP method.

Artificial Neural Network Classifier

Artificial neural networks (ANNs) are powerful tools for
mapping inputs to outputs, especially when this mapping is
nonlinear. For classification purposes, a feedforward ANN
can be trained to produce a specific output pattern for a
specific input pattern. Lee et al. (1996, 1997) used patterns of
residuals as inputs to an ANN classifier and crisp membership
functions representing various classes of operation as outputs.
Lee et al. (1996) trained an ANN to perform classification
using a single pattern for each of the modes of operation
considered. Lee et al. (1997) augmented the prototype patterns
with patterns generated by the addition of noise.

The approach of Lee et al. (1996) can be followed using
either crisp or fuzzy prototype data points as inputs and crisp
membership functions as outputs. Alternatively, training data
can be input directly to an ANN and the output can be crisp or
fuzzy membership functions. Fuzzy prototypes and member-
ship functions would again come from a fuzzy c-means algo-
rithm.

ANNGs are effective tools for pattern recognition. In addi-
tion, feedforward ANNs are computationally efficient and
require little memory. However, ANNs do not extrapolate
well, meaning that input patterns unlike those used for training
may produce unreasonable outputs. In addition, because
ANNS are black boxes, the reasoning behind decisions may be
difficult to understand.

Rule-Based Classifier

A rule-based algorithm employing thresholds can also be
an effective classifier. IF-THEN type rule-based algorithms
are attractive when the patterns representative of a particular
class of operation can be easily identified. Otherwise, the
complexity of the rules increases and implementation in an
algorithm is more difficult. In this study, the faults tend to have
a single dominant symptom. This makes it a simple matter to
define classifying rules.

Bayes Classifier

A Bayes classifier minimizes the cost or the probability of
misclassification (Fukunaga 1990). Thus, in this sense, it is an
optimal classifier. Consider the problem of classifying an
observationx,, to one of ¢ classes. The cost of misclassification
is minimized if x, is allocated to the class k that minimizes the
following expression (Johnson and Wichern 1992):

2 p,f,(x,) Clk|i) ©)

~

*

where p; is the a priori probability of an observation coming
from class £, f; is the conditional density function for class i,
and C(kli) is the cost associated with allocating an observation
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to class &, when in fact it comes from class i. If the cost of
misclassification C(k|i) is the same for all i and k, the decision
rule states that x, should be allocated to the class & that mini-
mizes

2_; pfix,) (10)

ik

This expression is minimum when p, fi(x,) is maximum.
Thus, the Bayes decision rule states,
allocate x,, to class & if

pkfk(xa)>pifi(xa) forall i # k. (1D
A completely equivalent expression of Equation 11 is
allocate x,, to class k if

Inp, f,(x )>Inp, f(x,) forailiz k. (12)

If the data in each class can be represented by a multivari-
ate normal density function,

fix)= exc{~—l(x—#,.)'2,.'l (x-u,)J, (13)
2

(zﬂ)q/z |Zi|“2

where ; is the mean vector and Z; is the covariance matrix,
Equation 12 then becomes the following:

allocate x, to class k if
Q = Q Q Q
d(x,)=largestof d° (x,),d3 (x ). d2(x ) (14)

where de denotes ‘the quadratic discrimination score (or
quadratic score) for class k given by

15)

1 1 -
df(xo)=——1nlzk| —=(x,—p) E e - ) +Inp, ~Ln(2m).
2 2 2

The final term in Equation 15 is the same for all classes and
can be dropped. The quadratic score for class i can be approx-
imated by replacing the population mean u, and covariance
matrix X; with the sample mean %, and covariance matrix §;.

Equation 15 can be simplified for the special case where
all the population covariance matrices are equal (or are taken
to be equal). In this case, Equation 15 simplifies to

1 _
d2(x )===(x,~p) 2 (x, ~p)+Inp, . (16)
2

The first and last terms in Equation 15 have been dropped
in Equation 16 since they are the same for all classes. The
quadratic score of class i can be approximated by replacing the
population statistics (i; and Z) with the sample mean ¥, and
a pooled estimate S, ., of £ given by
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_(n1 —l)S1 +(n2-l)52+...+(nc-1)5
pooled ~

: . mn
n

1+n2+‘..+nc-c

where #; is the sample size for class i (Johnson and Wichern
1992). Finally, if S, is equal to the identity matrix and all
classes have equal prior probabilities, the allocation rule
simplifies to that of the nearest prototype classifier.

From a standpoint of minimizing classification errors, the
Bayes classifier is optimal. In addition, it is not overly
complex from either a computationat or a conceptual point of
view. However, its performance is sensitive to departures from
normality in the data.

FAULT DETECTION

Clustering

One of the first tasks associated with developing a train-
ing data set for fault detection was to decide whether the data
should be clustered into two classes (normal and faulty) or
three classes (normal, faulty, and unknown). To this end, 700
data points were drawn randomly from the data set represent-
ing normal operation, and 100 data points were drawn
randomly from each of seven fault data sets (all training data
come from the first day of the three-day simulation). Using
only the two largest residuals for each training point, the train-
ing data were clustered in two classes using the fuzzy c-means
algorithm (Demuth and Beale 1992). The clustering results are
shown in Figure 2a. It is important to understand that the two
largest residuals are not necessarily the same physical features
for all data points. Selecting the two largest residuals simply
reduces the dimension of the fault detection clustering and
classification problems from five residuals to two.

The main feature distinguishing the data points in the two
classes is the largest residual; however, the classes are not well
separated. A considerable number (112} of training data points
have the largest residual in the range from 0.3 to 0.7; however,
only 47 data points have fuzzy membership function values
between 0.3 and 0.7. This implies that the membership func-
tions are somewhat crisp and the transition from the normal
class to the faulty class is rather abrupt.

Note that many data points have the largest residual in this
ambiguous middle range from 0.3 to 0.7. This characteristic of
the data is easily explained. Although all training data were
taken from data sets for which the status of operation was
known to be either normal or faulty, the residuals at any given
time were not always consistent with what was expected for a
particular operating status. For instance, faulty operation due
to a stuck valve may look like normal operation if the position
at which the valve sticks happens to satisfy the current load on
the system. The opposite situation, where data obtained at
normal operating conditions have residuals that indicate the
presence of a fault, was essentially eliminated through the use
of the steady-state detector.
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Figure 2 Results of clustering the training data.

Because the training data do not separate into two well-
defined classes and because the fuzzy membership functions
do not adequately reflect this characteristic, the clustering exer-
cise was repeated using ¢ = 3. The labeled training data for this
case are shown in Figure 2b. Now the normal and faulty classes
are well separated. In addition, 204 of the 1400 training data
points have at least one membership function value in the range
from 0.3 to 0.7. Most of these data points have two membership
function values in this range. Thus, the labeling of the data
more accurately reflects the overlapping nature of the classes.

The use of the unknown class has two effects. First, it is
less likely that a false diagnosis will be made (faulty data
labeled normal and vice versa), and second, it is more likely
that faulty and normal operation will be labeled as unknown
operation. The first effect is desirable, while the second is
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tolerable. Thus, for fault detection, the training data clustered
into three classes will be used as the basis for classification of
the testing data. It could be argued that the unknown classifi-
cation is artificial because the status of operation can only be
normal or faulty. However, if the features of the current oper-
ation are ambiguous, then so is the operating status.

Training

The output of the clustering algorithm included fuzzy
membership functions for the training data set and fuzzy
prototypes for each of the three classes of operation. Crisp
membership functions were also assigned to each data point in
the training data set, and crisp prototype data points were
determined by computing the mean value of the members of
each class of operation.

The ANN classifier that used only the crisp or fuzzy
prototypes as inputs and crisp memberships as outputs (Lee et
al. 1996) was not considered. Instead, the ANNs used the
training data residuals as inputs and crisp or fuzzy member-
ships as outputs (1400 input/output pairs). The ANNs were
multilayer feedforward networks with one hidden layer
containing four neurons and were trained using a back-prop-
agation learning rule until the sum of squares error was less
than 1.0. A commercial ANN software package was used
(Demuth and Beale 1992).

The thresholds used in the rule-based method were mean
values of the largest residual of the prototypes of neighboring
classes. For instance, the threshold between normal and
unknown was the mean value of the largest residual of the
prototypes for these classes. If the largest residual of a test
point was less than this threshold, the test point was assigned
to the normal class.

To implement the Bayes classifier, the mean value and
covariance matrix for each class of operation were required.
Only the allocation rule given by Equations 14 and 15 was
considered, with population statistics replaced with sample
statistics from the training data. Furthermore, prior probabil-
ities were taken to be equal, so the In p, term in Equation 15
was the same for each class. Finally, the cost of misclassifica-
tion C(k]i) was taken to be equal for all misclassifications.

No additional training beyond the clustering analysis was
necessary for the other classification techniques. It is impor-
tant to note that the need for training data is a limiting char-
acteristic of all of the considered classifiers, although it is less
of an issue for the rule-based classifier. Training data for vari-
ous fault modes of operation may be difficult to obtain, and it
may be difficult to generalize the operating characteristics
(residual patterns) of a particular system to others. The
approach described in this study is expected to be more appli-
cable to packaged equipment that is factory built than to
customized equipment such as built-up AHUs.

Scoring Method

The scoring method defines how the classifiers are eval-
uated. In this study, a diagnosis of “unknown” is included as
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a correct output of the classifiers, whether the data come from
a normal data set or a faulty data set. The conclusions reached
in ensuing sections of this paper are sharply dependent on this
choice of scoring method; however, sufficient detail is
provided in the results to allow the readers to draw their own
conclusions based on the scoring method of their choice.

Results

Figure 3 shows the fault detection decision boundaries
and prototypes (shaded circles) for several classifiers. Bound-
aries labeled CANN refer to an ANN trained with 1400 train-
ing pairs, where the inputs are the two largest residuals for
each training data point and the outputs are the crisp member-
ship labels. Boundaries labeled CNP refer to the 1-nearest
prototype classifier with crisp prototypes. Those labeled
CkNN and FkNN refer to the k-nearest neighbor classifier
with crisp and fuzzy membership functions, respectively. For
all nearest neighbor results, k= 5. Boundaries labeled BAYES
and RULES refer to the Bayes and rule-based classifiers,
respectively. The boundaries were determined by classifying
data that spanned the input space defined by 0 < x; < 1 and x,
<x, where x, is the largest residual and x, is the second largest
residual. No data can lie above the diagonal line from (0,0) to
(1,1) since this would imply that the second largest residual is
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Figure 3 Fault detection decision boundaries for
various classifiers.
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greater than the largest residual. Note that when the second
largest residual is less than 0.25, there is little difference in the
classifier boundaries. The exception to this statement is the
BAYES classifier. Although not shown, the boundaries for the
nearest prototype classifier with fuzzy prototypes and for the
ANN trained with fuzzy membership labels are nearly the
same as those of the CANN classifier.

Fault detection results for normal and seven fault modes
of operation are presented for six classifiers in Figure 4. The
third day of the three-day simulation data was used to produce
the results in this section. The shaded area of the bars indicate
diagnoses of “normal” for the normal operation case and
“faulty” for the seven fault cases. The unshaded area of the
bars represent the “unknown” diagnoses. Recall that an
“unknown” diagnosis is taken to be a correct diagnosis.

The most striking feature of the results in Figure 4 is the
fact that, with the exception of the Bayes classifier, there is
very little difference in the performance of the classifiers for
a given mode of operation. For instance, each method
correctly classified approximately 99% of the data obtained
under normal operating conditions. Of these data, 95% to 97%
were labeled “normal” and an additional 2% to 4% were
labeled “unknown.”

The results for the seven faults clearly demonstrate the
difference between the Bayes classifier and the other classifi-
ers. For each of the faults, the Bayes classifier has the largest
percentage of correct diagnoses; however, it also has the larg-
est percentage of “unknown” diagnoses and the smallest
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Figure 4 Fault detection results (Normal Operation:

Percent Correct = Normal + Unknown;
Faulry Operation: Percent Correct = Faulty
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percentage of “faulty” diagnoses for all but the stuck cooling
coil valve fault. For this fault, all methods correctly diagnosed
the operation as “‘faulty” 100% of the time. Results in Figure
4 are consistent with the locations of the classifier decision
boundaries.

For the most part, the results in Figure 4 exclude the clas-
sifiers that utilize fuzzy membership functions and/or proto-
types. This was done to simplify the discussion of the results
and is not an indication that classifiers using crisp membership
functions and/or prototypes are superior to their fuzzy coun-
terparts. Figure 4 shows that the CkNN and FKNN classifiers
yield almost identical results for the data considered. To
understand why, consider the training data in Figure 2b. Since
the five nearest neighbors are determined by distance, differ-
ences in classification must be due to differences in member-
ship functions. The crisp and fuzzy membership functions
differ most near class boundaries. Thus, the CkNN and FkNN
classifiers differ only near these boundaries. Figures 3c and 3d
illustrate the similarity of the classifiers for these training data.

The results presented in Figure 4 correspond to steady-
state operation. It is of interest to examine the influence of the
steady-state detector thresholds on the performance of the
classifiers. Since the residual patterns for each mode of oper-
ation were determined with the assumption of steady-state
operation, classifier performance is expected to improve as the
thresholds on the steady-state detector are tightened. Results
of applying different steady-state detector thresholds are
shown in Figure 5 for the fouled cooling coil fault and for the
stuck VAV box damper fault. For each fault, results obtained
with three different sets of steady-state detector slopes are
presented. The total number of steady-state points in each set
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of results is given in Figure 5. The results indicate only a small
improvement in classifier performance as the thresholds on
the slopes are tightened. Furthermore, the order of the classi-
fiers based on percentage of correct diagnoses does not appear
to change. Hence, although the steady-state detector is an
important aspect of the fault detection approach used here, it
does not account for similarities or differences seen when
comparing the results of different classifiers.

Sensitivity of the classifier to fault severity and load
conditions should be considered for degradation faults.
Figure 6 compares classifier performance for the fouled cool-
ing coil fault with various fouling levels. Fouled coil results
in Figure 4 and the associated training data correspond to r,
= 0.4 m*K/kW (0.00227 h-ft>-°F/Btu) and r,, = 0.5 m>K/kW
(0.00284 h-ft*-°F/Btu).

For the considered range of r,, no change in classifier
performance is observed. However, as #,, increases, the perfor-
mance of each of the classifiers improves dramatically. Note
that although the number of “faulty” diagnoses is very small for
levels of fouling below those used in training, 44% to 69% of the
data is assigned to the “unknown” class for 7,, = 0.35 m* K/kW
(0.00199 h-ft2-°F/Btu). This indicates that the fault symptoms
can be detected at lower levels of fouling than were present in
the training data. The fact that the BAYES classifier has the
highest percentage of correct diagnoses is not surprising, since
this classifier has the largest unknown class and it extends well
into the normal region of the other classifiers.

The influence of load conditions on classifier perfor-
mance was not thoroughly investigated. Training and testing
data for the fouled cooling coil fault corresponded to coil load-
ing of 50% to 75%. The ability of the classifier techniques to
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Figure 6 Fault detection results for different levels of

cooling coil fouling (Percent Correct =
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detect this fault at lower coil loading is highly dependent on
the model used to predict 7,. In general, the fault symptoms are
expected to be less apparent at lower coil loading, so the
performance of all the classifiers would suffer.

FAULT DIAGNOSIS

Training

Training for the fault diagnosis problem is similar to that
for the fault detection problem, except that all five residuals
are employed. In addition, the training data consist only of
data points from the first weather day that were classified as
faulty by the rule-based classifier. The objective is to classify
the data determined to be faulty into one of five classes (¢ = 5)
corresponding to faults associated with (1) control of the
supply air temperature, (2) control of the mixed air tempera-
ture, (3) control of the room air temperature, (4) control of the
supply air pressure, and (5) control of the difference between
the supply and return airflow rates. An unknown class is not
used for fault diagnosis since the training data separate well
into five classes. The introduction of a sixth class tends to
divide the cluster corresponding to faults with the control of
the supply air temperature into two clusters. Hence, only five
classes were used.

The five classes listed above typically have one dominant
residual. Thus, thresholds in the rule-based method were spec-
ified such that if the largest residual was the normalized value
of Ry, the data point was assigned to the supply air tempera-
ture fault class. Similar assignments were made for the other
residuals.

Results

Fault diagnosis results for numerous classifiers are
presented in Figure 7. Note that the data considered for fault
diagnosis are restricted to data points from the third weather
day that were classified as faulty by the rule-based classifier.
The results in Figure 7 demonstrate that for six of the faults (all
but the stuck cooling coil valve), there is very little difference
in the performance of the classifiers. For those six faults, the
performance of all classifiers was very good.

The classifiers correctly diagnosed the stuck cooling coil
valve fault approximately 55% (BAYES) to 78% (RULES) of
the time. Dominant normalized residual values for this fault
are plotted in Figure 8. Note that at certain times the normal-
ized values of Ry, and Ry, are simultaneously equal to unity,
and at other times normalized values of Ry, and R, are simul-
taneously equal to unity. A large percentage of the incorrect
diagnoses are data points that are believed to be faults associ-
ated with the control of the room air temperature. In addition,
for the RULES and BAYES classifiers, a small number of
misclassified data points are classified as faults associated
with the control of the airflow difference. The correct diagno-
sis is that all data points come from a fault associated with the
control of the supply air temperature.
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The rules used in the RULES classifier are not sophisti-
cated enough to handle the case where multiple normalized
residuals are saturated at the maximum value. However, for
classification problems such as this, where the classes of oper-
ation are well separated and can typically be characterized by
one dominant feature, a simple rule-based classifier is
expected to be effective.

CONCLUSIONS

The objective of this study was to demonstrate the appli-
cation of several classification techniques to the problem of
detecting and diagnosing faults in data generated by a VAV
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AHU simulation model and to describe strengths and weak-
nesses of the techniques considered. Artificial neural network
classifiers, nearest neighbor classifiers, nearest prototype
classifiers, a rule-based classifier, and a Bayes classifier were
compared for both fault detection and fault diagnosis.

For the faults considered, classifier performance was
nearly equal. Because each classifier uses a measure of
distance either directly or indirectly, this result is perhaps not
surprising. Based on the performance of the methods and the
scoring method selected, the Bayes classifier is a good choice
for fault detection. It is a straightforward method that requires
limited storage and computational eftort. In addition, for the
faults considered, the Bayes classifier has the lowest percent-
age of incorrect diagnoses. For fault diagnosis, the rule-based
method is favored for classification problems such as this,
where the various classes of faulty operation are well sepa-
rated and can be distinguished by a single dominant symptom
or feature.

These conclusions are drawn from a single study that is by
no means exhaustive in terms of the number and type of faults
considered, training schemes, or classifiers. Nonetheless, the
characterization of the strengths and weaknesses of the clas-
sifiers is intended to be unbiased and should be useful to
researchers and practitioners who are interested in further
studying one or more of the classifiers. Furthermore, the find-
ings of this study are supported by Bezdek (1993), who
provides numerous explanations of the asymptotic equiva-
lence of several of the classifiers considered here. This work
points out that the success or failure of classifiers hinges to a
large degree on an ability to separate the different classes in
some feature space. Hence, preprocessing of data to extract
dominant features is as important as the selection of the clas-
sifier.
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