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ABSTRACT: We consider a wide class of lightly damped second-order differential equations
with double~well potential and small coin-toss square wave dichotomous noise. The behavior
of these systems is similar to that of thelr harmonically or quasiperiodically driven
counterparts: depending upon the system parameters the steady-state motion {8 confined to
one well for all time or experiences exits from the wells. This similarity suggests the
application to the stochastic systems of a Melnikov-based approach originally developed
for deterministic systems. This approach accommodates both additive and multiplicative
noise, It yields a generalized Melnikov function which is used to obtain (i) a very useful
simple condition guaranteeing the non—-occurrence of exits from a well, and (ii) very weak
lower bounds for the mean time of exit from a well and for the probability that exits will

not occur during a specified time interval

N

1. INTRODUCTION ‘
\

Numerous studies have been devoted,
especially in the last decade, to dynamical
systems driven by dichotomous noise, which
is characterized primarily by whether it is
*on* or "“off," or whether it is "up” or
rdown" (Cohen 1962; Kitahara et al. 1980;
Sancho 1984; Behn and Schiele 1989;
Janeczko and Wajnryb 1989; L'Heureux,
Kapral and Bar-Eli 1989; Irwin, Fraser and
Kapral 1990; Kapral and Fraser 1993; Porra,
Masoliver and Lindenberg 1993; L'Heureux
1993). One example are systems where the
excitation exceeds or does not exceed a
specified threshold — situations described
as "on" and "off," respectively. To our
knowledge, analytical procedures applicable
to systems driven by dichotomous noise are
available only for dynamical systems that
are linear or of first order, or that can
be reduced to a 1linear or first-order
system.

In this note we consider a class of
nonlinear, second-order differential
equations perturbed by a damping term and
dichotomous noise. We present a Melnikov-
based procedure which, given a set of
system parameters, can establish whether
exits from a potential well are possible.
If exits can occur, the procedure can be
used to obtain lower bounds for the mean
exit time and the probability that exits
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will not occur during a specified time
interval,

The Duffing equation belongs to our class
of systems, and 1is considered here for
specificity. We assume that the dichotomous
noise is of the coin-toss square wave type
(Cohen 1963, Porra et al. 1993).

The noise may be represented, to any
desired approximation, by a stochastie
process consisting of the sum of N harmonic
terms with random parameters, where N is
finite, albeit large. Examples of similar
representations of various types of noise
are available in Shinozuka (1971) and Frey
and Simiu (1993a). This representation need
not be carried out explicitly, but can be
invoked to show that the system driven by
the approximating stochastic process may be
suspended in an extended phase space of
dimension N+2, in which it is autonomous
(Beigie, Leonard and Wiggins 1991, Wiggins
1992, Frey and Simiu 1993b). Under certain

conditions, the saddle point of the
integrable system persists under
perturbation in a slice through the

extended phase space. However, the stable
and unstable manifolds emanating from the
persisting saddle point no longer coincide,
as they do on the homoclinic orbits of the
unperturbed system. The distance between
the stable and unstable manifolds of the
perturbed system is proportional, to first
order, to the generalized Melnikov funetion
(GMF). By virtue of the Smale-Birkhoff
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theorem, the necessary condition for the
occurrence of chaos (i.e., the necessary
condition for the largest Lyapounov
exponent to be positive or, equivalently,
for the system to be sensitive to initial
conditions) 1s that the GMF have simple
zeros. In that case the stable and unstable
manifolds intersect an infinite number of
times and form lobes, by which chaotic
transport between wells 1is effected. No
chaotic transport into a well can occur
unless the GMF has simple zeros (Wiggins
1992; Frey and Simiu 1993b). Moreover, for
relatively high damping-to-forcing ratios,
the time needed for a particle to cross a
pseudoseparatrix is on the average equal,
to within a factor of order one, to the
time between successive zeros with positive
slope of the GMF. This observation allows
the estimation of a weak lower bound to the
mean time of exit from a well (Simiu and
Frey 1994). To assess the weakness of the
lower bound an analytical expression is
derived for the relation between a similar
lower bound and the mean exit time for the
case of excitation by white noise.

Section 2 describes the class of systems
to which our approach 1is applicable, and
the noise process. Section 3 describes the
generalized Melnikov function (GMF) induced
by the noise process. It discusses (i) a
CMF~based criterion guaranteeing the non-—
occurrence of exits, and (ii) lower bounds
for the mean exit time and the probability
of no exits during a specified time.
Section 4 includes results of numerical
simulations for non-chaotic and chaotic
stochastic motions, which further
illustrate the usefulness of the necessary
condition for the occurrence of chaos,
Section 5 presents our conclusions.

2. DYNAMICAL SYSTEMS AND NOISE DESCRIPTION
2.1 Dynamical systems

The dynamical systems are described by the
equation

R o= =V (x) + e[76(t) - px] ¢V
where e¢<l and V(x) is a potential function.
The assumptions concerning the unperturbed
system (¢=0) are: (i) the wunperturbed
equations are integrable; (i1) the
potential V(x) has the shape of a double
well, and the unperturbed system has three
fixed points: two centers (one at the
bottom of each well), and a saddle point at
the top of the barrier between the two
wells; and (1ii) the saddle point 1is
connected to itself by homoclinic orbits.
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For specificity we consider the case of
the Duffing equation with potential

V(x)=x*/4—x%/2 (2)

2.2 Noise description

The expression for the dichotomous coin-
toss square-wave noise is

6(t) = 8,  [ar(n-l)]t<ts(atn)t,,  (3)
where n = .,,-~2,-1,0,1,2,.. is the set of
integers, a is a random variable uniformly
distributed between O and 1, a, are
independent random variables that take on
the values -1 and 1 with probabilities 1/2

and 1/2, respectively, and t, is a
parameter of the process G(t).

Note that the process G(t) may be
represented in terms of Heaviside
functions. Therefore, G(t) can be
approximated arbitrarily closely by

substituting for the Heaviside functions

appropriate well-behaved functions, e.g.,
functions of the type

Hy = 1/2+(1/x)tan " (mx) 4)
where m is sufficiently large (Kanwal

1983). Alternatively, normal cumulative
distribution functions with sufficiently
small standard deviations may be used.

3. GENERALIZED MELNIKOV FUNCTION (GMF)

The GMF may be used to obtain a simple
criterion guaranteeing that exits from a
well cannot occur. It can also be used to
estimate a transport—time index. The index
is a lower bound for the mean exit time,
and can be used to estimate a lower bound
for the probability that exits from a well
will not occur within a specified time
interval.

3.1 Expression for the Melnikov function

The GMF is defined by the expression

M(t)=—Bf%2(r)dr+y[h(r)G(t—r)dr (5)

= —~c0

where 1'&. is the ordinate in the x,:‘c phase

plane of the unperturbed system's
homoclinic orbit, and the filter in the
convolution integral of Eq. 5 is h(t) =

X,(-t) (Frey and Simiu 1993b). The theorem
that proves persistence under small
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perturbation of the unperturbed system’s
saddle point requires G(t)
sufficiently smooth. However, in practice
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Fig. 1. Function F(t) for t, = 1.
£
to be F(t)=~Za,(—sech[ (nta)t,~t)+sech[ (n+ta~1)t,~t]}
n=—g
€9)

this requirement may be relaxed. To show
this G(t) may be approximated in terms of
vell-behaved functions, e.g., the functions
H, (Eq. 3), where m is sufficiently large
for the errors in the representation of
G(t) to be negligible. A similar approach
was demonstrated in some detail in (Frey
and Simiu 1993b).

Equation 5 is valid for the case of
additive noise. If in Eq. 1 multiplicative
noise f(x,%)G(t) is considered instead of
the additive noise +G(t), then M(t) is
obtained simply by replacing in Eq. 5 the
filter h(t)=x,(-t) by the filter

hy(t) = X, (-t)E£(x,(-t),k,(~t)) (6)

(Simiu & Frey 1994).
For the Duffing oscillator (Egs. 1 and 2)

X, (t)=(2)V2sech(t) tanh(t) 145
and the GMF is

M(t)=4p8/3 + (2)V2yF(t) (8)

where £ is sufficiently large for the error
due to the assumption that £ is finite to
be negligibly small.

A realization of the random process F(t)
is represented in Fig. 1 for t,~l. For this
case the standard deviation of F(t),
obtained from Eqs. 8 and 9, is op~0.772.
For t,=3.14, 0p=0.962. Note that

M(E)/[()M3y] = F(r) - 48/[(2)Y%y].  (10)

We refer to the left-hand-side of this
equation as the rescaled GMF.

3.2 Criterion guaranteeing non—occurrence
of exits

The area under the curve x,(t) (Eq. 7) in a
half-plane is (2)%2, It then follows from
the definition of F(t) (Eqs. 5 and 8) that
~2<F(t)<2. (The probabilities of occurrence
of noise realizations for which |F(t)|=2



are zero, but they are non-zero for
|F(t)|=~2-5, &§<1.) By the Smale-Birkhoff
theorem, the necessary condition for chaos
is that M(t) have simple zeros. If
B/y > 3/(2)Y% « 2,121, (11)
then this condition cannot be satisfied,
and chaotic transport from one well to the
other cannot occur, no matter how long the
waiting time. Equation 11 is a stability
criterion applied to a fairly complex
stochastic nonlinear differential equation.
Its simplicity, in our view, is remarkable.
We recall that this criterion was obtained
by applying to a stochastic equation a
result of chaotic dynamics theory.

3.3 Lower bound for mean exit time

For sufficiently small ¢ the intersection
with a phase space slice of the stable and
" unstable manifolds exhibits 1lobes whose
ordinates are, to first order, proportional
to the GMF (Wiggins 1992). A line of
constant ordinate 48/[3(2)2y]=0.9428 B/
in Fig. 1 is the zero line for the rescaled
GMF. The counterparts in Fig. 1 of the
entraining lobes (lobes that will cross or
have crossed into the interior of the
pseudoseparatrix) are the small areas
between the zero line of the rescaled GMF
and the positive part of the rescaled GMF.
The counterparts of the detraining lobes
(lobes that will cross or have crossed into
the exterior of the pseudoseparatrix) are
the relatively large areas between the zero
line of the rescaled GMF and the negative
part of the rescaled GMF. (For details on
entraining and detraining lobes see Beigie,
Leonard and Wiggins 1991). For sufficiently
high ratios 8/y the zero upcrossings of the
function M(t) are rare events. We denote
the mean time between those upcrossings by
tw, and view it as a transport-time index.
On average, the time of transport across
the pseudoseparatrix is, to within a factor
of order one, equal to ry. 7y, is smaller
than and is therefore a lower bound for the
mean exit time, r,, corresponding to an
initial position at or near the bottom of a
well.

It is clear from its definition that the
transport-time index is a weak lower bound
for r,. To illustrate this, consider the
case where in Eq. 1 G(t) denotes white
noise with autocorrelation equal to the
Dirac delta function, and ey denotes the
noise intensity. The mean time between
- potential barrier crossings can be shown to
be

7-x.nn"'(lmﬁ/‘)1’2(2/‘7)fexp[‘zﬂ/f‘/VzV(X) ldx
-0
(12)

We assume ¢=0.1, f=0.1, y=0.025,
values 7., =103,

For these

For white noise excitation the GMF can be
defined by considering excitation by a
uniform broadband power spectrum from w=0
to w=we. In the limit of small ¢ and large
we the standard deviation of the GMF is yo,,
where

L]
07%=[5% () dw (13)
[+]

and S(w) is the Fourier transform of h(t)
(Frey and Simiu 1993b). The ratio of the
mean to the standard deviation of the GMF
is then k=81/(vyoz), where I is the value of
the first integral in the right-hand side
of Eq.5. (For the Duffing equation S(w) =
(2)Y3xwsech(mw/2), o7~2(n/3)%%=2.047, and
I=4/3.) The GMF is a Gaussian process, and
the mean upcrossing rate of the threshold k

" is
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Tia,m = @18Xp{cy82/4%) (14)
1/ay=(1/2n) [ fw?$%(w) dw} /[ [52(w) diw] (15)
[+] o

c,~12/(20,2) (Rice 1954). For our parameters
Tue,m=160, & very weak lower bound indeed.

3.4 Upper bound to probability that exits
occur during specified time interval

We assume again that the ratio g/y is
sufficiently high that upcrossings of the
threshold 0.9428 /vy by the function F(t)
are rare events. The probability that no
upcrossing occurs during a specified time
interval T can be written as
preexp(-T/mw,) (16)
Since ry<r.x, Pr is an approximate lower
bound to the probability that exits from a
well will not occur during the time
interval T. For example, let t,=1 and
B/v7=1.9. From Fig. 1 ry,~165. For T=20, Eq.
17 then yields p,~0.89.

4. NUMERICAL SIMULATIONS

Figures 2a and 2b show time histories of
the motion for the Duffing equation excited
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Fig. 2. Realizations of stochastic motions induced by dichotomous noise:
(a) non—chaotic motion; (b) chaotic motion.

by realizations of the dichotomous noise
G(t) with t,~1 (Eq. 3), and corresponding
to the parameters ¢-1, =0.,15, and
B/r=2.13>2.121 (see Eq. 11), and
B/4=0.625<2.121. The motion in Fig. 2a is
confined to one well, as predicted by Eq.
11, and differs from its counterpart in the
harmonically excited Duffing oscillator by
being irregular, a result of the randomness
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of the excitation. The chaotic motion of

Fig. 2b is strikingly similar to chaotic
motions induced by harmonic or
quasiperiodic excitation. Underlying the
commonality of  the stochastic  and

deterministic systems is the existence in
both cases of stable and unstable manifolds
whose behavior, assessed by the Melnikov
distance, controls the system behavior.



Note that, as for the Duffing equation with
harmonic  forcing (Moon, 1987), the
necessary condition for the occurrence of
chaos is helpful in the search for chaotlc
regions even for relatively large e.

Sensitivity to initial conditions (i.e.,
the positivity of the largest Lyapounov
exponent) was verified numerically for the
motion of Fig. 2b.

5. CONCLUSIONS

We showed that, for a class of second-order
bistable differential equations, forcing by
dichotomous noise induces behavior that has
striking similarities with behavior induced
by harmonic or quasiperiodic forcing. For
certain regions of parameter space, both
the stochastic system driven by noise and
the deterministic system driven
harmonically experience behavior that may
be chaotic or non-chaotic. Non—chaotic
behavior precludes the occurrence of exits
from the potential wells. However, if the
behavior is chaotic, exits from the wells
become possible via the mechanism of
chaotic transport by phase space slice
lobes. A necessary condition for the
occurrence of chaos in the deterministic
and stochastic systems is the existence of
simple zeros in, respectively, the Melnikov

function (which 1s a deterministic
function) and the GMF (which is a
stochastic process). This parallelism
suggested extending to our stochastic

differential equations an approach based on
the theory of chaotic dynamics that was
originally developed for deterministic

systems. This approach accommodates both
additive and multiplicative noise, and
yields a remarkably simple criterion

guaranteeing the non-occurrence of exits.
We defined a transport—time index, which is
a weak lower bound to the mean exit time
from a well, and obtained a weak lower
bound to the probability of non—occurrence
of exits during a specified time interval.
We showed that the bounds we obtained are
very weak. In spite of that weakness the
lower bounds may be wuseful in some
applications, particularly for the relative
assessment of the effect on chaotic
transport of various features of the noise.

ACKNOWLEDGMENT

Support for this work by the Office of
Naval Research, Ocean Engineering Division
(Grant No. N00014-0248) is acknowledged
with thanks.

REFERENCES

Behn, U. & K. Schiele 1989. Stratonovich
model driven by. dichotomous noise: Mean
first passage time. Condensed Matter —
Zeitung fiir Physik B 77:485-490.

Beigie, D., A. Leonard & S. Wiggins 1991,
Chaotic Transport in the Homoclinic and
Heteroclinic Tangle Regions of Quasi-
periodically Forced Two-dimensional
Dynamical Systems. Nonlinearity 4:775-
819,

Cohen, A.R. 1962. The Probability
Distributions of the Outputs of First-
Order and Tuned Second-Order Filters with
Coin-Toss Square Wave Inputs. IRE Trans.
on Circuit Theory CT-9:371-377.

Frey, M. & E. Simiu 1993a. Deterministic
and Stochastic Chaos. Computational
Stochastic Mechanics. A.H.-D. Cheng &
C.D. Yang (eds.). Ashurst: Computational
Mechanics Publications.

Frey, M. and E. Simiu 1993b. Noise-induced
chaos and phase space flux. Physica D
63:321-340.

Frey, M. & E. Simiu 1994. Noise~induced
Transitions to Chaos. Proceedings, NATO
Ad d R rch Workshop on Spatio—
Temporal Patterns in Nonequilibrium
Complex Systems. P.E. Cladis & P.
Pallfy-Muhoray (eds.), Santa Fe, April
1993 (in press).

Irwin, A.J., S.J. Fraser, & R. Kapral 1990.
Stochastically Induced Coherence in
Bistable Systems. Physical Review Letters
64:2343-2346.

Janeczko, S. & E. Waynryb 1989,
Bifurcations in Stochastic Dynamical
Systems with Simple Singularities.
Stochastic Pr and Their
Applications 31: 71-88.

Kanwal, R.P, 1983, Generalized Functions:
Theory and Technique. New York: Academic
Press.

Kapral, R. & S.J. Fraser 1993. Dynamics of
Oscillators with Periodic Dichotomous
Noise. Journal of Stat. Phys. 71:61-76.

Kitahara, K. & al 1980. Phase Diagrams of
Noise Induced Transitions. Progress of
Theoretical Physics 64:1233-1247.

L'Heureux, I.L., R. Kapral & K. & K. Bar-
Eli 1989. Noise—induced transitions in an
excitable system. Journal of Chemical
Physics 91:4285-4298,

L'Heureux, 1. 1994. Generalized Rate Law
for Dichotomous Noise—Induced Transitions
in a Bistable System. Proceedings,
Workshop on Fluctuations and Order: The
New Synthesis, Los Alamos, Sept. 1993 (M.
Millonas, ed.) New York:Springer-Verlag
(in press).

Moon, F. 1987. Chaotic Vibrations. New
York: Wiley.

400



porra, J.P., J. Masoliver & K. Lindenberg
1993. Mean-first-passage times for
systems driven by the coin-toss square
wave. Physical Review E 48:951-~963.

Rice, S.0. 1954. Mathematical Analysis of
Random Noise and Stochastic Processes.
Selected Papers on Noise and Stochastic
Processes, N Wax (ed.). New York: Dover.

sancho, J.M. 1984, Journal of Mathematical
Physics 25:354-359.

Shinozuka, M. 1971. Simulation of
Multivariate and Multidimensional Random
Processes. Journal of the Acoustical
Society of America 49:111-128.

simiu, E. & M. Frey 1994. Noise-induced
Sensitivity to Initial Conditions.
Proceedings, Workshop on Fluctuations and
oOrder: The New Synthesis, (M. Millonas,
ed.) New York: Springer-Verlag (in
press).

Voss, R.F., & R.A. Webb 1981. Pair shot
noise and zero-point Johnson noise in
Josephson junctions. Physical Review B
2474477649,

Viggins, S. 1992. Chaotic Tramsport in
Dynamical Systems. New York: Springer-
Verlag.

401



