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Application Of Chaotic Dynamics To Stochastic Resonance
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Abstract

For a class of systems with a periodic signal and noise, the improvement
of the signal to noise ratio (SNR) achieved by increasing the noise inten-
sity is referred to as stochastic resonance (SR). We show that, for a class of
multistable systems, a chaotic dynamics approach to SR allows the assess-
ment of the effect of the spectral density of the noise on the SNR. Using
this approach, we also show that, for certain systems, the SNR can be im-
proved more effectively by adding a harmonic excitation than by increasing
the noise intensity. The latter result may be used to develope a practical
nonlinear transduction device for enhancing SNR.

Introduction

We examine SNR for multistable system, e.g., the Duffing oscillator

#(t) = —Pz +z — 2° + Aosin(wot + o) + /2DBR(t) + Aasinwat, (1)
where 8 is the damping coefficient, Ao sin(wot + o) is a periodic signal, R(¢)
is Gaussian noise with unit variance and spectral density g(w), D is the
noise intensity, and A, sinw,t is an added harmonic excitation. Classical SR
corresponds to the case A, = 0 (Moss 1992).

If D = 0, the necessary condition for the occurrence of chaos is that the
system’s Melnikov function have simple zeros (Wiggins 1992), that is,

AoSar(wo) + AeSae(wa) > 4873, Sn(w) = V2rxwsech(xw/(2), (2)

where Sye(w) is the Melnikov scale factor. Let w* be the frequency for which
Sufw) is largest. In this work we assume wy € w*. We choose Ag such that,
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for A, = 0, the inequality in Eq.(2) is not satisfied. Motions with parameters
B =0.316, Ao = 0.095 , wo = 0.0632, w, = 1.1, for A, = (0.263,0.287,0.332)
yielded SNR's of (18.9,31.1,22.8), respectively. For A, = 0.263 and A, =
0.287 see Fig.(1). These motions are chaotic with estimated mean rates of
exit from a well v = (0.00629,0.0107,0.0252). For A, = 0.287 the mean
exit rate v is close to the signal frequency v = wo/2x = 0.0101 , and the
energy in the low-frequency broadband portion of the spectrum is depleted,
while the energy at the signal’s frequency is enhanced with respect to their
respective counterparts for A, = 0.263 and A, = 0.332. In our example w, is
close to w* = 0.8 so that the added excitation is effective in inducing chaos.
A choice of w, uninformed by knowledge of the Melnikov scale factor may
not allow the occurrence of chaos conducive to the energy transfer we noted;
e.g., for wy = 2.2 the lowest amplitude for which chaotic behavior with exits
was observed caused a mean exit rate » = 0.152 and a worsening of the SNR.
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Fig.1) Examples of power spectra for D = 0.

Classical Stochastic Resonance

We now consider classical SR; i.e., A, = 0, D > 0. Each realization of
the random process R(t) can be represented as closely as desired by a sum of
harmonic terms with random parameters (Rice 1954; Frey and Simiu 1993).

We assume R(t) has Lorentzian distribution g(w) = y7~3(1 +w?r?)~? cut
off at wpmaz = 1.6; 7 is the correlation time and 7 is a normalization constant
such that var[R(t)] = 1. Examples of averaged output spectra P(w) for
Ao = 0.3, wo = 0.069, B = 0.25 are shown in Figs.2(a-c) for three values of
the power D. Note that Ag < 48/(3Sm(wo); i.e., no chaos can be induced by
the periodic signal alone. However, for the noise realizations used to obtain
the results of Figs.2(a-c), the Melnikov criterion for chaos was satisfied, and
the respective motions were chaotic. In this case also, energy transfer to the
signal frequency occurred when the mean exit rate v for the chaotic motion
was close to vy.
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Fig.2) Averaged power spectra of output for stochastically excited system:
(a-c) increasing noise intensity D and A, = 0; (d) same noise intensity D as
in (a) and A, = 0.23. Noise correlation time 7 = 0.2 in all cases.

Effect of Noise Spectrum

The Melnikov scale factor is a measure of the degree to which a frequency
component can be effective in inducing chaos. We now examine its effect on
SR for noise spectra with the values r = 1, = 0.2, which results in broadband
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Fig.3) Signal to noise ratio vs. noise intensity D for the three noise
correlation times 7.
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noise with almost constant spectral density, and r =13 = 3.0, 7 =1y = 12,
for which the spectra are increasingly peaked near the origin and increasingly
weak elsewhere. The parameter values were Ay = 0.3, wy = 0.069, £ = 0.25.
Fig.(3) shows that the peak SNR decreases and occurs at higher values of
D as the correlation time 7 increases from 0.2 to 12 or, equivalently, as the
bulk of the energy spectra of the noise is further away from w*.

SNR. Improveinent by Adding Harmonic Excitation

It is clear that the greatest effectiveness in increasing SNR would be
achieved by a single component with frequency equal or close to w*®. This
suggests the following method for improving SNR. Assume that 4, = 0,
and that for a set of values Ag, wo, § and D the system has low SNR. We
could improve the SNR by increasing D, as illustrated earlier. However, it
is more effective to increase the SNR by keeping D unchanged and adding
an excitation A, sin{w,t) such that (1) w, is equal or close to w* and (2)
A, is chosen 80 as to induce a chaotic exit rate v comparable to the signal
frequency ¥p. An example is shown in Fig.(2d), for which all parameters
and the normalized spectrum g{w) are the same as for Fig.(2a}, except that
the system is subjected to an added excitation with amplitude 4, = 0.23
and frequency w, = 1.1. This approach to increasing SNR is seen to be
quite effective. The added harmonic excitation induces subharmonics and
superharmonics but these are well separated from the signal and can be
filtered out by a suitable passband filter. We are currently investigating the
development of a nonlinear transducing device based on the method just
discussed. :
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