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ABSTRACT

We describe work aimed at improving procedures for the estimation of non-tomadic
extreme wind speeds, regardless of’their direction, in regions not subjected to hurricanes. Using
the Generalized Pareto Distribution (GPD) approach and the Conditional Mean Exceedance
(CME) estimation method, we analyze 115 17-year to 52-year sets of largest annual speeds and
sets drawn from 48 15-year to 26-year records of maximum daily wind speeds. Based on this
analysis we attempt an assessment of the widely held belief that the Gumbel distribution with
site-dependent location and scale parameters is a universal model of extreme wind speeds. Some
of our results suggest that the reverse Weibull distribution is a more appropriate model. This
would result in more reasonable estimates of wind-induced failure probabilities and wind load
factors than the corresponding estimates based on the Gumbel distribution. However, our
assessment is so far only tentative owing to uncertainties inherent in our results. Future work
based on lower thresholds (larger data samples) and alternative estimation methods is planned.

i



ii



1. INTRODUCTION

Until recently methods for the estimation of extreme wind speeds were based solely on
classical extreme value theory (Gumbel, 1958). Although such methods can be used to obtain
credible estimates of wind speeds with relatively short mean return periods (50 years, say),
questions remain as to their capability to estimate distribution tails reliably.

In the last two decades a novel theory known as the “peaks over threshold” approach was
developed that offers the potential for more realistic estimates of the tails. This would allow the
estimation by statistical methods of wind load factors, which have to date been specified in
building standards on the basis of engineering guesses passed from one generation of standards
to the next. This paper is part of a long-term project aimed at improving estimates of wind speed
distribution tails and wind load factors. The “peaks over threshold” approach rests on the
application of the Generalized Pareto Distribution (GPD) to the excess of the extreme variates
over a freed threshold. For terminology and notations, see Gross et al. (1994).

Unlike classical methods, the “peaks over threshold” approach is applicable to the
analysis of the set consisting of all data exceeding a sufficiently high threshold. In addition, it
is applicable to data taken from sets of epochal extremes (i.e., maxima over samples of fixed
size, such as largest annual wind speeds). According to classical theory, in the asymptotic limit
a set of epochal extremes must fit the tail of one of the three extreme value distributions. ‘I’he
epochal extremes that exceed a sufficiently high threshold must therefore fit the GPD with c> O,
@, orc<O.

We review briefly in Section 2 the expression for the GPD, the GPD-based estimator
used in this work, and the estimation within the framework of the “peaks over threshold”
approach of variates with specified mean return periods. In Section 3 we analyze 115 sets of
observed largest annual wind speeds taken from 17- to 52-year records. Section 4 is devoted to
analyses of sets taken from 4815- to 26-year records of largest daily speeds. Section 5 presents
our conclusions and outlines future work.

2. GENERALIZED PARETO DISTRIBUTION, AND DESCRIPTION OF ESTIMATORS

We review here the expression for the Generalized Pareto Distribution and the
Conditional Mean Exceedance (CME) method for estimating distribution parameters.

Generalized Pareto Distribution (GPD)

The expression for the GPD is

G(y) = Prob[Y < y] = 1-{[1+(cy/a)]-l”} a>O, (1 +(cy/a)) >0 (1)

Equation 1 can be used to represent the conditional cumulative distribution of the excess
Y =V-u of the variate V over the threshold u, given V> u for u sufficiently large; c and a are
distribution parameters. The cases c> O, c=O and c< O correspond, respectively, to Fr&het,
Gumbel, and reverse Weibull (right tail-limited) domains of attraction. For c =0 the expression
between braces is understood in a limiting sense as the exponential exp(-y/a) (Castillo, 1988, p.
215). For c< O the shape parameter of the corresponding distribution is ~=-1/c (Smith, 1989).
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Cumulative Mean Exceedance (CME) Method

The CMEis the expectation of the amount by which avalueexeeeds a threshold u,
conditional on that threshold being attained. If the exeeedance data are fitted by the GPD model
and c< 1, u> O, and a+uc >0, then the CME vs. u plot should follow a line with intereept a/(l-
C) and slope c/(1-e) (Davison et al., 1990). The linearity of the plot is an indicator of the
appropriateness of the GPD model. Estimates of c and a can be obtained from the slope and
intercept of a straight line fit to the CME vs. u plot.

Esthnation of variates with speeitled mean return periods

The mean return period R, in years, of a given wind speed is defined as the inverse of
the probability that that wind speed will be exceeded in any one year. In this section we give
expressions that allow the estimation from the GPD of the value of the variate corresponding to
probability 1- l/(AR), where X is the mean crossing rate of the threshold u per year (i.e., the
average number of data points above the threshold u per year), and R is the mean recurrence
intend in years. We have

Prob(Y < y~ = 1- l/(XR) (2)

1- [1 + cy~/a]-l° = 1- l/(~R) (3)

)’R = -a[l - (AR~]/c

v~= y~+u

(4)

(5)

where VR is the R-year wind speed (e.g., V50=50-year speed) and u is the threshold used to
estimate c and a. For epoeha.1sets consisting of the largest annual wind speeds, h= 1. Note that,
given u, X, c, R and VR, Eqs. 4 and 5 yield the parameter a inherent in the estimation of V~.

3. ANALYSIS OF LARGEST ANNUAL WIND SPEEDS

Table Al given in Appendix A shows estimated values of the tail length parameter, &
The estimates were obtained by applying the CME method to data samples taken from 115 N-
year records of observed largest annual wind speeds adjusted to a 10 m elevation above ground
(17 < N<52). Stations where strong winds are predominantly due to hurricanes were not
included in Table Al. All wind speeds are given by the Weather Service in terms of fastest
miles. For this report, wind speeds have been converted to S1 units (1 mph =0.44704 m/s). In
order to include only the strongest winds in each set -- the winds most likely to approach the
asymptotic condition inherent in the GPD approach --we used the CME estimator based for each
record on a relatively high threshold. We chose this threshold to be equal to the record’s median
wind speed, Vti. All the CME-based results of Table A 1 are based on this threshold. In our
calculations for observed data a wind speed, V, was defined as exeeeding the threshold if
V z Vti, that is, the actual threshold is actually smaller (by an infinitesimal amount) than the
nominal threshold.
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For the threshold V-, the sample average number of exceedances was E(IQ =21, and
E(VJ =50, SD(V4 =6.5 (E and SD denote sample mean and standard deviation). The mean
and standard deviation of the estimated values of c listed in Table Al are:

E(~) =-O.26, SD(@=O.38.
We denote by Vti and Vti+ the speed preceding V- and the speed following V-,
respectively, in the set of ordered speeds of which V~ is the median. Using a threshold V-,
E(n~ =24 and a threshold V~+, E(n.~ = 17, results not listed in Table Al yielded

E(8) =-O.24, SD(8) =0.34
E(C)=-O.27, SD(i?)=O.48,

respectively. For lower thresholds E(Q was found to increase.
The following results were obtained from Monte Carlo simulations. For 500 25-year

samples with mean exceedance rate A= 1 and ~ estimated by the CME method,
E(Q =-0.09, SD(Q =0.27 (population with Gumbel distribution)
E(Q=-O.33, SD(?) =O.24 (population with reverse Weibull distr., ~=-1/c= 1/0.275).
A comparison between the results based on the observed data on the one hand and on the

simulated data on the other would suggest that a reverse Weibull distribution with shape
--0.2) is a more appropriate model than the Gumbel distribution. (Theparame~r 7=5 (c–

Gumbel distribution can be interpreted as the limit of a family of three-parameter extreme value
distributions as the shape parameter approaches infinity -- see proof in Simiu et al., 1986)

Let us now hypothesize, nevertheless, that the Gumbel distribution is an appropriate
universal model of extreme wind speeds, that is, that for every station the true tail length
parameter is c=O. The results of the Monte Carlo simulations just shown indicate a bias of about
-0.1 in the estimation of c, so let us allow for a bias as large as -0.1 in estimating c. Using a
binomial distribution model (with mean n/2 =57.5 and standard deviation (n)ln/2 =5.36), one
would expect that about half of the 115 estimated values of c would be below -0.1. Actually,
77 estimated values (significantly more than half) are below -O.1; this number is almost four
standard deviations higher than the mean, and would kxid to a rejection of the hypothesis that
the Gumbel distribution is a universal model for the extreme speeds. However, this tentative
conclusion may not be warranted. Indeed, each station may have a different true c, and the
sample sizes for the various stations differ. Instead of the average E(i?) for the observed data,
it would therefore be appropriate to consider a weighted average of c, where each weight is
equal to the inverse of the variance of the estimate of c. Standard deviations of these estimates
are listed in Table Al and were obtained by the expression

[E(n-i)]ln[Z(n-i)(yi-interCept -x, ● (slope))2]1n
SD(~) = (6)

(n-3)1n(l +s10pe)2” {[E(n-i)][Z(n-i)xi~-[X(n-i)xJ2}1n

where n is the number of data in the set, x, are the speeds (i= 1,2,.. ,n-1), and y, are CME values
(see Appendix B). The weighted mean of the c estimates, based on these standard deviations,
is close to -0.1, and its standard deviation is about 0,32. Note that the simplifying assumption
implicit in Eq. 6 that the errors in the estimation of y, for various i’s are independent is not
correct, and the standard deviations of the c estimates are actually larger than those given by Eq.
6 by factors that pilot Monte Carlo simulations suggested can be as high as two or even more.
We conclude that owing to the small sample sizes we used, we do not get a sufficiently good
estimate of the weighted average of & and the inference made earlier on the basis of the
binomial distribution cannot be relied upon with confidence.
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A comparison between the tabulated values of CME-based estimated V~’s and values of
the maximum speeds on record, VW, shows that the performance of the CME estimator of VN
is very good. We note, however, that a worse set of VNestimates was obtained, where the CME
method was applied to data samples in which identical speeds were made distinct by addition of
multiples of 0.001. Though the estimates of c were not much affected by this change, this
sensitivity of the CME method appears to cast some shadow upon its dependability.

The CME estimates of Vlm appear to be worse than those of V~: in some cases they
differ minimally from the estimates of VN; in others they can be ridiculously large. We also
show in Table Al wind speed estimates based on the Gumbel model. These were obtained by
the probability plot correlation coefficient method Q?PCC). It is seen that estimates of VNbased
on the Gumbel model are comparable to those based on the CME method.

Table Al also lists CME-based estimated speeds with mean return period 1000OOyears,
+ ~Wm, where the parameter a is based on the CME-based estimated value of V~, as indicated
in the remark following Eqs. 4 and 5, and on a specified c =-0.2.

Load Factors

Let Ru denote the mean return period of the ultimate load. If the wind load predominates
(i.e., no load combination need be considered), the wind load factor is

~ = ~Ru/v50)2 (7)

Table Al lists estimated values of @based on Eq. 7, where VWwas based on the CME estimates
of V~, and V~u,corresponding to asymptotically large &, was based on a parameter a estimated
from V~ by using Eqs. 4 and 5, and the specified parameter c=-O.2 Depending upon the site,
the estimates of 4 vary between 1.24 and 1.68. Their average is @= 1.42, as compared to @= 1.3
specified in the ASCE Standard 7-93 and earlier versions thereof.

Structural Reliability Implications

Consider, for example, the Fresno, CA data set. Under the assumption that the Gumbel
distribution best fits the extremes, for ~= I@ years, ld and 106 years, the estimated wind
speeds are 26, 34 and 38 m/s (59, 77 and 86 mph), respectively (Simiu et al., 1979). Under the
assumption that the reverse Weibull with ~=-1/c= 1/0.20 holds, they are 24, 26 and 27 m/s (54,
59, and 60 mph), respectively. It is seen that the tail is considerably shorter for the reverse
Weibull than for the Gumbel.

Failure probabilities for wind-sensitive structures designed in accordance with U.S.
building code requirements (or safety indices reflecting those probabilities) have been estimated
on the basis of the Gumbel model. Ellingwood et al. (1980) found such estimates to be
substantially higher than for other types of structures. Experience shows that the number of
structural failures caused by non-tornadic and non-hurricane winds is vastly smaller than those
estimates would indicate. One possible flaw of those probability estimates is in our opinion the
fact that they are based on the Gumbel distribution which, as suggested by our results,
overestimates extreme winds corresponding to long mean return periods.

The result that the upper tail of the extreme wind speed distribution is finite would
invalidate the notion that probabilities of failure of a structure subjected only to wind loading,
conditional on the structural strength being sufficiently large, are always larger than zero: if the
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structural strength corresponded to a wind speed larger than the length of the finite distribution
tail, then the conditional failure probability would be zero.

4. ANALYSES OF DATA BASED ON SETS OF LARGEST DAILY WIND SPEEDS

In this section we first analyze data sets that reflect not only extreme winds occurring at
various sites, but also ordinary winds. The analyses are intended to verify whether such sets can
provide information on the @rent population of the extremes. Next, we use a GPD-based
approach to analyze sets of &ta that exceed relatively high thresholds.

Data Selection

that: (1) are relativelyFrom sets of largest daily wind speeds we obtained data samples
large so that sampling errors are acceptably small, and (2) have reduced mutual dependence
among the data. The procedure for obtaining the data is as follows: Partition the set of daily
maxima into small periods of size equal to or larger than the duration of typical storms in days.
(A reasonable choice of the length of the period is eight days, but we also use sets based on
four-day periods, and compare results of analyses based on the two choices.) Pick the largest
value in each period. If the maxima of two adjacent periods are less than half a period apart,
replace the smaller of the two maxima by the next smaller value in the respective period which
is at least half a period apart from the larger maximum. A data set is thus obtained in which
adjacent data are one period apart on the average and never less than half a period apart. We
show below the daily maxima at Boise, Idaho in the first six eight-day periods of the year 1965.
The periods are separated by vertical bars. The data selected by the procedure just described are
in bold type. In the sixth period we underlined the period maximum (26), discarded and replaced
by the next largest value (18) because of the proximity to the larger maximum (31) of the
adjacent period.

23,32,35,20,26,24,24,14 ~ 13,16, 5,11, 5,12,12,7 ~ 6, 6, 9, 9,11,12,25,26 I

15,12,12,7,15,12,29,10 ~ 7,10,15,20,20,17,24,31 ~X,9,16,14,18,16,14,12 ~

Our investigation attempts to ascertain whether sets of data selected by this procedure from a
set of daily maxima could possibly constitute samples from the parent populations of the
extremes. Even though small correlations among data might subsist, we refer to a set obtained
by the selection procedure just described as an uncorrelated data set based on eight-day (four-
day) intervals or, for short, an eight-day (four-day) interval set.

Analysis of Uncorrelated Data Sets

We considered 48 uncorrelated data sets based on eight-day intervals, with length N
ranging from 15 to 26 years. First we analyzed separately the sets of spring, summer, fall and
winter data (seasonal data analyses). Next, we analyzed hG data sets unsegregated by seamns.
In both cases we estimated the best-fitting distributions (i.e., distributions with the largest PPCC)
from among a set of seven distributions or families of distributions (normal, double exponential,
lognormal, Gumbel, Fr&het, Weibull, and reverse Weibull).
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Seasonal dhta sets

Our goal in performing the seasonal analyses was to attempt to fit to the spring, summer,
fall and winter data, respectively, cumulative distributions PW(V),P,(v), P@) and PW(V).Given
these distributions, the distribution for all the uncorrelated data is

P(v) = Pw(v)P,(v)Pf(v)Pw(v). (8)

We analyzed, for each season, 48 sets based on eight-day intervals. According to our results,
for the spring, fall and winter records the best fitting distribution was predominantly reverse
Weibull with shape 4< ~ <30. However, 29 summer records were better fitted by Gumbel
distributions than by the reverse Weibull; the reverse Weibull (for the stations where it fitted the
data better than the Gumbel distribution), and the Gumbel distribution (for the other stations),
yielded estimated speeds with mean return period N years, V~, that in most cases underpredicted
the maximum speed recorded during N years, V=,~. For summer records underpredictions were
15 percent or more for 16 sets, and 8 to 15 percent for 9 sets; there were only two
overpredictions, both less than 8 percent. For spring records there were 12 underpredictions by
8 to 18 percent, and only three overpredictions, all less than 5 percent; comparable results were
obtained for fall and winter. The results did not depend significantly on whether eight-day
interval sets or four-day interval sets were used. From these and additional analyses we
concluded that: (1) inferences from seasonal data sets (obtained as was described earlier from
samples of largest daily data) do not provide a dependable basis for estimating extremes, but are
likely to underestimate the extreme speds. In other words, those sets are not drawn from
populations underlying the extreme winds, but from mixed populations; (2) a similar conclusion
applies to the sets consisting of all largest daily data for each season; (3) for these reasons the
approach embodied in Eq. 8 appears to be inapplicable if all the data of the 8-day interval sets
are considered.

Some researchers have indicated that the Weibull (as opposed to reverse Weibull)
distribution best fits the sets of largest daily data. However, our analysis showed that the
Weibull distribution fitted the seasonal data best only for less than ten percent of the sets.

Daia sets unsegregated by seasons

The analysis of 48 sets based on eight-day intervals showed that the reverse Weibull (with
4< ~ < 22) was the best fitting distribution for 27 sets, and fitted the data better than the Gumbel
distribution for 41 sets. For 25 sets out of these 41 sets, including 12 sets for which it was
optimal, the reverse Weibull underpredicted V_,~ by 8 to 25 percent. For the 48 sets there were
only 4 overpredictions, all smaller than 5 percent. In addition, the availability of largest ~nud
data for periods N1 ranging from 30 to 49 years allowed us to check the predictive capability
of models inferred from sets based on eight-day intervals by comparing the estimated speed with
mean return period N1, V~l, to the maximum speed recorded during an N1-yea.rperiod, VW,N1,
where 30< N1<49. The underpredictions of the N1-year speeds were more frequent and drastic
than those of the N-year speeds. We concluded that estimated distributions of data sets
unsegregated by seasons are too affected by the bulk of the non-extreme data to yield satisfactory
estimates of extremes. Each of our conclusions for data segregated by seasons were found to be
valid for data unsegregated by seasons as well.
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Numerical J%penlnents

The analyses reported in the preceding paragraph showed that even where other
distributions best fitted the data, the reverse Weibull was in most cases very close to being the
best fitting distribution, i.e., its PPCC differed only in the fourth or even fifth significant figure
from the PPCC of the best fitting distribution. We therefore reanalyzed the data based on eight-
day intervals by assuming that the populations for all stations have a single reverse Weibull
distribution with site-dependent location and scale parameters. This was done by calculating, for
each station, the PPCC’S based on the assumption that the shape parameter Y is 1,2,3,...50. For
samples of data based on eight-day intervals and unsegregated by seasons the mean value of the
PPCC’S, taken over all the stations, was largest for ~= 11, and the median PPCC was largest
for ~= 13. This is an indication that a reverse Weibull population with -y= 12 would explain the
results of the analyses. To see whether this is in fact the case, 48 samples of 730 data points
each (corresponding to an 18-year record length based on 8-day intervals) were generated from
reverse Weibull populations with (1) 7=8, (2) ~= 12, and (3) T= 16. The number of simulated
sets for which the best fitting reverse Weibull distribution had shape parameters with v= 12,
13= Y<20, and ~> 21 are shown in Table 1. Also shown in Table 1 are the numbers of
observed sets (average sample size 18 years) with T< 12, 13< T = 20, and Y> 21. The results
of Table 1 suggest that a reverse Weibull distribution with ~ =12 is an appropriate model for
the population of extreme winds representing data based on 8-day intervals unsegregated by
seasons, except for the larger number of samples with ~>21 among the observed samples than
among the simulated samples. We interpret this larger number as reflecting the relatively
frequent presence of outliers among the observed samples. In our opinion this interpretation
reinforces the point made earlier that, because wind speed populations which include ordinary
speeds in addition to extremes are mixed, samples taken from such populations are not a sound
basis for inferences on extremes. It is therefore necessary to “let the tails speak for themselves. ”
This is done by applying to the data the GPD-based “peaks over threshold” approach.

Table 1. Nurnbem of Sets Best Fitted by Distributions with Various Values of y

Simulated sets, y= 8 48 0 0
Simulated sets, ~= 12 27 17 4
Simulated sets, ~= 16 8 24 16
Observed sets 26 12 10

“Peaks over Threshold” Analyses

In carrying out “peaks over threshold” analyses it is tempting to use a relatively low
threshold in order to increase the number of data and thus reduce sampling errors. However,
this introduces in the samples data that are not representative of the extremes and tend to bias
the results. So that this does not happen the threshold being selected should be as high as
possible, without reducing the size of the sample being analyzed to the point where the sampling
errors become too large.
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We selected the largest possible threshold subject to the restriction that the resulting
sample size of the exceedances not be smaller than 15. Based on this selection, the average
number of exceedances for our 48 sets based on 8-day intervals was E(xQ = 16, and the average
threshold was E(V~)=45, that is, less than the average median, E(M) =50, for the largest yearly
speed samples analyzed in Section 3. For these thresholds we obtained E(e) =-0.22 and
SD(8) =0.44. The results were virtually the same for the 48 sets based on 4-day intervals. These
results would appear to lend support to the tentative conclusion of Section 3 that the extreme
winds are described by a reverse Weibull distribution with shape parameter ~ =5, or perhaps
somewhat larger, rather than by a Gumbel distribution. However, the weighted mean of the
estimated c’s, obtained as was shown for the results of Table A1, was close to zero. In addition,
there were about as many estimated c’s larger than -0.1 as there were smaller than -0.1. These
results would suggest that the Gumbel distribution is appropriate. However, given the very wide
confidence bands for our results, we conclude that no statement on whether the Gumbel or the
reverse Weibull distribution is more appropriate can be made on the basis of this analysis.

In principle, the approach inherent in @. 8 may be based on “peaks over threshold”
analyses. However, given that the records at our disposal are relatively short and the number
of data exceeding a sufficiently high threshold for each of the seasons was judged to be too
small, no attempt to perform “peaks over threshold” seasonal analyses was made in this work.

5. CONCLUSIONS

It is currently assumed in engineering loading models that non-hurricane and non-tomadic
extreme wind speeds, regardless of their direction, are described by the Gumbel distribution
(which corresponds to a shape parameter -y=-l/c approaching infinity). The Gumbel distribution
has infinite upper tail. ne objective of this paper was to gain insights into the question of
whether extreme wind speeds can be described by an extreme value distribution with limited
upper tail, that is, by the reverse Weibull distribution.

We used in our analyses observed data, consisting of (a) sets of largest annual wind
speeds, and (b) sets of largest daily wind speeds from which we extracted subsets suitable for
extreme value analysis; and simulated data. Our results appear to suggest that extreme winds are
better described by the reverse Weibull distribution than by the Gumbel distribution. However,
given the small sample sizes used in our analyses, the superiority of one of the distributions over
the other cannot be affirmed with confidence.

The tentative assumption that the extreme wind distributions are reverse Weibull, with
shape parameter T =5 (GPD tail length parameter c =-0.2) and site-dependent location and scale
parameters, yields wind load factors with an average value 4 = 1.4. This assumption, if
confirmed, would invalidate earlier approaches to the estimation of the reliability of wind-
sensitive structures, which depend on an infinite-tailed model of extreme wind speeds and
therefore yield unrealistically high failure probabilities.

The ‘peaks over threshold” analyses were based in this paper on the Cumulative Mean
Exceedance (CME) approach, which appears to be extremely sensitive to whether identical
values of the variate in a set are left identical or modified by the addition to each of a different
number much smaller than unity. Future work aimed at verifying the tentative conclusions of
this paper will therefore include analyses based on different estimation procedures, including the
de Haan procedure (Dekkers et al., 1989). In addition, we plan to perform analyses based on
larger data sets, and more elaborate Monte Carlo simulations, in which the sets of samples
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generated by simulation will have the same sizes as the observed data sets being analyzed, rather
than having a constant size. Finally, investigations are envisaged into the possibility that the
shape parameter of the extreme wind speed distributions is site-dependent. This would be a
departure from current practice, in which it is assumed that extreme winds are described by an
extreme value distribution with universal shape parameter (that is, by the Gumbel distribution,
which corresponds to a GPD tail length parameter c= O), and site-dependent location and scale
parameters.
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APPENDIX A

Table Al. Results of Analyses of Sets of Largest Annual Data

I v. Ivm[ v,- I

Station NVx Va ~ t SD(t)Gum.CME CME CME Gum. c=-.2O +

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

BIRMINGHAM, AL 34 62 44 22
MONTGOMERY, AL 34 77 45 17
TUCSON, AZ 39 78 50 21
YUMA, AZ 39 65 46 20
FORT SMITH, AR 31 64 45 17
LITI’LE ROCK, AR 39724421
FRESNO, CA 37 47 .34 21
RED BLUFF, CA 42 67 49 25
SACRAMENTO, CA 39 63 43 20
SAN DIEGO, CA 48 61 35 27
DENVER, CO ,33 61 48 17
GRAND JUNCTION, CO 33 70 52 17
PUEBLO, CO 43 79 61 25
HARTFORD, CT 44 67 43 28
WASHINGTON, DC 39 66 47 24
ATLANTA, GA 42 76 46 22
MACON, GA 33 64 45 17
BOISE, ID 48 62 47 24
POCATELLO, ID 48 72 53 25
CHICAGO MIDWAY, IL 37 63 46 22
MOLINE, IL 44725225
PEORIA, IL 42 72 50 22
SPRINGFIELD, IL 32 71 54 16
EVANSVILLE, IN 44614723
FORT WAYNE, IN 46695223
INDIANAPOLIS, IN 36 93 53 18
BURLINGTON, IA 23725513
DES MOINES, IA 37 80 56 19
SIOUX CITY, IA 46 88 57 24
CONCORDIA, KS 20 74 56 11
DODGE CITY, KS 41 72 59 22
TOPEKA, KS 34 79 54 17

WICHITA, KS 41 89 57 22
LOUISVILLE, KY 39 66 49 21
PORTLAND, ME 45734623
BALTIMORE, MD 39 71 54 20
BOSTON, MA 50 85 54 26
NAN~CKET, MA 23 71 55 14
DETROIT, MI 46684925
GRAND RAPIDS, MI 29 67 47 15
LANSING, MI 38 67 51 21
SAULT STE MARIE, MI 47 67 46 24
DULUTH, ,MN 36 70 49 19
MINNEAPOLIS,MN 42 82 46 27
JACKSON, MS 29644416
COLUMBIA, MO 35 65 51 20
KANSAS CITY, MO 51 75 49 31
ST.LOUIS, MO 21664614

-0.495
0.442
0.187

-0.701
-0.798
-0.395
-0.204
-0.751
-0.668
0:384

-0.265
0.104

-0.477
iHZ38
-0.325
-0.034
-0.271
-0.099
0.019

-0.128
-0.665
-0.302
-0.199
-0.130
-0.163
0.023

-1.751
0.042
0.063

-0.933
-0.709
-0.180
0.218

-0.085
-0.283
-0.274
-0.126
-1.402
-0.207
-0.930
-0.646
-0.351
-0.310
-0.023
-0.353
-0.103
-0.’116
0.035

0.084
0.022
0.086
0.056
0.158
0.070
0.036
0.115
0.106
0.022
0.112
0.065
0.060
0’.028
0.055
0.030
0.073
0.068
0.157
0.028
0.082
0.075
0.118
0.106
0.063
0.064
0.515
“0.034
0.065
0.188
0.048
0.160
0.056
0.055
0.088
0.078
0.039
0.217
0.091
0.128
0.063
0.059
0.033
0.048
0.073
0.075
0.038
0.075

11

64 62
66 65
76 71
65 66
63 64
72 71
47 46
67 69
62 64
56 50
60 61
67 66
80 81
67 64
67 65
74 72
64 65
62 61
75 71
63 61
72 75
70 72
68 69
63 63
69 70
81 81
69 76
79 77
85 80
73 76
72 75
71 74
83 80
6365
73 70
70 71
84 81
71 73
67 68
69 71
68 69
65 67
69 70
79 72
64 62
6666
74 72
64 62

65
72
79
66
64
73
48
67
62
57
61
70
80
68
68
76
66
62
75
64
73
71
69
63
70
85
69
81
85
74
72
73
86
64
73
71
84
72
67
70
68
65
70
81
66
67
74
70

69 104
1071 117
273 121
68 116
65 113
83 136
59 77
68 114
65 114

584 85
69 93

146 103
85 126
84 109
77 106

134 131
79 118
84 92

132 113
86 97
75 124
82 122
83 110
82 103
88 110

171 151
69 140

155 133
180 132
75 145
73 114
91 128

325 134
87 107
90 122
81 116

119 139
72 128
81 111
71 136
71 110
74 113
81 122

149 127
75 109
89 109

104 120
135 111

81 1.47
95 1.56

103 1.54
83 1.44
80 1,43
97 1.59
59 1.42
81 1.38
78 1.45
75 1.57
72 1.30
86 1.37
95 1.34
87 1.54
84 1.44

101 1.59
84 1.46
75 1.35
94 1.43
79 1.41
90 1.41
89 1.43
83 1.32
77 1.36
85 1.37

113 1.56
80 1.28

102 1.45
110 1.49
89 1.35
83 1.25
90 1.38

110 1.49
77 1.34
97 1.55
85 1.34

109 1.52
85 1.33
82 1.38
89 1.47
83 1.36
82 1.43
88 1.44

108 1.65
84 1.48
81 1.35
94 1.49
89 1.51



I v. IV*I v,- I

StAon N V== V- n= i! SD(i?) Gum.CME CME CME Gum.c=-.2O 4
(1) (2) (3) (4) (5) (6) (7) (8) (9) (lo) (11) (12) (13) (14)

49.
50.
51.
52.
53.
54.
55.
56:
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77+
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
%.
97.
98.
99.

SPRINGFIELD, MO
BILLINGS, MT
GREAT FALLS, MT
HAVRE, MT
HELENA, MT
MISSOULA, MT
NORTH PLATTE, NE
OMAHA, NE
VALENTINE, NE
ELY, NV
LAS VEGAS, NV
RENO, NV
WINNEMUCCA, NV
CONCORD, NH

ALBUQUERQUE, NM

ROSWELL, NM

ALBANY, NY

BINGHAMTON, NY

BUFFALO, NY

LA GUARDIA, NY

ROCHESTER, NY
SYRACUSE, NY
CHARLOTI’E, NC

GREENSBORO, NC

BISMARCK, ND
FARGO, ND

WILLISTON, ND

CLEVELAND, OH

COLUMBUS, OH

DAYTON, OH

TOLEDO, OH

OKLAHOMA CITY, OK
TULSA, OK
PORTLAND, OR
HARRISBURG, PA

PHILADELPHIA, PA

PI’ITSBURGH, PA

SCRANTON, PA

BLOCK ISLAND, RI

GREENVILLE, SC

HURON, SD
RAPID CITY, SD

CHATI’ANOOGA, TN

KNOXVILLE, TN
MEMPHIS, TN

NASHVILLE, TN

ABILENE, TX

AMARILLO, TX

AUSTIN, TX

DALLAS, TX

EL PASO, TX

44 71 49 22 -0.127 0.068
49 84 58 26 -0.051 0.031
44 75 59 24 -0.400 0.078
27 78 57 14 -0.229 0.227
48 71 55 25 -0.241 0.114
43 71 47 22 -0.157 0.050
31 74 61 16 -0.709 0.044
51 104 50 29 0.294 0.054

27 74 61 15 -0.574 0.120
49 70 51 28 -0.191 0.023
20 70 55 12 -0.938 0.362
45 77 55 24 -0.463 0.053
38 63 47 21 -1.102 0.071
46 68 41 23 -0.040 0.038
52 85 56 26 0.139 0.023
36 82 57 18 0.088 0.119
46 68 46 29 -0.086 0.081
35 65 48 18 -0.370 0.081
44 79 52 22 0.463 0.050
33 73 57 17 0.314 0.032
45 66 52 23 -0.717 0.094
45 67 51 23 0.014 0.089
29 65 42 17 -0.481 0.244
50 67 41 25 -0.089 0.073
40 69 58 20 -0.582 0.145
45 100 57 25 0.252 0.032
18 69 56 9 -0.469 0.127
35 69 53 19 -0.224 0.080
30 61 49 15 -1.236 0.106
41 72 52 24 -0.170 0.072
45 82 48 24 0.207 0.050
30 69 53 15 -0.135 0.081
35 68 49 18 0.019 0.107
38 88 49 19 0.268 0.077
38 64 45 19 -0.599 0.087
33 62 47 21 -0.507 0.094
18 60 47 11 4.591 0.132
33 57 44 17 -0.387 0.092
31 86 60 16 -0.182 0.120
43 72 46 22 -0.483 0.069
49 79 59 26 -0.447 0.059
43 70 62 22 -0.341 0.096
35 76 46 18 -0.336 0.066
33 66 50 18 0.007 0.042
21 61 45 11 -0.370 0.369
34 70 45 17 -0.178 0.092
36 100 54 19 0.550 0.047
34 81 62 17 0.201 0.082
37 58 45 19 -0.189 0.057
32 67 48 17 -0.233 0.043
32 67 55 17 -0.187 0.103

68 67

84 81
74 78

77 76

70 71

71 65

74 77

92 81

74 78

70 68

68 70

77 78

63 67

66 63

79 78

81 81

6664

6466

73 69

71 71

66 69
66 65

65 62

62 62

69 72

93 86

68 68

68 69

6064

74 72

76 72

67 67

63 65

80 75
63 65

6364

61 60
56 57

82 82

69 75

80 82
71 73

76 73

66 65
57 58

67 66

79 78

77 78

57 58

65 64

68 67

69

84
74
80

70

72

75

91

76

70

69

77

64

66

78

84

67

65

74

74

66

66
67

62

69

95

71

69

60

75

78

69

65

85
64

64

63

57

84

70

80
72

78

68

59
70

85

79

58

67

69

93 111

130 132
80 125

97 135

81 111

97 105

76 123

640 145

78 130

87 107

69 121

83 129

64 114

116 111

195 124

190 145

95 103

72 115

1049 109

344 113

67 106

105 100
73 112

94 109

71 107

484 151

75 116

81 111

60 l(xi

97 121

308 125

89 105

106 109
503 138

67 114

67 105

65 102

62 89

107 138

76 143

86 132
76 102

93 141

111 109

65 103

94 119

2491 141

214 124

69 91

81 107

82 99

86 1.42
106 1.45
87 1.29
99 1.41
83 1.31
92 1.50
87 1.26

125 1.68
88 1.27
86 1.39
80 1.28
96 1.41
77 1.37
89 1.58
98 1.41

108 1.48
83 1.45
80 1.38
94 1.45
89 1.33
78 1.30
79 1.33
87 1.55
81 1.51
79 1.23

127 1.60
84 1.31
82 1.33
70 1.26
94 1.45

103 1.57
84 1.35
79 1.35

116 1.64
80 1.42
77 1.38
75 1.36
68 1.32

105 1.42
90 1.50
98 1.38
80 1.18

105 1.61
83 1.38
71 1.34
91 1.53

111 1.54
95 1.32
6s 1.31
83 1.41
81 1.28



I VN (Vwl v,- J

station N V.= Vti & t SD(OGum.CMECME CMBGum. c=-.2O +

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.

SAN ANTONIO, TX
SALT LAKE CITY, UT
BURLINGTON, VT
LYNCHBURG, VA
RICHMOND, VA
NORTH HEAD, WA
QUILLAYUTE, WA
SEATTLE, WA
SPOKANE, WA
TATOOSH ISLAND, WA
GREEN BAY, WI
MADISON, Wl
MILWAUKEE, WI
CHEYENNE, WY
LANDER, WY
SHERIDAN, WY

36 80 46 19 0.236 0.041 70 68 73
46 69 49 28 -0.333 0.038 70 69 70
40664423-0.232 0.093 66 63 67
44 53 39 22 -0.750 0.154 52 56 52
33 61 42 20 0.192 0.058 59 56 63
41 104 67 28 -0.250 0.055 105 96 106
21 45 35 12 -0.184 0.018 45 44 47
20 59 43 11 0.027 0.069 56 56 62
47 65 48 24 0.028 0.040 64 64 65
54 86 66 27 -0.290 0.045 86 85 86
36 103 54 18 0.431 0.089 85 82 92
41 75 48 21 -0.516 0.058 75 75 76
42 68 54 21 -0.423 0.059 67 70 67
46 73 61 24 -0.476 0.051 74 76 74
42 80 58 21 -0.621 0.067 77 83 77
44 82 61 24 0.125 0.073 82 80 83

328 123 96 1.55
80 113 88 1.44
84 107 86 1.51
53 94 63 1.37

204 95 79 1.48
130 158 136 1.55
58 72 57 1.37

112 97 77 1.44
111 101 79 1.37
98 128 104 1.34

1408 153 126 1.63
82 134 100 1.54
72 109 79 1.29
77 113 85 1.24
80 142 94 1.35

184 128 101 1.38

MEAN 38.171 .950.420.5 -0.257 (unweighed) 1.42
SD

Key:

Col.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(lo)
(11)
(12)
(13)
(14)

8.2 10.5 6.3 4.5 0.384 (unweighed) 0.10

Notation Description

Station
N
v-
v~

?
SD(Q
V~ Gum
V~ CME
VWcm
V1m CME
Vlm Gum
VI- C=-.2
4

Name of NWS Station
Sample size
Maximum observed wind speed (mph)
Median observed wind speed (mph)
Number of exceeds.nces
Estimated c
Standard deviation of 6
Estimated N-yr wind based on Gumbel model (8 from Col. 6)
Estimated N-yr wind based on CME method (~ from Col. 6)
Estimati 50-yr wind based on CME method (6 from Col. 6)
Estimated 100,000-yr wind based on CME method (3 from Col. 6)
Estimated 100,000-yr wind based on Gumbel model (6 from Col. 6)
Estimated 100,000-yr wind based on CME method (c=-O.20)
Load factor based on c=-O.20

1 m~h = 0.44704 mls.
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APPENDIX B

Estimation of SD of i!

We consider the problem of fitting CM~i = intercept + sIope ● Xi + ~iwhere the V~~M of
~i is proportional to I/(n-i) for i= 1,2,... ,n-1.

GIVEN:

1) S-S Xi, i=l,2,...,n
2) CME values yi, i= 1,2,..., (1)l)

Define “relative variances” vi=(n-i)-l, i= 1,2,... ,(n-1) and ~ = diag (y).

Let ET = [intereept slope] ~T = [xl, ~,..., x,-l] and ~ = ~ XJ (T denotes transpose).

Also, let ~ = [~T V ‘%]-*

=

(All summation

1[
~ (n-i) ~ (n-i) xi ‘1

1~(n-i) x: - ~ (n-i) xi
= (Ssx)-1

~ (n-i) xi ~ (n-i) x? - ~ (n-i) xi ~ (n-i)

are for i=l,2,...,(i)i).)

Here and below, SSX = [ ~ (n-i)] [ ~(n-i)x~] -[~ (n-i) xi]2.

Then the paiameter estimates ~ are given by:

with eovariance matrix U2~;

and ii 2 is (l/(n-i)) (y-zT~)T ~-1 (y-zTlj

= (l/(xl-l)) ~(n-i) (yi- intercept- Slopeexi)’.

Our estimate of 8 is slopd(l +slope); and the estimated standard deviation of the c-estimate is
(1 +slope)-2 times the standard deviation of the slope, or to within a constant (see Draper and
Smith, 1966)

SD(6) =
[Z (n-i)] ‘n [ X(n-i) (yi-hltWCe@-SIOp. xi)~ ln

(n-3)1n(l +slope)2 (SSX)ln
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