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Fault Diagnosis and Temperature Sensor
Recovery for an Air-Handling Unit

Won Yong Lee, Ph.D.

ABSTRACT

This paper describes the use of a two-stage artificial neu-
ral network for fault diagnosis in a simulated air-handling
unit. The stage one neural network is trained to identify the
subsystem in which a fault occurs. The stage two neural net-
work is trained to diagnose the specific cause of a fault at the
subsystem level. Regression equations for the supply and
mixed-air temperatures are obtained from simulation data
and are used to compute input parameters to the neural net-
works. Simulation results are presented that demonstrate that,
after a successful diagnosis of a supply air temperature sensor
Jault, the recovered estimate of the supply air temperature
obtained from the regression equation can be used in a feed-
back control loop to bring the supply air temperature back to
the setpoint value. Results are also presented that illustrate
the evolution of the diagnosis of the two-stage artificial neural
network from normal operation to various fault modes of
operation.

INTRODUCTION

The presence of faults and the influence they have on
system operation is areal concemn in the heating, ventilating, and
air-conditioning (HVAC) community. A fault can be defined as
an inadmissible or unacceptable property of a system or a
component. Unless corrected, fanlts can lead to increased energy
use, shorter equipment life, and uncomfortable and/or unhealthy
conditions for building occupants.

Faults are not a new problem in the HVAC industry;
however, technological advances have helped create both aneed
and an avenue for the development of fault detection and diag-
nostic tools. The need has been created by the ever-increasing
complexity of the HVAC systems and control strategies that are
being installed in buildings today. In many cases the complexity
of the systems exceeds the understanding of the building opera-
tor. When this occurs, faults may go undetected or, perhaps
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worse, may be “corrected” by introducing changes to the system
that compensate for the fault rather than eliminating it. The latter
scenario could lead to energy waste and possibly to subsequent
faults that are related to the initial (and still existing) fault. Tech-
nological advances have also made it possible to monitor these
complex systems, thus providing the information that is needed

 to characterize and understand the current operating status of the

systems. Fault detection and diagnostic methods can provide a
bridge between possessing information and understanding its
meaning.

One of the main purposes of fault detection and diagnosis is
to detect failures of actuators and sensors that are used in the
control systems. To improve the operational reliability of
systems in general, it is necessary to validate measured sensor
data, isolate failed sensors, and recover the failed measurement.
Hence, sensor recovery is an important aspect of comprehensive
fault detection and diagnostic methods.

Inprevious papers, Lee et al. (1996a, 1996b) describe meth-
ods for fault detection and diagnosis in a variable-air-volume
(VAYV) air-handling unit (AHU). One approach used in those
studies was to define residuals that provide 2 measure of the
difference between the existing state of the system and the
normal state. Residuals that are significantly different from zero
represent the occurrence of a fault. Lee et al. (1996b) described
the use of a single artificial neural network (ANN) trained on
idealized residual patterns to diagnose faults in various
subsystems of the AHU. A similar approach was applied by
Merchawi and Kumara (1994) to diagnose faults in a nuclear
reactor and by Watanabe et al. (1994) to diagnose faults in a
chemical reactor. Training a network such as the one described
by Lee et al. (1996b), which accounts for all considered faults,
can require extensive computational resources due in part to the
number of inputs, hidden neurons, and outputs necessary to
discriminate each pattern. In addition, if a new fan!t is added to
the existing set, it is necessary to retrain the ANN because the
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knowledge stored in the network (values of weights and biases)
is probably not adequate to discriminate the new fauit.

The objective of this paper is twofold. The first objective is
to describe an architecture for a two-stage ANN for fault diag-
nosis that can alleviate, to a certain degree, the problems
discussed in the previous paragraph. The second objective is to
describe the use of regression equations for sensor recovery of
failed temperature sensors. The two-stage ANN and the sensor
recovery method are demonstrated using data obtained from a
simulation model of a laboratory-scale AHU. Results based on
experimental data are not presented here.

The first sections of this paper provide a brief description of
the laboratory-scale AHU, models of the AHU components that
are used in the simulations, residuals used in the fault diagnosis,
and the faults under consideration. The fault diagnosis and
sensor recovery methods are then discussed and results from the
methods are presented. Finally, conclusions and recommenda-
tions for future work are presented.

AHU COMPONENT MODELS

The AHU simulation model is a simplified dynamic model
based on steady-state characteristic equations and approximate
first-order dynamics. Component models developed in IEA
Annex 17 (Wang 1992) have been modified to fit experimental
data obtained from a laboratory-scale AHU.

A schematic diagram of the laboratory-scale VAV AHU is
shown in Figure 1. This system was used in papers by Lee et al.
(1996a, 1996b). The AHU consists of fans, dampers, a cooling
coil, sensors, and controllers. The static pressure in the main
supply duct is maintained at a constant setpoint value of 249 Pa
(1.0 in. water) by sensing the static pressure and controlling the
rotational speed of the supply fan. The supply air temperature is
controlled by modulating the cooling water control valve to
maintain a constant setpoint value of 14.5°C (58.1°F). The
airflow rate difference between the supply and return airstreams
is controlled by the variable-speed return fan to maintain a
constant setpoint value of 472 L/s (1,000 cfim). A PID algorithm
is used to control the cooling water valve, and PI algorithms are
used to control the supply and return fan speeds.

The ensuing subsections give a brief overview of the
component models used in the AHU simulation model. Numer-
ous simplifying assumptions have been introduced into the
simulation mode); however, the model successfully captures the
trends associated with various modes of operation of the labora-
tory-scale AHU. Thus, for purposes of this study, the model is
sufficient.

Cooling Coil Characteristics

The air temperature at the exit of the cooling coil, T, is
obtained by combining a steady-state model of the cooling coil
with approximate first-order dynamics. The response of T, is
approximated by

T, 1
+ TS

exp(-1,45) ¢))

—

where T, is the steady-state value of T, T is the process
time constant, 1, is the process delay time, and s is the Laplace
variable. To determine T,,,, it is first necessary to compute the
steady-state value of the moist air enthalpy at the exit of the
cooling coil (h,,,), which is given by

Baos = hgit e(h,, =Ry, @
where h,; is the moist air enthalpy at the inlet to the cooling

coil, h,; is the moist air enthalpy at the inlet chilled-water tem-
perature, and ¢ is the effectiveness of the cooling coil. T, is

then calculated from the expression
hao.v = CpaTaas + wuo(cvaao: + h;, o) (3)

where c,,, is the specific heat of dry air, ¢, is the specific heat
of water vapor, w,, is the humidity ratio of the air at the outlet
to the cooling coil, and h& o is the enthalpy of saturated water
vapor at a reference temperature 7. For a single-pass cross-
flow heat exchanger where the fluid having the minimum
capacitance (air, in this case) is mixed and the water is
unmixed, the effectiveness is given by (Incropera and DeWitt
1985):

& = 1-exp(=C}' {1~ exp[-C,(NTU)]}) “)
where C, is the heat capacity rate, given by
C, = Cpin/ Crmax: ()
and NTU is the number of transfer units, given by
NTU = UA/C,,;, ©)

As stated previously, C,,;, and C,,,, are the capacitances for
air and water, respectively. UA is the overall heat transfer
coefficient of the coil.

Braun et al. (1989) describe a more detailed cooling coil
model that includes an analysis of dry coil heat transfer charac-
teristics, wet coil heat transfer characteristics, and combined
wet and dry coil heat transfer characteristics. The main differ-
ence in the model used here and the model described by Braun

- et al. (1989) is in the computation of the air capacitance when

the coil is wet.

Damper Characteristics

The airflow rates through the exhaust, recirculation,
outdoor, and VAV box dampers are given by

0 = K./AP Q)

where X is a resistance coefficient, O is the volumetric airflow
rate, and AP is the pressure drop across the dampers. The
resistance coefficients are determined from least-squares
regression of the experimental data for varying damper blade
angles. The resulting third-order polynomial equations are of
the general form
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Figure 1
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System model for a VAV AHU.
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K = Co+C,0+C,8°+C,0° (8)

where 0 is the damper angle. Assuming the air density is con-
stant throughout the system, conservation of mass yields

Orec = Qrer=Qexnr ®

Qrec = Q5= Qour (10
and

Q= ‘nZ. Quav,i 1n

i=1
where the subscript rec denotes recirculation air, rez denotes
return air, exs denotes exhaust air, s denotes supply air, our

denotes outdoor air, and vav,i denotes airflow through the ith
VAY box, and where » is the total number of VAV boxes.

Sensor Model Characteristics

Sensors convert physical signals into electric signals. The
response of the electric signal may exhibit a time delay from the
change of the physical value. The sensor response is simulated
using a first-order model with a simple time constant, that is

]

o _ 1
T, 1l+1s a2

Fan Characteristics

Fan performance is characterized using the following
dimensionless coefficients:

® = B%r (13)
¥ = _“_2 (14)
p(ND)

where Q is the volumetric airflow rate of air through the fan,
D is the fan impeller diameter, N is the rotational speed of the
fan, AP is the pressure rise across the fan, and p is the density
of air. The dimensionless parameters in Equations 13 and 14
are related by the polynomial expression

m .
Y=Y a0 15)
i=0
where the coefficients a; (i = 0 to m) are determined from
least-squares regression.
Air Filter Characteristics

_The airflow rate and pressure drop across the air filter and
the duct, including the coils, are related by

0, = K57, a6)

where K is a friction coefficient that is treated as being con-
stant. In real systems, K, will vary due to fouling of the filter
and the coils.

SIMULATION SOLUTION PROCEDURE

The simplified model equations are solved by considering
the pressure and flow equations independently of the equations
that characterize the cooling coil response. Initial values of the
damper positions, valve positions, and fan speeds are selected
first. The pressure and flow equations are then solved simulta-
neously to determine the pressure and airflow rates throughout
the system. Next, the equations governing the cooling coil are
solved to determine the supply air temperature and the inlet and
exit cooling water temperatures. The supply air temperature and
pressure and the volumetric airflow rate difference between the
supply and retum airstreams are then used to compute the control
signals to the fans and the cooling coil valve. Finally, the control
signals are converted to new values of the supply and return fan
speeds and the cooling coil valve position. The solution proce-
dure is then repeated. The simulation requires solving 15 equa-
tions (12 for the pressure and flow characteristics, 3 for the
cooling coil) for 15 unknowns.

RESIDUAL DEFINITION

The fault diagnosis method described by Lee et al. (1996b)
identifies patterns of residuals that can be used as signatures for
various faults. An ANN was trained with these patterns and then
used to diagnose the status of the AHU for actual experimental
data. The set of residuals used in this study is slightly different
from that used in Lee et al. (1996b). The residuals used here are:

RT:I = Ts'Ts,ev (17)
RT32 = Ts" Ts, sp (18)
Rim = Tn=Tp ey (19)
RP: = Ps—Ps, sp (20)
RQd = Qd‘Qd,,p (21)

and
RVcc = Vcc" Ucc 22)

where

R = residual,

T = temperature,

P = pressure,

o = volumetric airflow rate,

U = control signal,

14 = valve position,

m = mixed air parameters,

d = flow difference parameters,

cc = cooling coil parameters,

sp = setpoint values, and

ev = expected values calculated using regression

equations.
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To compute residuals Ry, and Ry,,, models are needed for
the expected value of the supply air temperature and the mixed
air temperature. For this study, regression equations are used to
estimate the current values of 7, and 7,, for normal operating
conditions. A schematic diagram of the cooling coil and the cool-
ing coil valve subsystem is shown in the expanded portion of
Figure 1. T,, and ¢,,, are the mixed air temperature and relative
humidity, respectively; Q, is the supply airflow rate; and T, is
the temperature of the cooling water at the inlet to the cooling
coil. The other variables retain their previous definitions.

The input and output variables for the regression equation
for T are:

Inputs
QJ(i)’ Qs(i—l)r Qs(l)za Q:('_l)z
T, Tp(i-1)
T,{), T,{i-1)
¢m(i)’ ¢m(i—l)
U,(D), U (-1), U, (i=2), U, (0, U.(i~1)
Os() T,(i), O(i-1) T,,(i-1)
Ul Touii), U, (i=1) T, (i-1)

Output
T, s,ev(i)

where (i) refers to the current discrete time value and (i-1)
refers to the previous value.

The coefficients of the regression equation are computed
using simulation data obtained as the system operates in anormal
mode. The training data consist of 1,000 points. The correlation
coefficient for 7, ,, is 0.98, indicating that the regression model
of the supply air temperature accounts for 98% of the variability
of the simulated supply air temperature for normal conditions. A
model for the expected value of the mixed air temperature, T e
is obtained in a similar manner. The correlation coefficient for
Tmevis 0.95.

It should be pointed out that the regression models for T,
and T, ., could be replaced by other types of models such as
physical models or neural network models. Regression models
were chosen because of their limited complexity and because
physical models are already used in the simulation model of the
air-handling unit. The physical models currently used in the
simulation model could be used in a laboratory or a real building
study to provide an estimate of these temperatures. Regardless of
the type of model that is used, laboratory and/or real building
studies require a certain amount of training to compute regres-
sion coefficients or unknown physical parameters.

FAULT DESCRIPTION

Eleven faults and their dominant symptoms are described in
the following paragraphs. The dominant symptoms are identi-
fied by simulating each of the faults and observing the response
of the residuals. Faults are introduced when the system is oper-
ating at normal, steady-state conditions and the dominant symp-
toms correspond to the steady-state conditions after a fault has
occurred. Fasolo and Seborg (1994) applied fault detection and
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diagnostic methods to a simulated heating coil subsystem.
Several of the faults they considered are described below.

Fault 1 is a failure of the supply fan. The dominant residuals
for fault 1 are Rp,, Rpg Ry, and Ry, The fault causes the
supply air pressure to decrease to zero and the control signal to
the supply fan to increase to its maximum value in an attempt to
offset the decreasing supply air pressure. The control signal for
the return fan decreases to zero in an attempt to maintain the flow
difference between the supply and return air ducts at the setpoint
value. The two temperature residuals are large because both 7 ,,,
and 7,,, ., are affected by the abrupt change in the supply airflow
rate and/or rotational speeds of the fans.

Fault 2 is a failure of the return fan. The dominant residual
for fault 2 is Rj,,;. The fault causes the return fan rotational speed
to decrease to zero, thereby causing the flow difference between
the supply and return ducts to increase.

Fault 3 is a failure of a local feed water pump. The dominant
residual for fault 3 is Ryy;. The fault causes the water flow rate
to decrease, but not to zero, since the main supply pumps
continue to operate normally. The decrease in the flow rate of
cooling water causes the supply air temperature to increase, with
the resultant effect being that the cooling coil valve opens
further. By opening the cooling coil valve, it is possible to bring
the supply air temperature back to the setpoint value (unless the
fault is too severe, in which case Ry, could also be a dominant
symptom); however, the control signal to the cooling coil valve
will be different from the normal condition. This causes T ,, to
be different from T,.

Fault4 is a stuck cooling coil valve. The dominant residuals
for fault4 are Ryy,, Rr,,, and Ry,... A load change occurring after
the introduction of the fault will cause the control signal to the
cooling coil valve to saturate at either the minimum or the maxi-
mum voltage because the valve is unable to respond to the
control input. R, and Ry,, are dominant because 7 ,, decreases
(increases) as the cooling coil valve control input increases
(decreases), while T, increases (decreases) and T, s Temains
constant.

Fault 5 is a complete failure of the supply air temperature
sensor. The dominant residuals for fault 5 are Ry, and Rp,. A
temperature sensor failure typically results in a voltage signal
that varies randomly between large positive and negative values.
If this occurs, the temperature is automatically set to zero so that
the temperature residuals given by Equations 17 and 18 do not
fluctuate. Setting the supply air temperature signal to zero causes
the cooling coil control valve to close, thereby causing 7 ., to
increase to some value greater than T .

Fault 6 is a second type of failure of the supply air temper-
ature sensor. The dominant residuals for fault 6 are Ry,; and Ry,,.
Inthis case, the sensor drops from its supporting harness onto the
floor of the duct, giving an incorrect temperature reading.
Because the duct surface is assumed to be at a temperature that
is 5°C (9°F) higher than the air flowing through the duct, the
controller attempts to compensate by opening the cooling coil
control valve. The sensed supply air temperature at time 7 is
given by



T (i) = T,(j) + 5[1 - exp(-[i - j)/100)] (23)

where T()) is the sensed supply air temperature at time j when
the fault occurs and the time constant for the response is
assumed to be 100 seconds.

Fault 7 is a third type of supply air temperature sensor fail-
ure and is due to sensor drift. The dominant residual for fault 7
is Ry, . This type of failure is classified as a performance degra-
dation rather than a complete fault and would be difficult to
detect in its early stages. To simplify the discussion for this fault,
the period over which the sensor degrades is short, approxi-
mately 30 minutes. The fault is simulated by creating a linear
decrease in the supply air sensor reading until the maximum
offset value of 1.5°C (2.7°F) is achieved. The cooling coil valve
controller compensates for this fault by gradually closing the
control valve. Thus, the sensed value of the supply air tempera-
ture is maintained at the sefpoint value, although the actual
temperature is higher than the setpoint value.

Fault 8 is a failure of the supply air pressure transducer. The
dominant residuals for fault 8 are Rp, and Ry;,. When this failure
occurs, azeroreading is obtained for the supply air pressure. This
causes the control signal to the supply fan to increase to its maxi-
mum value, thus causing the supply fan speed to increase to its
maximum value, The change in the supply fan speed produces a
large change in 7,,, ,,..

Fault 9 is a failure of the supply airflow station. The domi-
nant residual for fault 9 is R, When this fault occurs, a zero
reading is obtained for the supply flow station and the return fan
controller decreases the return fan speed to its minimum value in
an attempt to maintain the flow difference between the supply
and return ducts at the setpoint value.

Fault 10 is a failure of the return fan flow station. The domi-
nant residual for fault 10 is Rog When this fault occurs, a zero
reading is obtained for the retarn flow station and the return fan
controller increases the return fan speed to its maximum value in
an attempt to maintain the flow difference between the supply
and return ducts at the setpoint value.

Fault 11 is a failure of the mixing box damper linkage. The
dominant residual for fault 11 is Ry,,,. The fault causes a discrep-
ancy between actual and expected values of the airflow rates for
the airstreams entering and exiting the mixing box. The discrep-
ancy in the airflow rates Jeads to discrepancies in the actual and
expected temperatures in the mixing box. It is assumed that the
recirculation damper is closed when the fault occurs.

FAULT DIAGNOSIS METHOD

Steady-State Detection

The fault diagnosis method is developed with the assump-
tion that steady-state conditions exist when classification of the
symptoms is performed. Thus, a steady-state detector is used to
filter the data. If steady-state conditions prevail, the fault diag-
nosis algorithm is invoked.

Three variables are used in the steady-state detector,
namely, supply air temperature, supply air pressure, and the flow

rate difference between the supply and return air ducts. Using
least-squares regression, straight lines are fit through the current
and five previous values of each of these variables. If the abso-
lute value of the slope of each line is less than its associated
threshold value, the system is deemed to be in steady state.
Otherwise, the system operation is unsteady and no further clas-
sification is possible. The threshold value for the slope of a
regression line is approximately three times the value of the aver-
age slope for a particular variable under normal conditions, with
obvious transient periods removed from consideration in deter-
mining this slope.

Normalization

Residuals are normalized so that the dominant symptom
residuals have approximately the same magnitude for the differ-
ent fault cases. The residuals are normalized using the following
expression:

R =

RI-R,.;, {IfR<0thensetR=0 24)

Rpax=Rpyin (IFR>1thenset R =1

max min

where R,,;, and R,,,, must be specified for each residual. A
deadband exists between 0 and R,,;,, in which R is taken to be
zero. Values of R greater than R, yield values of R equal to
unity. Values of R,,;,, and R, could be determined by com-
puting the standard deviation of each residual under normal,
steady-state operating conditions. As an example, R,,;, could
be defined as 3o and R,,,, as 6G, where G is the standard devi-
ation for a particular residual. This approach assumes that the
normal data are representative of all normal operating condi-
tions, which may not be a valid assumption. Alternatively,
expert knowledge could be used to assign values to R,,;, and
R, The second approach is utilized in this study. For
instance, for the temperature residuals, R, and R, are
defined as 0.5°C (0.9°F) and 1.5°C (2.7°F), respectively. The
assignment of values for R,,;, and R,,,, is an important aspect
of the fault diagnosis method and to a large extent defines the
type and severity of faults that can be diagnosed.

Two-Stage Artificial Neural Network

‘To use an ANN for fault diagnosis, the ANN must first be
trained using data that represent the normal condition and the
various fault conditions. Lee et al. (1996b) used a single ANN to
classify the operating status of the AHU. Nine possible modes of
operation were considered, namely, the normal mode and eight
separate fault modes. As stated previously, training a network
such as that, which includes patterns for all considered faults, can
require fairly extensive computational resources. In addition, the
ANN must be retrained to discriminate new faults. To lessen the
impact of such problems, an architecture for a two-stage ANN is
proposed here. Stage one is used to classify the subsystem in
which a fault is occurring. Stage two is used to diagnose the cause
of a fault on the subsystem level. Using this architecture, less
information is required for diagnosis at a given stage. In this study
the subsystem classifications are the pressure contro! subsystem,
the flow control subsystem, the cooling coil subsystem, and the
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mixing box damper subsystem. Figure 2 shows a block diagram
of the proposed two-stage network for the case where n,
subsystems are considered, and the number of outputs of the ith
stage two ANN is m,. Although four subsystems are considered
in this study, stage two ANN results are presented only for the
cooling coil subsystem. Hence, reference to stage two ANN
parameters or results throughout the remainder of this paper will
imply those of the cooling coil subsystem.

L3 yotelll

Idealized patterns of normalized residuals are specified for
training by considering the dominant symptoms of each fault (Lee
et al. 1996b; Watanabe et al. 1994). The idealized input/output
training patterns for the stage one ANN are given in Table 1, and
idealized training patterns for the stage two ANN to diagnose
faults in the cooling coil subsystem are given in Tabie 2. The input

patterns are based on conditions expected to exist after the system

has reached steadv ctate A

Anminant cumngam mecidnal e
AVASWALWE S Y DU, SR WUV L

minant symptom residual
assigned a value of 1, and all other symptoms are assigned a value
of 0. Each output training pattern consists of five values of 0 and
one value of 1 for the stage one ANN. Outputs in the stage one
ANN are denoted y;, where i=1 to 6, and outputs in the stage two
ANN are denoted z;, where j = 1 to 5. An output pattern of [1 0 0
0 0 0] signifies normal operation, {0 1 0 0 0 0] signifies a fauit in
the pressure control subsystem, and so on. An output pattern of [0
0 0 0 0 1] signifies unknown operation. There is no ideal input
pattern for unknown operation, thus the mputs in Tables 1 and 2
for unknown operation are designated with question marks. This
classification is used when the input pattern does not demonstrate
the characteristics of any of the ideal input training patterns. For
the stage two ANN, each output training pattern consists of four

TABLE1 Idealized Stage One ANN Training Patterns
for the AHU Fault Diagnosis values of 0 and one value of 1.
TABLE2 Idealized Stage Two ANN Training Patterns
Net Inputs Net Outputs Fault Diagnosis for the Cooling Coil Subsystem Fault Diagnosis
Rp; Ros Rry Rim )1 Y2 V3 Ya ¥s Ve
0 0 0 0100 0 0 0|Normal NetInputs | Net Outputs Fault Diagnosis
Pressure control RT.rl RT:Z RVcc 2] 22 23 24 25
10 0 1101000 0) em 0 0 0 |100 0 0|Nomal
Flow control Temperature sensor failure
0 1 0 0 ({0 01 ooosubsystem 1 1 0 OIOOO(fauIt#Sor%)
Cooling coil Temperature sensor
0 0 1 04000100 dem 1° 0 0 |00 1 0 0]degradation (fault#7)or
. pump failure (fault #3)
0o 0 o0 1|0 00 o 1 ofMxnebox .
damper subsystem 1 1 1 10 0 0 1 0] Valve failure (fauk #4)
? ? 2?2 20 00 0 0 1|Unknown ? 2 2 [0 0 0 0 1]|Unknown
Residual ,
Values |
R ]
; Y
]
' ANN
; to Classify | Jtage
; Subsystem e
]
i Subsystem
i Classification
o e B i G B L 1
) ! I
] ]
) ) |
\ \ \i \
Stage ANN ANN ANN ANN
Two to Diagnose to Diagnose to Diagnose ceees to Diagnose
Subsystem #1 | | Subsystem #2| | Subsystem #3 Subsystem #n,
12 .. m, 12 e M 12 .. m3 12 .. m,,s

Figure2 Two-stage ANN for fault diagnosis of an AHU.
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Lee et al. (1996b) and Watanabe et al. (1994) used only the
idealized input/output training patterns to train the ANNs used
for classifying system operation. In those studies, the number of
weights and biases of the neural networks are larger than the
number of training patterns. In this study, the idealized training
patterns are replaced with less ideal patterns that are obtained by
replacing residuals that are ideally unity with a random value
taken from a uniform distribution ranging from 0.5 to 1 and by
replacing residuals that are ideally zero with a random value
taken from a uniform distribution ranging from 0 to 0.5. The
idealized output patterns are also replaced with patterns that clas-
sify the given input pattern as belonging, for example, partially
to one or more subsystem faults and partially to the unknown
classification. This approach retains the trends associated with
the idealized patterns, while simultaneously expanding the input
space so that the trained ANN is capable of logically classifying
patterns that fall somewhere between idealized input patterns.

To clarify the method for generating the training patterns,
the algorithm used to construct patterns for the pressure control
subsystem is summarized below.

Typical Input Pattern

Rp;, = random number between 0.5 and 1 taken from a
uniform distribution

Ry, = random number between 0 and 0.5 taken from a
uniform distribution

Ry,y = random number between O and 0.5 taken from a
uniform distribution

Ry, = random number between 0.5 and 1 taken from a
uniform distribution.

Typical Output Pattern

D1 y2¥3Y4Ysye) where
n= 0

¥, = 1/{1 +exp[-10({Rps + Ry, } /2 - 0.5)]}

y3=0
Yg=0
ys=0
Yo = 1-¥;

Thus, for values of Rp, and Ry, near unity, such as the ideal-
ized pattern for faults of this subsystem, y, approaches unity
and y, approaches zero. For values of Rp, and Ry, near 0.5,
¥, and yg approach 0.5. This classification is interpreted to
mean that the pattern is like that of a fault of the pressure con-
trol subsystem to a degree 0.5 and is unlike any of the known
patterns (thus classified as unknown operation) to a degree
0.5. This approach is used to generate 100 training patterns for

8

pressure control subsystem faults. Similar algorithms are used
to generate 100 patterns for normal operation and 100 patterns
for each of the other subsystem faults.

Because the idealized patterns consist of four residuals for
the stage one ANN, there are a total of 2* possible binary
patterns, with five of these patterns being listed in Table 1. Algo-
rithms similar to that described for the pressure control
subsystem are used to generate 50 training patterns for each of
the other 11 ideal binary input patterns. In all cases, the value of
yeranges from 0.5 to 1, indicating that the pattern is not like any
of the known patterns to a degree between 0.5 and 1.

The stage one and stage two ANN architectures are
4x12x8x6 and 3x 15x5, respectively, where the first number is
the number of inputs, the last number is the number of outputs,
and the middle number(s) is the number of neurons in the hidden
layer(s). Note that the stage one ANN has two hidden layers
containing 12 and 8 neurons, respectively. For the stage one
ANN, 1050 input/output patterns are used for training, and for
the stage two ANN, 800 patterns are used for training. The
networks are trained until the sum-of-squares error is less than 3.
A commercial ANN software package was used for the training
(Demuth and Beale 1992).

SENSOR RECOVERY METHOD

When a critical sensor reading is found to be erroneous, it is
necessary to estimate its true value using correlated measure-
ments. A simple approach is to have one estimating relation for
each sensor reading that needs to be recovered. To demonstrate
this concept, the regression equation used to compute the
expected value of the supply air temperature T, ., is used to
recover an estimate of the supply air temperature when this
sensor fails. Once the fault is diagnosed, the estimate of the
supply air temperature is used in the feedback control loop to
recover control of the actual supply air temperature.

The sensor recovery method is expected to be successful
assuming the inputs to the regression equation are not erroneous.
That is, if the conditions in the system deviate from normal
conditions (for instance, if the cooling coil valve input signal
saturates at its minimum value) because of the temperature
sensor fault, the regression equation should yield an accurate
estimate of the actual supply air temperature and, therefore, be
useful forregaining control of the system. If, however, the condi-
tions deviate because of another type of fault and this fault affects
the inputs to the regression equation, the regression equation will
not provide an accurate estimate of the actual supply air temper-
ature. The difference between the estimated and actual supply air
temperatures will be used to diagnose the fault. Hence, the
regression equation is only used for sensor recovery after that
particular temperature sensor has been diagnosed as faulty.
Results demonstrating sensor recovery are presented in the
following section.
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RESULTS AND DISCUSSION

Fault Diagnosis

The training phase of the two-stage ANN used input
patterns adapted from the idealized input patterns given in
Tables 1 and 2. In the testing phase, data obtained from a simu-
lation program based on simplified AHU component models are
used as inputs. Faults are introduced through modifications of
the computer algorithm. Faults are introduced at ¢ = 2000
seconds, except where noted otherwise. Stage one fault diag-
noses for the pressure control subsystem, the flow control
subsystem, and the mixing box subsystem are presented first.
The two-stage diagnosis for faults in the cooling coil subsystem
are then presented.

The ANN output associated with normal operation (y,),
unknown operation (ys), and pressure control subsystem faults
(y,) are plotted as functions of time in Figure 3 for the pressure
control subsystem faults (faults 1 and 8). The other ANN output
values are typically near zero and, therefore, are not presented.
In the results that follow, only the dominant outputs, and some-
times the associated dominant residuals, are plotted to simplify
the presentation and discussion of the results. In some of the
results, residuals and ANN output values greater than unity are
observed. This is strictly an artifact of the plotting package, as
these values are bounded by zero and unity in the fault diagnosis
method.

During the initial 2000 seconds of the simulation of the
supply fan fault (fault 1), the ANN output indicates that the
system operation is normal (see Figure 3a). At approximately ¢
=2250 seconds, y; begins to decrease, while y, and y, gradually
increase. Eventually the diagnosis evolves to the point where the
degree of belief that the operation represents a pressure control
subsystem fault is slightly greater than 0.5 and the degree of
belief that the operation is unknown is slightly less than 0.5. For
the supply pressure transducer fault (fault 8), Figure 3b reveals
that the diagnosis evolves to where the degree of beliefthat oper-
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Figure 3 Fault diagnosis for pressure control subsystem
Jaults (faults 1 and 8).
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ation represents a fault in the pressure control subsystem is
nearly equal to unity.

The results in Figure 3 demonstrate two important points.
First, even though the fault occurs at £ = 2000 seconds, the first
indication of the fault appears approximately 250 seconds later.
This is because the steady-state detector classifies the system
operation as unsteady from #= 2000 to 2250 seconds, and there-
fore nonew ANN classifications take place during this time. The
second important point has to do with the gradual increases and
decreases that are seen in the ANN outputs in Figure 3 despite the
fact that abrupt faults have occurred. These gradual changes are
created by the use of a filter that calculates a moving average of
each ANN output value. This particular filter tends to suppress
abrupt diagnoses and makes it necessary for the symptoms of a
given fault to persist for an extended period before the diagnosis
is made. The advantage of using this filter is that the diagnoses
are not as likely to be impacted by spikes in the data. The disad-
vantage is that the time required to obtain a diagnosis is
prolonged.

Results of the diagnoses for faults in the flow control
subsystem are shown in Figure 4 and the diagnosis of the
mixing box subsystem fault is shown in Figure 5. The diag-
noses in Figure 4 are all similar and in each case, the correct
diagnosis is made. In all cases, a gradual transition from a
diagnosis of normal operation to a diagnosis of a fault in the
flow control subsystem occurs after ¢ = 2000 seconds. The
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Figure 4 Fault diagnosis for flow control subsystem faults
(faults 2, 9, and 10).




correct diagnosis is also made for the mixing box subsystem
fault. The faults in the flow control subsystem and the mixing
box subsystem fault all have diagnoses with small degrees of
belief that the operation is unknown.

Results of the diagnoses for faults in the cooling coil
subsystem are shown in Figures 6 through 9. In each figure,
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Figure 5 Fault diagnosis for a mixing box subsystem
Jault (fault 11).
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Figure 6 Fault diagnosis for a pump fault (fault 3).
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subplot a shows the dominant stage one residuals, subplot b
shows the stage one ANN output, subplot ¢ shows the dominant
stage two residuals, and subplot d shows the stage two ANN
output. Figure 6 shows the dominant residuals and the ANN
diagnoses for a pump fault. In both stages, the dominant residual
is Rr,; . The stage one ANN output shows that the diagnosis
gradually changes from normal operation to a fault in the cooling
coil subsystem. The stage two ANN output shows an evolution
of the diagnosis in the cooling coil subsystem from normal to 2
diagnosis of either a supply temperature sensor degradation fault
or a pump fault. No further diagnosis is possible with the current
two-stage ANN.

The diagnosis of a stuck cooling coil control valve fault
(fault 4) is shown in Figure 7. The fault is introduced at = 1000
seconds and a linear change in the system load is introduced
beginning at #=2000 seconds. If the valve is well controlled prior
to the fault, it will be difficult to diagnose the fault until the load
change or some other event occurs to upset the conditions in the
system. This kind of behavior is seen in Figure 7, where the

15
g | ®
g
ﬁ 1o}
g
S ost /~/~/va.
H
00
0 500 1000 1500 2000 2500 3000 3500 4000
15
E ——— Nomal (7} ®)
g ceveers Cooling coil subsystem (y,)
% 10}
é 05t
g
(7]
00
0
15
o)
2 Ll
2
E ol
[
g 1
oo L
0 500 1000 1500 2000 2500 3000 3500 4000
15
5- —Nolmlc.:,) @
- I ST Vllv:tnhn(:‘)
<
% 10
o
S ost ]
3
5
w 00 B
0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)
Figure 7 Fault diagnosis for a control valve fault
(fault 4).
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symptoms do not become evident until ¢ ~ 2100 seconds. The
ANN output for the initial 1500 seconds of the simulation is
different from that seen for other faults. For this fault, the degree
of belief that the system operation is normal increases slowly
until it reaches a value near 0.9. This is due to the selection of
load conditions that cause the control signal to the cooling coil
valve to have a small degree of oscillation during the initial 1000
seconds. This, in turn, causes several of the residuals to have
values between 0 and 0.3 during this period. A well-tuned
control valve would eliminate these characteristics. Near ¢ =
2100 seconds, Ry, , Ryy;,and Ry, become dominant and the
stuck cooling coil control valve is diagnosed correctly.

Results for a complete supply air temperature sensor fault
(fault 5) are shown in Figure 8. Results are not shown for fault
6 (5°C [9°F] offset in supply air temperature sensor reading)

“because they are almost identical to those for fault 5. In Figure
8, the dominant residual for stage one is Ry,, and the dominant
residuals for stage two are Ry,; and Rpy;. Both residuals
undergo a step change almost immediately after the fault occurs
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Figure 8 Fault diagnosis for a complete temperature
sensor fault (fault 5).
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because the sensor value is set equal to 0°C (32°F). The stage one
and stage two ANN outputs correctly indicate the subsystem
where the fault occurs and the type of fault, respectively.

Results for a supply air temperature sensor degradation fault
(fault 7) are given in Figure 9. The dominant residual for both
stages one and two is Ry,; . Note that although the fault is intro-
duced at £=2000 seconds by subtracting 1.5°C [(z—-20005)/2000
s] from the actual sensor value, the residual remains equal to zero
until 7~ 2800 seconds due to the deadband region between Ry,
=0 and Ry, = R, At = 3000 seconds, the stage one ANN
output for normal operation begins to decrease and the outputs
for a cooling coil subsystem fault and unknown operation begin
to increase. The degree of belief that the fault is in the cooling
coil subsystem continues to increase to a final value that is
slightly greater than 0.5. The stage two ANN diagnosis is similar
to that in stage one. As 7 approaches 4000 seconds, the degree of
belief that the fault is either a supply temperature sensor degra-
dation fault or a pump fault increases to a value slightly greater
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Figure 9 Fault diagnosis for a temperature sensor
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than 0.5. As in the pump fault case, no further diagnosis is possi-
ble with the current two-stage ANN.

The results presented in this section demonstrate the capa-
bility of the two-stage ANN, trained with patterns adapted from
idealized fault/symptom relationships, to correctly diagnose the
faulty subsystem for 11 faults in an AHU and to further diagnose
the faulty component for the 5 faults that occurred in the cooling
coil subsystem. The study by Lee et al. (1996b) demonstrated the
capability of ANNs to generalize from idealized input data to
noisy lab data. The two-stage approach simplifies the generali-
zation by replacing a single ANN that encompasses all consid-
ered faults with a number of less complex ANNSs, each one
dealing with a subset of the residuals and symptoms associated
with acomplete diagnosis of all faults. As more faults are consid-
ered, more stages could be added. In addition, this kind of archi-
tecture would make it possible to limit retraining to only select
ANNs. Retraining should also require fewer computational
resources because the ANNs would not be as complex as in the
case of a single ANN used for all faults. Finally, this approach is
beneficial from a standpoint of understanding the diagnosis and
could be utilized by a building operator to step through the
reasoning behind the fault diagnosis.

Sensor Recovery

Sensor recovery results for two temperature sensor faults
(faults 5 and 6) are shown in Figures 10 and 11. For fault 5, the
supply air temperature sensor experiences a complete failure.
Real (simulated: 7,) and estimated values (7 ,,) of the supply
air temperature and the supply air temperature sensor signal are
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Figure 10 Sensor recovery for supply air temperature
sensor: complete failure (fault 5).
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plotted as functions of time in Figure 10a for the case where the
temperature sensor is not recovered. When the sensor fails at ¢
=2000 seconds, the sensed value of T, becomes 0°C (32°F) and
the cooling coil valve closes in an attempt to make the sensed
supply air temperature increase to the setpoint value of 14.5°C
(58.1°F). This action causes the actual supply air temperature to
increase to approximately 18°C (64.4°F), while the estimated
value increases to approximately 19°C (66.2°F). Figure 10b
shows that the failed sensor can be recovered within a short time
after the fault is detected. This is accomplished by switching the
control of the cooling coil valve from the sensor output to the
estimated value of the supply air temperature after the fault is
detected. That is, using T, ,, obtained from a regression equa-
tion as the feedback signal to the cooling coil valve controller,
the real value of the supply air temperature (T;,) can be recovered
toa value near the setpoint. In these results, it is assumed that the
fault is diagnosed at £ = 2500 seconds.

Fault 6 is the case in which the supply air temperature sensor
drops from its supporting hamess to the floor of the air duct.
Simulation results for this fault are shown in Figure 11a. Because
the air duct surface is assumed to be at a higher temperature than
the air flowing through the duct, the cooling coil valve controller
responds as if a large disturbance has upset the process. In partic-
ular, the controller attempts to compensate for the fault by open-
ing the control valve. This causes the real and estimated values
of the supply air temperature to decrease; however, the wall
temperature is assumed to be constant and the sensor tempera-
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Figure 11 Sensor recovery for supply air temperature
sensor: 5°C (9°F) offset due to contact with duct
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ture is equal to that of the wall. Figure 11b shows that the failed
sensor can be recovered using the estimated value of the supply
air temperature.

CONCLUSIONS

The objectives of this paper were to describe an architecture
for a two-stage ANN for fault diagnosis and to describe the use
of regression equations for sensor recovery of failed temperature
sensors. The stage one ANN was trained to classify the
subsystems in which faults are occurring, and the stage two ANN
was trained to diagnose the cause of faults at the subsystem level.
The architecture can be extended in a straightforward manner to
consider additional faults such as the faults in the VAV boxes,
which can be accommodated with an additional stage two ANN.
It is likely that this will require the introduction of additional
residuals to the analysis.

To train the ANNS, residuals of system variables were
selected that could be used to quantify the dominant symptoms
of fault modes of operation. Idealized steady-state patterns of
these residuals were then defined for each mode of operation
studied, and patterns adapted from the idealized pattems were
subsequently used for training. The trained ANNs were applied
to simulation data for various faults and successfully identified
each fault or the subsystem of the fault.

A regression equation was used to recover an estimate for
the supply air temperature when the supply air temperature
sensor yields erroneous measurements. Although the agreement
between the actual and predicted temperature signals during
faulty operation was not perfect, the regression model was
adequate for identifying fault modes of operation. It was shown
that the estimates of the sensor measurement can be used for
control purposes.

Future work related to this study will include implement-
ing a method for fault detection that can classify the system
operation as either normal or faulty. The residuals that are used
as inputs to the ANNs could also be used for fault detection by
identifying allowable tolerances for each residual. If the toler-
ances are exceeded, a fault would be detected. Additional
future work includes the implementation of the two-stage
ANN method in real buildings to establish its capabilities,
strengths, and weaknesses.
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