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Preliminary Guidelines for Liquefaction Assessment using Shear Wave Velocity
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ABSTRACT

This paper presents preliminary guidelines for
assessing the liquefaction resistance of soils
using small-strain shear wave velocity. The
guidelines are based on field performance data
from 17 earthquakes and in situ shear wave
velocity measurements at over 40 different sites
in soils ranging from sandy gravel with cobbles
to profiles including silty clay layers.
Additional data are needed from denser soil sites
shaken by stronger ground motions to further
validate the proposed liquefaction potential
boundaries.

KEYWORDS: Building technology; earthquake
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testing; shear wave velocity; soil liquefaction.

1. INTRODUCTION

Currently there is no widely accepted procedure
for assessing the liquefaction resistance of
granular soils using small-strain shear wave
velocity, Vs. A number of V g-based procedures
have been proposed during the past decade.
These procedures were developed from
analytical studies (Stokoe et al. 1988; Andrus
1994), laboratory cyclic triaxial test results
(Tokimatsu et al. 1992), or a limited amount of
field performance data (Robertson et al. 1992;
Kayen et al. 1992; Lodge 1994).

The use of Vg as a field index of liquefaction
resistance is justified since both are influenced
by density, confinement, stress history, and
geologic age. The advantages of using Vg
include:

* Vg can be accurately measured in situ
using a number of techniques such as the
seismic crosshole test, the Seismic Cone
Penetration Test (SCPT), or the Spectral-
Analysis-of-Surface-Wave (SASW) test;

» Measurements are possible in soils that are
hard to sample, such as gravelly soils, and
at sites where borings or soundings may
not be permitted, such as many landfills;
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* Measurements can be performed in small
laboratory specimens, making direct
comparisons between laboratory and
field behavior possible;

* Vg is directly related to small-strain shear
modulus, G nay, a required parameter in
analytical procedures evaluating dynamic
shearing strain in soils; and

*» For large earthquake magnitudes and long
durations of shaking the cyclic shear strain
needed for liquefaction decreases and
approaches the threshold strain in sand
(= 0.02%), thus making it possible to
conduct more analytical evaluations of
liquefaction using V g and G« as basic
parameters (Dobry et al. 1981; Seed et al.
1983).

The two main limitations of using V g to evaluate
liquefaction resistance are the lack of a sample
for identifying non-liquefiable fine-grained soils,
and its high sensitivity to weak interparticle
bonding, caused by aging or cementation, which
is eliminated at large strains. Thus, a limited
amount of drilling and penetration testing should
be performed to identify weakly cemented soils
and non-liquefiable clayey soils.

This paper presents preliminary guidelines,
currently under development (Andrus and
Stokoe 1996), for assessing liquefaction
resistance using Vg. The guidelines are based
on field performance data from 17 earthquakes
and in situ V g measurements at over 40 different
sites (112 test arrays), resulting in a total of 177
liquefaction and non-liquefaction case histories.
The 17 earthquakes are listed as follows.
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Earthquake Magnitude
1906 San Francisco, California 7.7

1964 Niigata, Japan 75
1975 Haicheng, PRC 7.3
1979 Imperial Valley, California 6.5
1981 Westmorland, California 59
1983 Borah Peak, Idaho 6.9
1986 Event LSST4, Taiwan 6.5
1986 Event LSST7, Taiwan 6.5
1986 Event LSSTS8, Taiwan 6.2
1986 Event LSST12, Taiwan 6.2
1986 Event LSST13, Taiwan 6.2
1986 Event LSST16, Taiwan 6.2

1987 Elmore Ranch, California 59
1987 Superstition Hills, California 6.5
1989 Loma Prieta, California 70
1993 Hokkaido-nansei-oki, Japan 7.8
1995 Hyogo-ken Nanbu, Japan 69

2. ESTIMATING LIQUEFACTION
RESISTANCE

The most widely used procedure for evaluating
the liquefaction resistance of granular soils is the
stress approach by Seed and his colleagues
(1971, 1982, and 1985) based on modified
Standard Penetration Test (SPT) blow count.
Following the general format of this approach,
Robertson et al. (1992) developed a procedure
based on modified V.

2.1 Cyclic Stress Ratio

In the stress approach, liquefaction resistance is
related to the ratio of cyclic shear stress to initial
vertical effective stress, called cyclic stress ratio.
The cyclic stress ratio, T4/GC'y, at a particular
depth in a level soil deposit can be expressed as
(Seed and Idriss 1971):

Tav/O'y = 0.65 (amax/g) (Ov/C'v) 14 (1

where T,y is average cyclic shear stress caused
by the earthquake, G'y is initial effective vertical
(overburden) stress, oy, is total overburden
stress, a max 1S peak horizontal ground surface
acceleration, g is acceleration of gravity, and ry
is a shear stress reduction factor. The factor rq
can be estimated by:

rq=1-0.015z ()
where z is depth in meters.
2.2 Modified Shear Wave Velocity
Robertson et al. (1992) modified V g by:

Vsi = Vs (P y/0',)0% ©)
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where P, is a reference stress, typically 100 kPa,
and O'y is in kPa. They chose to modify in terms
of oy to follow the traditional way SPT and
Cone Penetration Test (CPT) data are modified.
The exponent of 0.25 was selected based on
laboratory studies (Hardin and Drnevich 1972).
Equation 3 assumes that the coefficient of earth
pressure at rest equals 1.

2.3 Development of V g-based Charts

Field performance data for magnitude 7
earthquakes are shown in Figure 1. The
occurrence of liquefaction is based on the
appearance of sand boils, ground cracks and
fissures, or ground settlement. For each case
history, the shear wave velocity shown is the
average of values reported for the most
vulnerable layer, and modified using Equation 3.
Since most attenuation relationships are for the
randomly oriented horizontal component of
ground motion rather than the larger of two
horizontal components, the values of a,, used
to estimate the cyclic stress ratios are based on
the randomly oriented horizontal component that
would have occurred at the site in the absence of
liquefaction.

The preliminary liquefaction potential boundary
shown in Figure 1 is drawn to pass through the
origin, include nearly all liquefaction case
histories, and become vertical at higher values of
Vsi. A boundary passing through the origin is
supported by the following relationship between
cyclic stress ratio and Vg; for a line of constant
average cyclic shear strain, Y,y, (Dobry 1996):

TadO'y = f(Yay) V12 @)

A vertical boundary at higher values of Vg; is
justified since dense granular soils exhibit
dilative behavior even at large strains. Based on
engineering judgment, a value of about 280 m/s
is assumed as an upper bound for most
contractive soil types. This potential boundary
is similar to the boundaries proposed by Kayen
et al. (1992) and Lodge (1994) using field
performance data primarily from the 1989 Loma
Prieta, California earthquake.

For earthquakes with magnitude between 5.5
and 8.5, liquefaction potential boundaries can be
formed using all available field performance
data, as shown in Figure 2. The preliminary
magnitude scaling factors used to construct these
boundaries are listed in column 6 of Table 1.
These scaling factors compare well with SPT-
based factors developed in recent years by other
investigators, also listed in Table 1. The
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boundaries for magnitude 6, 6.5 and 7.5
earthquakes shown in figure 2 correctly predict
liquefaction at all sites where surface
manifestations of liquefaction were observed.
The few liquefaction cases that lie slightly below
the liquefaction boundary for magnitude 7
earthquakes are sites where the ground is sloping
and/or where liquefaction may have been
marginal.

It is interesting to note that similar liquefaction
potential boundaries can be constructed using
Vs and apay directly, as shown in figure 3. The
number of non-liquefaction case histories
incorrectly classified in figure 3 is more or less
the same as the number of non-liquefaction case
histories incorrectly classified in figure 2.
Figure 3 suggests that liquefaction will never
occur in any earthquake if the shear wave
velocity in the upper 12 m of soil exceeds about
240 m/s. A similar but preliminary conclusion
was reached by Seed et al. (1983). They
concluded that liquefaction will never occur if
the shear wave velocity in the upper 15 m of soil
exceeds about 366 m/s. The boundaries shown
in figure 3 provide a simpler assessment
procedure than the stress-based approach.
However, their application should be limited to
initial screening of sites with characteristics
similar to the database (depth of most vulnerable
layer less than 12 m, and depth of water table
0.5-7.6 m).

3. CONCLUSIONS

The case histories presented represent a wide
range of soil types, ranging from sandy gravel
with cobbles to profiles including silty clay
layers. Thus, for current use, the preliminary
liquefaction potential boundaries presented in
figures 1 and 2 are recommended for all
liquefiable soil types. Non-liquefiable soil types
include fine-grained soils with clay contents
greater than 15%, liquid limits greater than 35%,
or moisture contents less than 90% of the liquid
limit (Seed and Idriss 1982). The potential
boundaries presented in figure 3 are suggested
for initial screening of sites only where
conditions are similar to the database, which can
be viewed from the figure. Additional well-
documented case histories of all types of soil
that have and have not liquefied during
earthquakes should be compiled, particularly
denser deposits shaken by stronger ground
motions.
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Table 1. Magnitude Scaling Factors Obtained by Various Investigators (modified after Youd 1996)

Moment Magnitude Scaling Factor
Magnitude, Seed and Ambraseys Youd Arango This Paper

My Idriss (1982) (1988) (1996) (1996)

(D 2 3 @ ©)] ©)
55 1.43 2.86 3.26 2.25-3.00 2.75
6.0 1.32 2.20 2.15 1.75-2.00 2.15
6.5 1.19 1.69 1.50 1.50-1.57 1.65
70 1.08 1.30 1.20 1.25 1.25
75 1.00 1.00 1.00 1.00 1.00
8.0 0.94 0.67 0.90 0.75 0.75
8.5 0.89 0.44 0.77 0.62 0.60
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Figure 1. Preliminary Liquefaction Potential Boundary Based on Modified Shear Wave Velocity and
Cyclic Stress Ratio with Results from Magnitude 6.9 to 7.0 Earthquakes.
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Figure 2. Preliminary Liquefaction Potential Boundaries Based on Modified Shear Wave Velocity and
Cyclic Stress Ratio with Results from 17 Earthquakes.
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Figure 3. Preliminary Liquefaction Potential Boundaries Based on Shear Wave Velocity and Peak
Horizontal Ground Surface Acceleration with Results from 17 Earthquakes.
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