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PREFACE

It appears that we live in an age of disasters: the Mississippi and the Missouri rivers flood
millions of acres, earthquakes hit Tokyo and California, airplanes crash due to mechanical
failure, and powerful windstorms cause increasingly costly damage. While these may seem to
be unexpected phenomena to the man on the street, they are actually happening according to
well defined rules of science known as extreme value theory. For many phenomena records
must be broken in the future, so if a design is based on the worst case of the past then we are
not really prepared for the future. Materials will fail due to fatigue: even if the body of an
aircraft looks fine to the naked eye, it might suddenly fail if the aircraft has been in operation
over an extended period of time. Extreme value theory has by now penetrated the social
sciences, the medical profession, economics, and even astronomy. We believe this field has
come of age. To utilize and stimulate progress in the theory of extremes and promote its
application, an international conference was organized in which equal weight was given to
theory and practice.

The Proceedings are published in three Volumes. Volume I, published by Klewer Academic
Publishers, contains papers of general interest in extreme value theory and practice. Volume II,
a special issue of the NIST Journal of Research, contains papers deemed by the Committee to
be most directly relevant to NIST’s mission. Volume III (this volume) contains papers selected
for their important contribution to a number of specialized topics. All papers have been
refereed and we are grateful to the many scientists from all over the world for serving as
referees.

The conference was held on the campus of the National Institute of Standards and Technology
(NIST) in Gaithersburg, Maryland, with its Statistical Engineering Division (SED) acting as
host. It was organized by Temple University, Philadelphia, Pennsylvania, and NIST.

The conference had no external funding, and NIST’s support was fundamental to its success.
We are particularly grateful to Dr. Robert Lundegard, Chief of SED, whose support was the
single most important factor in making the conference happen. The support of NIST’s Building
and Fire Research Laboratory is also acknowledged with thanks.

The Organizing Committee consisted of Janos Galambos (Chairman), James Lechner, Stefan
Leigh (Director of Local Arrangements), James Pickands III, Emil Simiu, and Grace Yang.
Stefan’s enthusiasm and tireless work was essential for the success of the Conference.

The Conference included three special sessions:

The Centennial Session for Emil Gumbel. Churchill Eisenhart introduced the Session. His

personal recollections of Gumbel are included in Volume I of the Proceedings. Emil Simiu then
spoke on Gumbel’s life and work.
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The Memorial Session for Josef Tiago de Oliveira. Janos Galambos remembered Tiago, a
close friend to many Conference participants, who was on the initial list of invited speakers.
M. Ivette Gomes gave a detailed account of his work.

The 80th Birthday Session for B. V. Gnedenko. Janos Galambos

summarized the work of Gnedenko as the founder of modern extreme value theory and his
contributions to the central limit problem, limit theorems with random sample size and renewal
theory.

Preceding the Conference, a Short Course was presented. Prof. Galambos gave an introductory
lecture on general principles of extreme value theory, and Prof. Castillo presented a four-hour
course on "Engineering Analysis of Extreme Value Data." Prof. Castillo’s notes were distributed
to all Conference participants.

The Conference was opened by Dr. Robert Lundegard who emphasized

extreme value theory’s role in several scientific and engineering fields. It ended with a panel
discussion on the future of extreme value theory and its applications. The Panel was chaired by
Janos Galambos, and its members were Enrique Castillo, Laurens de Haan, Lucien Le Cam and
Richard L. Smith.

Finally, special thanks are extended to Shirley G. Bremer and Kaye Wade of the Statistical
Engineering Division at NIST, for their tireless and efficient work on preparation for the
Conference, including the typing of the Abstracts volume distributed at registration.

The Editors
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On The Record Values From Univariate
Distributions

Ahsanullah, M.
Rider College, Lawerenceville, NJ

In this paper the basic concepts and properties of the records of univariate continuous distributions
are presented. Inferences about the location and scale parameters of a class of univariate
distributions are given. Prediction of sth record value based on the observed first m ( m < s) record

values are discussed.

1.0 Introduction

Suppose that Xj,Xp,.. is a sequence of
independent and identically distributed (i.i.d.) random
variables with cumulative distribution function F(x).
Set Yy, = max (min){X}, ....Xp}, n > 1. We say X; is
an upper (lower)record value of { Xy, n> 1}, if i >
(9)Y;.}, j>1. By definition, X; is an upper as well
asa fower record value. Thus the upper record values
in the sequence {X, ,>1} are the successive maxima.
For example, consider the weighing of objects on a
scale missing it's spring. An object is placed on this
scale and its weight measured. The ‘needle' indicates
the correct value but does not return to zero when the
object is removed. If various objects are placed on the
scale , only the weights greater than the previous ones
can be recorded. These recorded weights are the
upper record value sequence. Let Xij be the highest
water level of a river on the j th day of the i th
location. If one is interested to study at each location
the local maximum values of Xjj, then the local
maxima are the upper record values.

Suppose we consider a sequence of products that
may fail under sets. We are interested to determine
the minimum failure stress of the products
sequentially. We test the first product until it fails
with stress less than X then we record its failure
stress, otherwise we consider the next product. In
general we will record sets X, of the m th product if

Xy < min(Xy,... Xy 1), m>1. The recorded failure
stresses are the lower record values. One can go from
lower records to upper records by replacing the
original sequence of rv.'s by {X;, j >1} or if
P(Xj >0) = 1 by { /X, i >1}. Unless mentioned
otherwise we will call the upper record values as
record values. The indices at which the record values
occur are given by the record times {U(n)}, n>0,
where U(n) = min{j|j>U(n-1),Xj >XU(n_1),n>1} and
U(1) =1. The record times of the sequence {X; n>1}
are the same as those for the sequence {F(Xp),>1}.
Since F(X) has an uniform distribution, it follows
that the distribution of U(n) , n > 1 does not depend
on F. For a given set of n observations, let Xj n <
Xan<- Xpp bethe associated order statistics.
Suppose that P{ay (Xpn - by, ) < x}

4, G(x)asn—> .- For necessary and suffi-

cient conditions about this convergence for various
distributions see Galambos ( 1987). It is well known,
[Ref. [10], that

m S

P(an (X - b) < 09— Goo Y 25
s=0 '

It can be shown that the right side of the above
equation is the distribution function of the m th lower
record value. Properties of record values of i.i.d. rvs
have been extensively studied in literature, for
example, see Ref. [1], Ref. [13], and Ref. {14], and




Ref. [4], for recent reviews. The conditional p.d.f. f}
of Zym) given Zyp-1) = y can be written as

flc @ =z f2)/ (1- E(y)).
For many distributions including exponential,
Pareto and uniform

E(XU(n)IXU(n_1)=y)=a+by (1.1

for some constants a and b . We will say a rv X with
distribution function F belongs to the class C if its n
th record value satisfy the condition (1.1).. In this
paper, we will consider the record values of random
variables belonging to class C.

2. MAIN RESULTS
RESULT 1.

If the sequence of rvs X1, X», ... , belong to

class C with finite variance, then
Cov ( XtUm) - XU(m)) = bM Var (XU(m))s n>m.
Proof:

E(Xym+2) =EE(Xym+2)!XUm+1)=t)

=EE(a+bt |XU(m) =y)

=E(a+tb(@a+by))

= a+ab+b2 E Xyjm))-
In general
E(Xym) = a+ab+ab2+ abd+ ..+

abn-m-14 pn-m.
bb—n_l n—m
=a———+ b EE(X Jif b=l
o Xu(m))

=(n-m) a+ E(XU(m)) , if b = 1

Thus

COV(XU(m)axU(n)) =pl -M Var (XU(m)), if b#1
= Var( XU(m)) ,if b=1.

The following result was proved by Ref. [12].
RESULT 2.

If the sequence of iid. rvs Xj, X5,... has an
absolutely continuous distribution function F with
support on [c, d), where c is finite and d may be
infinite and has finite expectation. Further we assume
that F belongs to the class C with b> 0 and with

d=ooifb21andd=~—l;liifb>0.
b
a+(b-1)c b

o |

and 1-F(x) =eXa forb=1,
if and only if E(X U(n)| XU(n-l) =y)=a+ by.

Proof:

Writing the conditional expectation of
XU(n) | XU(n-1) =¥) and simplifying we get

d 1-F(x) dx

atby=y+
YTl 10R)

@.1)

Differentiating both sides of the above equation with
respect to y, we obtain

b= (at+ (b-1)y) (fy) /(1- F(y)) 22

Finally integrating (2.2) with respect to y from ¢ to x,
we obtain the result.

For general discussions of result 2 based on
conditional expected values of rv X, see Ref. [7].

It can be shown that for the rv X having the
distribution function as given in the Resuit 2,

E(X) =a + bc and Var(X)

=Mb(a+(b-1)c)2)/(2-b).

For various results of the rv X based record values f
or the case b =1, see Ref. [2] and [3]. The results for
the case b >1 are similar to those for the case b < 1.



In this paper, we will consider the results corre-
sponding to b>1. The distribution function cor-
responding to b > 1 was introduced by Pickands
(1975) in connection to extreme value distribution.

For inference based on record values for the
generalized extreme value distribution see REf. [3].

Let £, be the probability density function of the n
th record value, Xyj(n)- Then

{ b lna+(b—l)c} b

— e ——— n —_—
b-1 a+(b-1)x) b(a+(b-1)cb-!
n(X)= ol ST

(a+(b-1)x) b-1

2.3)
It can be shown from (2.3) that

E(Xy(m) = (1 - DB (2+ (-1 c) -2)

VarXy(m) =

(b-1)2 (a+ (b-1) c)2 bR ((2-b)™-bM).
and Cov(Xym) XUy = b2 Var(Xyy(m))-
We will assume without the loss generality the lower
bound, ¢ of the rv X as zeroand (Y- m)/s= X
then
E(Y)=m+asand Var(Y)=a2b(2-b)ls2
For the finite variance, b must be less than 2.

Let Ty, Tp,.....Tp be the record values of
Y corresponding to X{j(1),

Xu@)--- XU()

It can be shown that
T, = u___+__nu
b-1 -
1 1
where Uy, Uy , ..., Uy, are independent and identically

distributed with

P(Uj<x)=1-x-b/(b-1)

Thus
n

E(Tn)=m+abb 1

and
Var(Tp) =a2(b-1)2b2 { (2-b)2-b0}s2.

Cov(Ty, Tp) =b0m Var(T ) ‘m<n

We can write the Variances and Covariances of T's
as

Var( T, ) =a; b, o’ andCov(Tr,Ts)=
arbg o 3 STSS,

where  a =[(2-b)T-bhb =bT, =12, ..,
and ol=a’@®-1)77
There are other distributions see Ref. [5], for which
Cov(T,,T,) can be factored out as the product of
two factors, one depends on r and the parameters
and the other depends on s and the parameters.
ESTIMATORS OF m AND s.

The minimum Variance linear unbiased estimator
(MVLUE) of 1,6 of m and s are

i=T-

i lomd eyl

2-b il (a-p )it
T,+D7! - Z( - )
i=2

n+l
07 (%57) T“}
where

Do "z‘:‘(z b)‘“ |

i=2




Proof.
Let T '=(Ty, T,.....,Tp), then we can write

E(T) =mL+d o,

L'=(1,1,..1),d =(d},dy, ..dy) and
dj=b"-1,i-12,..n.

It can be shown that
b 2-b i+l
(1—b)2( b )

Vi = 1+2b—b2 (Z—b)i
(1-b* L b

ViHL  yhitl

yon | (2—b)“
-2\ b

Vid =0, if|i-]|>1
Let W; = aL(2-b)b)1/2(Tj-b Tiy), i=1,2,...,n and
Ty=0.

Then Var(W;) =s2 and Cov(W;,W}) =0,
ik 1<ik<n.

Suppose W' = (W1,W»,...., Wp) and E(W) = Aq,
where q'=(m,s)
A'=[A1A2],A1 =(d1,d2,...,dn),A2 =(e1,ez,...,en),

d; =((2~b)/b)i(1-b), & =d; /(1-b),i=

2,3,...,n,d; = (1/a)((2- b)/b)"/2
and Q= adl .

Using least squares estimation method, we get on
simplification
= Tl - a&

oo (5

1 2—b"z‘:1 (2—b)i“
b b

i=2

T1+D

n+l
T +D‘1(%) Tn]

2
,. a’T, »
Var(ji) = (——)o
ORICED

2 2
Var(&)={(?) +(b—;1-) T} 62/D

~ A b-1 2-b) ac?
Cov(u,c)={( b )T— o }bD

where
n i n i+l
T=Z(Q) and D= Z(u) )
i=1 b i=2 b
Let a=2and b= 1.5, then
ﬁ =(17/12) T - (1/4) T -(1/12) T3 «(1/12) T4

and
G =-(5/8) T + (1/8)T + (1/24)T3 +(1/24)T4

The corresponding variance and covariance are

Var(6) = g—% o2 and

Var(G6) = % o? and

~ ~ 4
Cov(u,0) = —-—91- o2



BEST LINEAR INVARIANCE ESTIMATORS
(BLIE)

The best linear invariant ( in the sense of minimum
mean squared error and invariance with espect to the
location parameter m) estimators

f, 6 of p and o are

and 6 = &(1+E22)_1

where [i and G are MVLUE of p and & and

(var(ﬁ) COV(ﬁ,G))zcz(Ell Eu)

cov(ji,6) var(o) Ep Ex
The mean squared errors of these estimators are
MSE (/i) = 6(Ey; ~E}, 1+ E) ™)
MSE (ii) = 6(E;1 ~E2,(1+Eg) ™)

Substituting the values of E1 1, E12, Ep), we get

ﬁ_b{b—1)§—2+b}6.

Db?
T

i

]
(o )

G
and

2 2 _ (1 _ 2
-2 oo

T
2
MSE (6) = a—‘;—[(b —)T-(2-b)]

Withn=4 and b= 1.5, we have

. 2105 37, 37 . 37
H=T020 1 640 2 1920 > 1920

Ty

6=1125 1+ 2 T2+ 3 T3+—3—-T4
1200 160 160 160

127413 3

MSE(ji) =
()="Toso0

MSE(5) = 1262
160

PREDICTOR of T
We shall consider the prediction of Tg based on n
observed record values for s > n.

Let H = (), hy,.., hy), where s2 b =
Cow(T;,Tg),i=1,2,..n and gg= s *1 E(Tg -m). It
follows from the results of Ref. [9] that the best
linear unbiased predictor (BLUP) of T is Ts , Where

1, =ﬁ+éys+H'V’1(T—ﬁL—Y)
Now
HV-1=(0,0,...,bS™) and
T, = +6y+b (T, —1+6v,
=bS BT, +(1-b2MA+(1-b ") 6

The best( unrestricted) least squares predictor of
Tgis Ts "= E(Tg [T}, T2, - Tp)-

Thus

2-n

T: =p+a o +ab?> (T, — )

If we substitute the MVLUE of m and s , then Tg"
becomes T.

Let T, be the best linear invariant predictor of Tg
From the results of Ref. [11] it follows that

127413
10800

MSE(ji) = o2



where
o1y = Cov(8,(1-H'VIL)ji+(y,~H'V ' 8)aé

and
1-H'V 1 -1-bPand y—H'V 18 =y,
Thus

.. 2-b

Ts=Ts_'Ys-n—l;'2—

Considering the MSE of the predictor, it can be
shown that

MSE(T, ) < MSE(T;) < MSE(T;)
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Composite Sampling And Extreme Values

Argon, E.D., Gore, S.D., and Patil, G.P.
The Pennsylvania State University, University Park, PA

Issues in environmental sampling and ecological monitoring can involve extreme values
as the main inferential target, or as a design tool for cost-effective sampling. Although
converitional sampling methods address the problem of estimating the population mean
with a desired precision, classical procedures are not always cost-effective for studies
involving extreme values. In this paper, we review some procedures that allow infer-
ence on sample extreme values based on sample means while maintaining observational
economy. These procedures use a common sweepout method to identify extremely
large sample values when measurements on composite samples are available. These
procedures’ are illustrated with examples in compliance monitoring and enforcement
in hazardous waste site characterization. The effect of the compositing design on the
performance of the sweepout method is also investigated. In conclusion, this paper
highlights the need for an investigation of the statistical properties of the sweepout
method.

Keywords. Compliance monitoring, Composite sampling, Concomitants of order statis-
tics, Extreme values, Higher order statistics, Observational economy, Percentiles, Pop-
ulation mean, Ranked set sampling, Site characterization.

1 Introduction

Issues in environmental and ecological monitor-
ing can involve extreme values as a primary
objective for inference or as a design tool for
cost-effective sampling. For example, compliance
monitoring and assessment of hazardous waste
sites may require both estimation of the mean
and identification of “hot spots.” Choice of the
sampling design must take into account these ob-
jectives as well as resource limitations and any
other practical constraints. Although conven-
tional sampling methods address the problem of

estimating the mean with a desired precision,
they may no longer be cost-effective for inference
on extreme values. In a different situation, avail-
able information on extreme values may be used
advantageously for improving upon the sampling
design. For instance, perceived ranks of sam-
pling units may be used as a sample stratifica-
tion tool, thereby reducing the required sample
size and/or associated cost while maintaining the
desired precision. In another example, it may be
of interest to estimate fish abundance by sam-
pling from known high-abundance sites.



We review some procedures that are based on
composite sampling techniques and address the
issue of identifying extreme sample values when
measurements on composite samples are avail-
able. In Section 2, we discuss a sweepout method
to identify extreme individual sample values from
composite sample measurements. We illustrate
this method with data on PCB concentrations
in surface soil samples. In Section 3, we discuss
the situation where composites are formed using
two orthogonal contours, and composite samples
are formed along each of the contours. In Section
4, we consider the method of ranked set sampling
as a means of improving the composite sampling
procedure. We evaluate the performance of the
sweepout method when the ranked set sampling
protocol is used to form composite samples. The
Armagh site data is used to illustrate the meth-
ods.

1.1 Composite Sampling

A composite sample is formed by mixing several
individual samples or subsamples. The termi-
nology of a “sample” as used here refers to a
physical sample rather than to a statistical sam-
ple. For instance, an individual sample is a sin-
gle grab collected from the sampling location se-
lected for characterization, evaluation, or moni-
toring. Similarly, a composite sample is a mix of
subsamples drawn from several individual sam-
ples. The strength of composite sampling proce-
dures lies mainly in the physical averaging that
occurs due to homogenization of the sample ma-
terial while forming the composites. Composit-
ing, at least under ideal conditions, incurs no loss
of information for estimating population means.
However, the loss of information regarding in-
dividual sample values, particularly the extreme
values, has been an important limitation of the
method. The available choices have been either
to exhaustively measure all individual samples,
or to lose information on extreme individual sam-
ple values.

In section 2, we present a statistical method to
recover extremely large individual sample values

using composite sample measurements and a few
additional measurements on carefully selected
individual samples. Using available composite
sample measurements, this method first identi-
fies constituent individual samples that may po-
tentially have large values. Obtaining measure-
ments on these few individual samples helps re-
cover extremely large individual sample values.
The method is illustrated with data on polychlo-
rinated biphenyl (PCB) concentration in surface
soil samples at the Armagh compressor station
along the gas pipeline of the Texas Eastern Gas
Pipeline Company in Pennsylvania (see Ref. [1]).
Reference [2] consider this problem in the context
of water quality monitoring, where the maximum
pollutant concentration is either an observed
value or estimated from other measurements.
Noting that the cost of extensive and compre-
hensive monitoring is prohibitively high, Ref. [2]
further note that no method exists that will find
the maximum concentration with certainty un-
less continuous monitoring is used. They use the
following assumptions in their method:

1. The process of collecting samples is distinct
from their measurement;

2. The cost of sample measurement is high rel-
ative to that of collection; and

3. The sample values have high positive auto-
correlation.

The method of Ref. [2] first identifies the com-
posite sample having the highest measured value
and then makes measurements on all the indi-
vidual samples that form this composite. The
highest observed individual sample value is taken
to be the predicted value of the overall sample
maximum. Assuming that compositing was done
along the time component, this method is based
on the premise that in the presence of high posi-
tive autocorrelation, the maximum sample value
will tend to appear in the composite with the
highest measurement. The number, and thus the
cost, of tests performed in this method is a con-
stant and is known prior to laboratory analysis.



Under the assumption of no measurement error,
Ref. [1] propose an alternative method that is
certain to identify the individual sample having
the largest value without measuring all individ-
ual samples.

The performance of the sweepout method of Sec-
tion 2 is affected by the compositing design.
In an extreme case, if composites are formed
with heterogeneous individual samples, then the
sweepout method may perform worse than ex-
haustive measurement of all the individual sam-
ples. On the other hand, if composites are inter-
nally homogeneous, then the sweepout method
can be very cost effective. It then remains to de-
termine how one forms internally homogeneous
composites. Four alternatives are discussed in
this paper. First, if a spatial process is known to
be operative on the site to be sampled, then loca-
tional information on sampling locations may be
used to form reasonably homogeneous compos-
ites. We call this situation location-based com-
positing. Second, if two orthogonal contours are
known to exist on the site, then homogeneity
may be achieved by compositing along each of
the contours. In this method, every individual
sample contributes to exactly two composites,
and hence this compositing design is different
from other designs. Third, if information is avail-
able on locations with high values, as is common
with fishing activities, sampling may be concen-
trated only on locations that may yield high val-
ues. In this case, all the individual samples are
expected to return high values, and hence com-
posites formed from these samples are expected
to be homogeneous. Finally, if sampling units
can be compared without exact quantification,
then selected sampling units can be grouped and
ranked, so that composites of sampling units that
are assigned matching ranks will be relatively ho-
mogeneous. This rank-based compositing design
is expected to enhance the performance of the
sweepout method of Section 2. Each of the com-
posite designs is illustrated with data on PCB in
surface soil at the Armagh Compressor Station of
the Texas Eastern Gas Pipeline Company. (See
Ref. [3,4]). 9

1.2 The Armagh Site

Location and Features. The Armagh com-
pressor station is located in West Wheatfield
Township, Indiana County, PA. The site includes
one compressor building along with several other
buildings on 79 acres. There are two known lig-
uid pits. There is one wetland situated within
one-half mile of the site. Richard Run, which
flows to the south of the site, is classified as a
cold water fishery. There are no public recre-
ational facilities near the station. Onsite soils are
defined as being within the confines of the sta-
tion site fencing and are accessible only to Texas
Eastern personnel and authorized site visitors.
Onsite Surface Soil Sampling. Potential
sources of PCB had been identified and a rectan-
gular grid was laid out around each such source.
Four different onsite grids were identified by the
alphabetic codes “A” through “D”. Grid points
were identified by a two-digit row number and
an alphabetic column code. Sampling of the sur-
face soil was done at selected grid points in two
distinct phases. Grid “D” was not sampled dur-
ing Phase I, and as such is not included in the
illustration here.

The distance between consecutive rows as well
as between consecutive columns was 25 feet. Soil
samples were taken from a 0-inch to 6-inch depth.
After removing vegetation, rocks, and other de-
bris, the sample at each grid point was thor-
oughly mixed to obtain a homogeneous sample
for analysis and quantification.

2 Sweepout Method to Iden-
tify Extreme Sample Values

Let z1,Z2,...,%; denote the individual sample
values and let y be the composite sample mea-
surement. Further, let z(;) denote the maximum
of the k individual sample values. That is,

Tk)y = max{zl,zz, . ,:ck}.
Observe that

¥y <z < ky.



This inequality implies that the measurement on
a composite sample gives bounds for the largest
constituent individual sample value.

Now consider two composite samples of sizes ki
and k,, with measurements y; and y3, and hav-
ing the largest individual sample values z,) and
Z(k,), Tespectively. Without loss of generality,
suppose that 43 < yo. In general, this does
not allow for comparison between z(;,) and z(x,)-
However, if k1y1 < y2, then z() < Z(,) and
hence it is no longer necessary to consider the
first composite sample when the individual sam-
ple having the largest value is of interest. In this
way, a number of composites can be eliminated
without any additional testing. This elimination
process leads us to fewer composites which may
possibly contain individual samples that have
large values. Measurements on individual sam-
ples in these composites then help identify the
individual sample having the largest value.
Using this reasoning for identifying the largest
individual measurement we obtain the sweepout
method of Ref. [5] as follows:

1. Identify the composite sample having the
largest measurement, say Ymax, and of size

kmax 4

2. Measure all the individual samples in this
composite and identify the largest individual
measurement, say Tmax-

3. Consider the next largest composite mea-
surement, say y*, on a composite sample
of size k*. If Tmax > Kk*y™ then zmay is
the largest individual measurement and the
search is stopped.

4. If zpax < k*y*, measure every individual
sample in this composite and identify its
largest individual measurement, say z".

5. If Zmax < Z* then Tpay is redefined and as-
signed this new largest value z*. Repeat
from (3) until the largest individual mea-
surement is identified. 10

Reference [5] illustrate the sweepout procedure
with an application to simulated composite sam-.
ple values of PCB concentrations in surface soil
samples at the Armagh Compressor Station. Ta-
ble 1 shows the individual sample values and sim-
ulated composite sample measurements. In this
illustration, Gore and Patil found that only 8
additional measurements on individual samples
were required to identify the largest individual
sample value from among a total of 358 individ-
ual samples. There were 90 measurements al-
ready made on composite samples.

Figure 1 shows a scatterplot of individual sam-
ple values plotted against the simulated compos-
ite sample measurements. The two rays through
the origin indicate the bounds on the largest
individual sample values. Since 4897.5 ppm is
the largest composite sample measurement (com-
posite number 25 in Table 1), constituent indi-
vidual samples of this composite are measured
separately. This identifies an individual sam-
ple with a PCB concentration of 10000 ppm. A
horizontal line at the height of 10000 ppm in-
dicates that there is only one more composite
(composite number 5 in Table 1) which can pos-
sibly contain an individual sample with a PCB
concentration of more than 10000 ppm. Making
measurements on all the individual samples con-
stituting this composite identifies an individual
sample with a PCB concentration of 10700 ppm.
There is no other composite that can contain an
individual sample with a PCB concentration ex-
ceeding 10700 ppm, as is evident from Figure 1
(b). Thus, making measurements on 8 individual
samples constituting two composites has identi-
fied the individual sample with the largest PCB
concentration.

2.1 Extensive Search of Extreme Val-
ues

The sweepout method described above can be ex-
amined further for its cost effectiveness in identi-
fying extreme values. Note that exhaustive test-
ing of all individual samples (without composit-
ing) identifies all individual values. In this case,



Table 1: Individual sample values and simulated composite sample measurements.

Composite Individual Composite Composite Individual Composite
Sample Sample Sample Sample Sample Sample
Values Measurement Values Measurement

01 2.9, 3.1, 22, 22 12.5 46 1.9, 1.6, 82, 390 118.9
02 21, 298, 18, 1880 554.3 47 1.4, 1, 530, 320 2131
03 9.4, 51, 319, 1.0 95.1 48 160, 180, 19, 320 169.8
04 105, 30, 22, 67 56.0 49 5.4,1.7,0.0, 15 5.5
05 18, 2320, 10700, 2960 3999.5 50 7.7, 6.9, 310, 19 85.9
06 38, 2.5, 13, 154 51.9 51 27, 23,21, 5 19
07 1.1, 12, 55, 8.7 19.2 52 7.5, 2.2, 55, 80 36.2
08 13, 1.9, 2.9, 22 10.0 53 7.7, 4.3, 24, 250 71.5
09 129, 12, 44, 22 51.8 54 4.3, 6.4, 20, 33 15.9
10 1.6, 1070, 1.0, 64 284.2 55 436, 9.5, 120. 21, 58 128.9
11 13, 3.8, 3, 6.8 6.9 56 1.5, 160, 180, 1000 335.4
12 13, 3.8, 2.8, 6.9 6.1 57 2.9, 15, 150, 12, 11 38.2
13 34, 28, 745, 3850 1164.3 58 2.9,26,1.2,13 7.9
14 50, 18, 17, 34 29.8 59 24, 2.6, 3.5, 18 12.0
15 4.6, 22, 1.0, 42 17.4 60 3.9, 27, 5.4, 12 12.1
16 14, 3.3, 1.5, 2.6 5.4 61 72,38, 7.1, 35 38.0
17 2.4, 1390, 3, 672 516.2 62 52, 37, 66, 38 48.3
18 8.9, 661, 20, 18 177.0 63 1.3, 2.1, 15, 4.4 5.7
19 18, 24, 26 22.7 64 60, 79, 8.7, 150 74.4
20 3.5, 16, 20 13.2 65 16, 24, 18, 160 54.5
21 97, 70, 14, 150 82.8 66 150, 210, 18, 13 97.8
22 37, 72, 40, 33 45.5 67 26, 7.8, 43, 49 31.5
23 38, 44, 83, 30 48.8 68 46, 24, 18, 12 25
24 38, 100, 140, 47 81.3 69 38, 12, 140, 60 62.5
25 590, 7100, 10000, 1900  4897.5 70 26, 14, 190, 61,33 64.8
26 670, 940, 240, 290 535 71 340, 190, 10 180
27 74, 200, 120, 220 153.5 72 0.0, 0.0, 0.0, 0.0 0.0
28 280, 260, 10, 250 200 73 0.0, 0.0, 0.0, 1.1 0.3
29 44, 110, 660, 230 261 74 1.1, 2.8, 4.2, 6.6 3.7
30 580, 1100, 1300, 4900 1970 75 6.9, 16, 7, 13 10.8
31 110, 80, 210, 12 103 76 11, 13, 6.4, 8 9.6
32 75, 890, 170, 550 421.3 77 0, 236, 7.2, 2.4 61.4
33 2300, 420, 520, 1300 1135 78 5.8, 535, 1.1, 0.0 135.5
34 0.0, 1.2, 1.67 2.5 79 0.0, 1.4, 4.9, 0.0 1.6
35 5.7, 17, 4.3, 36 15.8 80 0.0, 0.0, 5.1, 6.3 2.9
36 28, 170, 10, 62 7.5 81 7.9, 14, 20, 31 18.2
a7 300, 6.4, 53 119.8 82 52, 1, 500, 46 162.3
38 16, 18, 150, 27 52.8 83 16, 5, 36, €4 30.3
a9 6.2, 7.1, 31, 38 20.6 84 40, 38, 68, 7.5 38.4
40 16, 66, 61, 340, 1500 396.6 85 40, 33, 36, 17 31.5
41 1.3, 3.5, 2.1, 8.8 3.9 86 35, 4, 170 52.3
42 7.5, 2.7, 1.6, 11 5.7 87 110, 200, 4.2 104.7
43 0.0, 0.0, 17, 2.8 5.0 88 7.4, 3.3, 21, 2.3 8.5
44 1.1, 5.9, 350, 17 93.5 89 3.8, 35, 20, 17 19.0
45 3.2, 5, 11, 5.1 6.1 90 23, 17, 3, 6.8 12.5

1
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Figure 1: Hlustration of the sweepout method. Individual sample values (Y axis) vs composite sample
measurements (X axis) in thousand ppm. (a) The upper and lower bounds for the largest individual
values. (b) Measurements on individual samples from only two composites identify two largest indi-
vidual values; (c) Measurements on individual samples from only two composites identify the three
largest individual values. (d) Measurements on individual samples from three composites identify the
four largest individual values.
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identification of extreme values is achieved sim-
ply by arranging the individual values in a de-
scending order of magnitude. Thus, the method
of exhaustive testing involves as many measure-
ments as the number of individual samples. For
example, the case of the Armagh site would re-
quire 358 measurements.

In order to investigate the relationship between
the number of extreme values identified and the
number of measurements made, we extend the
sweepout method to all the 90 composites at
the Armagh site. Figure 2 gives a graphical
summary of these results. The concavity of the
curve implies that identification of every addi-
tional extreme value initially requires relatively
more measurements.

As a consequence of its ability to identify indi-
vidual samples having large values, the sweepout
method can also provide estimates of upper per-
centiles of the distribution of individual sample
values. Reference [5] discuss the applicability of
this feature of the sweepout method to compli-

ance monitoring and to quality assurance man-

agement. See Ref. [6] and [7] for more details.

3 Two-dimensional Composit-
ing Design

The Sweepout method discussed above assumed
that every individual sample contributes to ex-
actly one composite sample. If each individual
sample is allowed to contribute to more than one
composite, it is possible to expedite the search
for extreme individual sample values using com-
posite sample measurements. For instance, ar-
ranging the individual samples in a rectangular
array allows us to form composites by combining
all the individual samples in each row to form
row-composites, and all the individual samples
in each column to form column-composites. In
this way, a row-column arrangement implies that
every individual sample contributes to exactly
two, composites, a row-composite and a column-
composite.

For example, consider the situation where 641

3

individual samples-are available, and the prob-
lem is to identify the largest individual sample
value using a minimum number of tests. One
possible method is to form 16 composites, each
of size 4, make 16 measurements on the com-
posite samples, and then apply the sweepout
method. Four additional measurements will be
made for every composite sample selected for
retesting. According to the row-column arrange-
ment described above, these 64 individual sam-
ples could be arranged into a square having 8
rows and 8 columns. This arrangement will
produce 8 row-composites each of size 8 and 8
column-composites each of size 8. Thus there
will be 16 measurements on the 16 composite
samples. Suppose {X;;, ¢ = 1,...,8 J
1,...,8} denote the 64 individual sample values;
{Yi.,i = 1,...,8} denote the 8 row-composite
measurements; and {¥.;,7 = 1,...,8} denote the
8 column-composite measurements. Suppose for
some ©*, Y;x. is the largest row-composite mea-
surement, and for some j*, Y x is the largest
column-composite measurement. Then the indi-
vidual sample in the ¢*th row and the j*th col-
umn is likely to have the largest value. There-
fore, the value of X;x;« is determined by making a
measurement on this individual sample. Having
known the value of X;«j«, it is then possible to de-
termine whether any other individual sample is
likely to exceed X;»;» by comparing the measure-

ments on the other row-composites and column-
composites with X;.;x/s. Note that every retest-
ing stage now involves only one additional mea-
surement, as opposed to four additional measure-
ments in the case of the linear sweepout method
of the preceding section.

We illustrate this procedure with an application
to the Armagh site. For this purpose, we con-
sider only part of the data given in Table 1, so
that we have a square of 8 rows and 8 colummns.
Thus, selecting only the grid points from Grid A
between rows 50 and 57, columns 8 and 15, we
form 8 composites.

As can be observed from Table 2, the row-
composite of row 54 has the largest measure-
ment, while among the column-composites, col-



90

80 1

40

30

T T T r

0 490 80 1;0 1;0 260 240 2;0 3;0 3;0
Figure 2: Number of composites retested (Y axis) vs number of extreme values identified (X axis).
The diagonal line represents the optimal case in which exactly 4 extreme values are identified for every
composite.

Table 2: Row and column arrangement of sampling units for compositing. Here, every individual
sampling unit contributes to exactly two composites.

: Column

Row 8 9 10 11 12 13 14 15 Y. kY
50 3.0 2.9 3.1 1.9 . 1.6 1.4 1.0 2.129 14.9.
51 - 16 22 22 82 530 160 | 138.7 832
52 20 21 298 9.4 390 320 19 320 | 174.7 1397
53 18 18 1880 51 319 105 18 2320 591 4729
54 24 34 1 30 10700 2960 2291 | 13749
55 26 28 745 3850 22 38 2 673 4711
56 50 18 11 87 13 154 89 313
57 17 34 3.8 ' 1.1 12 55 | 20.48 122.9
Y, 21.75 20.56 497 501 237 134.6 1543 785

k;Y.; 174 144 2982 4010 711 1077 10801 5971

14



umn 14 gives the largest measurement. The pro-
posed sweepout method suggests that the indi-
vidual sample in row 54 and column 14 be mea-
sured. This gives a value of 10700 for this partic-
ular individual sample. It is then compared with
the upper bounds formed from the remaining
composite measurements. Since there is no other
composite sample with an upper bound that ex-
ceeds this value, we conclude that 10700 is indeed
the largest individual sample value among the 55
individual samples involved in the above illustra-
tion. Note that it took only one measurement
on an individual sample to identify the largest
individual sample value. Thus, the total num-
ber of measurements required for identification
of the largest individual sample in this example
is 17, with 16 measurements for the 16 composite
samples and one measurement for the individual
sample in Tow 54 and column 14.

4 Compositing a Ranked Set
Sample

For predetermined positive integers m and r,
ranked set sampling (RSS) involves selection and
acquisition of m?r units, of which only mr units
are quantified. First, m random samples, each of
size m, are randomly selected from a population
(with distribution function F', mean p, variance
02, say). The m selected units in each sample
are ranked by a judgement process such as vi-
sual inspection or any other inexpensive method
which does not require actual measurement. The
unit with the smallest rank is quantified from the
first sample, the unit having the second smallest
rank is quantified from the second sample, and so
on, until the unit with the highest rank is quan-
tified from the m-th sample. Thus, m units are
quantified out of the m? units originally selected.
The process is repeated r times, thereby provid-
ing a total of mr measurements which constitute
the ranked set sample. Reference [8] and [9] pro-
vide mathematical formulation for this sampling
method which was introduced earlier by Ref. [10]
as an improvement in simple random sampling
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(SRS) for estimation of mean pasture and for-
age yields. This method is particularly attractive
when quantification of units is difficult or expen-
sive, but ranking of a small set of units can be
done with a reasonable accuracy even without
making measurements.

RSS may be utilized advantageously for forming
internally homogeneous composites as compared
to those based on random groupings. With m
samples of size m, we can form m composites by
physically mixing sampling units on the basis of
their ranks. Likewise, we get mr composite sam-
ples of size m from m?r units. These samples, in
turn, provide mr measurements. The standard
deviation of these measurements is expected to
be smaller than that of the same number of mea-
surements obtained from composites comprising
sampling units selected randomly, m at a time,
out of m?r available units in most cases. For ex-
ample, in the case of 64 sampling units, 16 sets
of size 4 are formed for the purpose of ranking.
These 16 sets are tabulated in Table 3.

The graph in Figure 3 shows the number of mea-
surements (on the Y axis) versus the iumber of
extreme values identified (on the X axis). Here,
the data set of Table 2 is used with three differ-
ent compositing designs. First, the 64 sampling
units were grouped in 16 sets of size 4 each based
on the contiguity of their locations. Thus, every
2x 2 square within the 8 X8 arrangement of the 64
sampling units is used to identify the individual
sampling units for compositing. We call this de-
sign “contiguity-based” compositing. Next, the
8 rows were used to form 8 row-composites, and
similarly for 8 columns. We call this design “row-
column” compositing. Finally, forming 16 sets of
size 4 each, we rank the 4 sampling units within
each set, then form 16 composites from sampling
units that were assigned the same ranks. In other
words, the compositing is based on contiguity of
ranks, rather than locational contiguity, as in the
first case. We call this last design “rank-based”
compositing. It is easily seen that the rank-based
compositing has performed better than the other
two compositing designs. The difference between
the three graphs is due only to the compositing
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design, since the same 64 sampling units are used
in the illustration. For additional references, see
Ref. [11-21].

5 In Conclusion

This paper highlights the need for an investiga-
tion of the statistical properties of the sweep-
out method. The performance of the sweepout
method will be determined by several factors, in-
cluding the autocorrelation structure among the
individual sample values, the statistical distribu-
tion of these individual sample values, and the
compositing plan as well as the composite sam-
ple size. '
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Extremal Sojourn Times For Markov Chains

Arnold, B. C.
University of California, Riverside, CA

Consider a continuous time Markov chain with state space {1,2,3,...}. Since sojourns in
particular states are independent exponential random variables, it is possible to derive the
asymptotic distribution of the maximal and minimal sojourn in a particular state or in any
state. Discrete time analogies are described and the more challenging problem of deriving
the distribution of the extreme sojourn times in a particular group of states in discrete time

is introduced.

1 Extremal sojourns

Consider X(t) a continuous time
Markov chain with state space {1,2,...}.
Assume that the chain is irreducible and
ergodic with intensity matrix @ satisfying

QL=0 1)

and denote the long run distribution by =.
For a particular state i, sojourns in that
state are i.i.d. exponential (—¢;;) random
variables. During a time interval (0,7, a
particular state ¢ will be visited a random
number of times.
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If we let N;(T) denote the number of visits
to state i, it is easy to verify (using results
for delayed recurrent events) that

Ny(T)/T == (—gis)m: - (2)
For more detail see Ref. [1] where the finite
state space case is discussed.

If we use X}’) to denote the jth sojourn
in state i, then our interest is in study-
ing the asymptotic behavior of extremal so-
journ times defined as follows.

max X ()

M(T) = max X

(T) = min X®
mi(T) = Bty %



M(T) = max M;(T)

and

m(T) =

minm;(T) .

To determine the asymptotic distribution
of these random variables, we need a re-
sult of Barndorff-Neilson (Ref. [2]) (which
may be conveniently found as part of The-
orem 6.2.1 in Ref. [3]). It states that
if X;,X,,... are i.i.d. in the domain of
maximal attraction of some distribution A
and if N(T)/T £, § then max;<n(T) X;
has the same asymptotic distribution (with
the same normalizing constants) as does
max;<st X;- We also need the observation
made in Ref [1] regarding the maximum
of heterogenous exponential random vari-
ables. The result in question deals with
two independent sequences X;, X,,... and
Y,,Y,,.... The X;’s are exponential(},)
and the Y;’s are exponential(A;) where A\; <
Az. For ae(0,1) we have

rnax[maxX,, max Y] ~maxX
i{(1=a)n iSan
where =& denotes “has the same asymptotic
distribution”. Finally we recall that the
minimum of m arbitrary exponential ran-
dom variables is again exponential with a
parameter obtained by adding the parame-
ters of the individual exponential variables.

These observations allow us to state the
following results for the maximal and min-
imal sojourn in a particular state.

Theorem 1: For any state :
Am P((—g¢i) Mi(T)—log(—gimii)—logT < z)

=ezxp(—e~*), zeR

20

and
i —a-- ). . =1 — %
Ill_{IgOP(( gi)'mITm(T)< z)=1—¢€?,
z>0.

To obtain limiting distributions for ex-
tremal sojourns in any state, some minor
regularity conditions must be imposed. We
assume there exists a smallest (—g;;) and
reorder the states so that —g;; < —¢qg <

.. With this convention we find

Theorem 2: (A) If for some integer k
and some € > 0 we have

(—qu) = (=g922)"= ... = (—qut) < (—g5)—¢,
Vi>k
then
Ili_ggoP((——qu)M(T )—log( fhlZW: )—log T < z)
=exp(—e™?), zeR.

(B) If the series 3-%2,(—¢i;)?m; is conver-
gent, then

fim PUY(~giriTm(T) < 2) = 1=,

z>0.

2 Matching chains

A more interesting problem involves
the study of two independent Markov pro-
cesses X (t), Y (¢) and identifying the largest



time interval during which X(¢) = Y(t).
In continuous time this is a trivial exten-
sion of the material in the last section. We
can identify {(31,%2) : ¢1 = 1,2,...,ip =
1,2,...} as the state space of the process
{X(#),Y(t)} and we are interested first in
the maximal exponential sojourn in the
state (i,t) for each ¢ and then in the max-
imum of these maxima. As we shall re-
mark in the next section, the study of
long matches between discrete time Markov
chains is considerably more complicated.

3 Discrete time

If we study a discrete time Markov
chain with state space {1,2,3,...} then so-
journs in a particular state are i.i.d. geo-
metric random variables. Maxima of i.i.d.
geometric random variables cannot be nor-
malized to converge in distribution (see e.g.
Ref. [4]). However we can get useful ap-
proximations by using the following obser-
vation. If X is geometric(p) (i.e. P(X =
k) = p(1 —p)* 1, k = 1,2,...) then we
may introduce an exponential (—log(1—p))
random variable whose integer part is iden-
tically distributed with X and consequently
we have

WSX<W+1

and we can bound maxima of X’s by max-
ima of W’s. Ref. [1] provides details in the
finite state space case. Only minor regular-
ity conditions (analogous to those in The-
orem 2 above) are required to extend the
results to the infinite state space case.
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Now, what about long matches between
two independent discrete time Markov
chains? Again we may combine the two
chains X, and Y, to form (X,,Y,) with
state space {1,2,...} x{1,2,...}. However,
now a match occurs when the two dimen-
sional chain remains in the class of states
(1,1),(2,2),.... Sojourns in such classes of
states have more complicated distributions
than sojourns in particular states (which
are geometrically distributed). Exceptions
occur if the chain is “lumpable” without
upsetting the Markov property, but most
interesting examples do not have this prop-
erty.
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Bootstrapping Extremes Of I.I.D. Random
Variables

Athreya, K.B. and Fukuchi, J.
Iowa State University, Ames, [A

Let X1, X2,--- be i.i.d. random variables with common distribution function F. Define
Xpn = max(Xy, Xo,...X,). Assume that there exist a, > 0,b, € R,n > 1 such that
Gn(z) = P{an(Xn:n —brn) < z} converges to one of Gnedenko’s extreme value distributions.
In this paper the problem of estimating Gn(z) by the bootstrap technique is considered.
We define different bootstrap distributions for different types of domain of attraction that
F belongs to. It is shown that both when a, and b, are known and when a, and b, are
estimated from the data the bootstrap distribution is weakly consistent if m=o(n) and it

is strongly consistent if m=o({Z=). These results are applied to the problem of obtaining

logn

confidence intervals for the upper end point of the support of F.

1 Introduction

Since Efron (Ref. [1]) introduced the bootstrap
method of approximating sampling distributions
of statistics, many papers have investigated its
asymptotic properties. One of the desired prop-
erties of this method is the consistency, namely,
the limit of the bootstrap distribution is the same
as that of the distribution of the original statis-
tic. Examples of the situations where Efron’s boot-
strap (the simple random sampling from the orig-
inal data) fail to be consistent are, among others,
the sample mean of heavy tailed random variables
(Ref. [2], [3]), the sample mean of weakly depen-
dent random variables (Ref. [4], [5]), normalized
maximum of i.i.d. random variables (Ref. [6]).

We study asymptotic properties of bootstrap for
the distribution of normalized extremes when the
underlying distribution belongs to the domain of
attraction of an extreme value distribution.

!Research supported in part by NSF Grant DMS 92-
04938, 1991 Mathematics subject classification 62G05 62G30
Keywords and phrases: extremes, bootstrap.

In Section 2, we investigate the inconsistency,
weak consistency and strong consistency of boot-
strappng @, (Xn.n — bs) with appropriate choice of
resample size m=m(n) when a, and b, are known.

In Section 3, the same problem as in Section 2 are
investigated when a, and b, are unknown. In Ref.
[6], it was pointed out that the naive bootstrap of
the maximum of uniform i.i.d. random variables
with m=n fails to be consistent. In Ref. [7], it was
shown that when F belongs to the domain of attrac-
tion (in the sense of extremes) of one of the extreme
value distributions, the bootstrap distribution of
maximum converges to a random distribution. Re-
cently, Deheuvels, Mason and Shorack (Ref. [8])
proved the weak consistency and the strong con-
sistency of bootstrap for the normalized maximum
when normalizing constants are estimated. They
utilized von Mises’s parameterization of extreme
distribution and thus their method does not need
the knowledge about which type of domain F be-
longs to.

Results in this paper were obtained indepen-
dently of Ref. [8] and our approach is different
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from theirs. We define different bootstrap distri-
butions for different types of domain of attraction,
so in practice we need to know which type of do-
main F belongs to. But our version of the boot-
strap distribution is more appropriate when infer-
ences for population parameters such as obtaining
confidence intervals are concerned.

2 Limits of bootstrap distribu-
tions : when normalizing con-
stants are known

We begin with a review of basic results from ex-
treme value theory. Let Xi,Xa,---, X, be iid.
random variables with a common distribution func-
tion F and X1.n < Xoin < -+ £ X be the cor-
responding order statistics. Let F~!(u) := inf{z :
F(z) > u} be the left continuous inverse of F and
Cg be the set of continuity points of a function
G. We say that F' € D(G) if there exist constants
a, > 0,b, € R and nondegenerate distribution
function G such that

P{a;I(Xnm —by) <z}~ G(z) Vze Ce. (1)

It is known (cf. Ref. [9]) that G must be one of the
following types. (up to location and scale changes)

G(z) = A(s) = exp(—¢™®) z € R,

=801 { Ly 258

_ _ (—(=2)*) =<0

where a > 0.
In (1), @n,b, can be chosen as follows: (cf. Ref.

E))

FED(A): an=F 1= =)= ba=1m
FeD(®): =7, bn=0 ,
FeD(¥,): an=0F—"n, b, = 0p,

where qn = F1(1-1) and 0f := sup{z :
F(z) < 1}.
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Let (Q,F,P) be a probability space and let
X1, X2,--+, be a sequence of i.i.d. random vari-
ables on (£, F) with a distribution F€ D(G) where
G=A or &, or ¥,. Let m = m(n) € N be
such that m(n) — oo as n — oo. Given X, :=
(X1, Xo,+++, Xn), let Y1,Y5,- - Y be conditionally
i.i.d. random variables with the distribution

1
P(Y; = X;|X,) = =

’
n

j= 1)27"'777',

ie. (Y1,Ys,---,Yn) is a ii.d.resample of size m
from the empirical distribution of X,,. Let Y1, <
Yom < -+ < Ypum be the corresponding order
statistics. Now, define

Gn(z) =
Hpm(z,w)

P(ay_,,l(Xn:n - b'n) < l‘),
P(ay_nl(Ym:m - bm) < a:an),

for w € Q and call H, m(z,w) the bootstrap distri-
bution of a;!(Xn:n — br). The first subscript n of H
represents the original sample size and the second
subscript m of H represents the resample size. The
next theorem shows that if m=n, H, m(z,w) has a
random limit and thus the naive bootstrap fails to
approximate G(z). Let PRM(u) denote a Poisson
random measure with mean measure u(-).

Theorem 1 Let F € D(G) where G is an extreme
value distribution and let a, > 0, b, n > 1 be such
that (1) holds. (i) If G = A, then for any z; € R,

i=1,---,7,

(Hpn(@i,w),i = 1,2,-+,7)
4 (H(zi,w)yi=1,2,---,7), @)

where
H(:taw) = exp(—T((a:, oo),w)),

and T(-,w) is a PRM(p) on B((o0,0]) (B((o, ])
denotes the Borel o-algebra on (00, 0).) with

u(B) = /B ecds VB e B((c0,0)). (3)

(i) If G = @, then for any z;>0,1=1,---,7,

(Hn,n(IE{,w),i =1,2,--, 7')
—d) (H(zHW),iz 1,2’--.’1-)’ (4)



where
H(z,w) := exp(-T((z, ), w)),
and T(-,w) is a PRM () on B((0, 00]) with
w(B) = /B z=%dz VB € B((0,00]). (5)
(ii1) If G = ¥, then for any z; <0,i=1,---,r,

(Hn,n(l'i,CU), 7= 1’2, .. ',7‘)
_d> (H(x,',w),i = 1’ 23 ) T')’ (6)

where
H(m,w) = exp(—T((z,O],w)),
and T(-,w) is « PRM() on B((=0,0]) with
WB) = [(-ayds VB eB(-w,0). (7)

Proof. We can write

Hn,n(xaw) P{agl(Yn:n - bn) < x|Xn}
Fl(anz + b,)

= {1 oSl

n

For (i), define a point process T, on (—o0, 0] by

n
T.= Z €ar ! (Xi—bn)
k=1

where ¢, is the delta measure at a. Then, by
corollary 4.19 of Ref. [10], T, converges weakly
to a PRM(u) where p is given by (3). Therefore
the continuous mapping theorem gives the result.
Proofs for (i) and (iii) are similar. a

We note that the condition m = n is not neces-
sary for the above results to hold. Evenifm/n — ¢,
0 < ¢ < o0, results similar to Theorem 1 hold.

Theorem 1 can be easily extended to the boot-
strap for the joint distribution of a;!(Xp.n — by),
a;l(Xn—lm - bn)a Tty ar-,,‘l(Xn—r+1:n - bn) Now de-
fine

K:= {(kl’...’kr_l):kizo’iz 1,-..’7‘_1,

k1+k2+"'+kj Sj3j=1)2""’7_1}’

and forzy > 29> --- > z,,
FT(z17"'7zT) =

(log G(z) — log G(x2))"
Z ™ e

(k1,kr—1)EK
(10g G(r-1) — log Gz )b

k!
It can be shown that (cf. Ref. [11] for the case

r=2) if (1) holds for some nondegenerate distribu-
tion function G, then

G(z,).

P{agl(Xn:n —bn) < xlyagl(Xn—lzn“bn) < zg,---,

a; ' (Xnorg1m — by) < 2}
— F(z1,---,z,).
However, we have
Theorem 2 Suppose that (1) holds. Then

P{a;I(Yn:n - bn) < zl,a;I(Y —l:n — bn) L xg,0-

a;l(yn—r+1:n - bn) S x,IXn}

LOES (T(me);l’—;’(rh‘*’))k’....

(kh"',kr)GK

(T(zr,w) = T(zy-1,w))kr=

e—T(z,,w)
2
Erql

where T(-,w) is a Poisson random measure given
in Theorem 1 and T(z,w) = T((z,00),w) by defi-
nition.

But suitable choices of m make the bootstrap con-
sistent.

Theorem 3 Suppose that

m(n)=o(n),

sup I Hn,m(n)(x,w) - G(z) I_’ 0, (8)
zeR

(1) holds. If

in probability. Moreover, if 322, Am < oo,
V0 < A < 1, then (8) holds w.p.1 . (w.p.1 stands
for “with probability 17.)



Proof. We will write m=m(n) for convinience. Let

1< - o
Fo.(z):= - ;I(_oo,z](X ;) be the empirical distri-
bution of X1, X2, -+, Xn. Then

Hpm(z,w) = Fl(emz + bm)
_ {1 5 m(1 — Fp(amz + bm))}m
= — ,

and

m(1 ~ Fa(am2 +bn))

I

%n(l — Fo(am + b))
m
= ?Tn,m (say).

Let p := 1 — F(am2 + bm)- Then (1) implies that
mpm — ¢(z) = —log G(z). Thus

m
E(;Tn,m) = mp,, — ¢(z),

m m
—dnm)= m 1—-pm)— 0.
Var(nT,) nmp( pm) — 0
Therefore
m(1 = Fp(ame + bm)) — c(z)
in probability Vz € R. Hence

Hn,m(n)(sz) - G(z)
in probability Vz € R.

Since ZTpm = B(Tam — npm) + mpm and
mpm — c(z), we need show that 2(Tom— nPm) —
0 w.p.1 to prove that 2T m — ¢(z) w.p.1. By the

Borel Cantelli lemma, it is enough to show that

o0
Wl —’;—‘(Tn,m —npm) > ) <0 Ve>O.

n=1

Let o (6) = pme® + (1 — pm) be the moment gen-
erating function of Bernoulli (pm) distribution.
Then V@ > 0,

m m
~ log P(—;(Tn,m — Ppm) > €)

1

= log P(!Tnm=mpm) > fRE)  (9)

< % log e‘eﬁ‘E(ea(T“”’"’"p'"))
= —fc — Ompy + log om(9)™
— —fe—0c(z)+ log(ec(”)(eo'l))

Il

e +c(z)(f —1-0)
f(6,€) (say).

Il
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By taking the derivative of f(8,¢), we can show

that Gg(€) := log(c: e) minimizes f(8,¢€). Let
ct+e€

0(6) = £(B0,9) = —(e+ ) log(o) + €

Then
g(0+)=0

and

e = 1 —log(ETE) - 11

g0 = 1-log(*I)~ (c+ )z

= —log(ct€)<0, Ve > 0.

Thus g(€) < 0,Ve > 0. Define
m —8o(e) Ze 6o(€)(Tn—nPm)
gn(€) = ;—loge o(e) e B(efole)In—nPm)),

then gn(€) — g(€). Let 8 = o(¢) in (9), then

oo
m
Z P(—(Tam — nPm) > €)
n=1 n
0
z elogP(-’&(Tn,m—ﬂPm)>‘)
n=1
0
< Z em9n(9),

n=1

Given € > 0, 36, > 0 such that g(e) + 6. < 0 and
3N, € N such that gn(€) < g(€) + 8¢,¥n > Ne.
Therefore

)
Z e’:‘,gn(f) =

Ne-1 )
T eond 4 3 ehonld

n=1 n=1 n=N¢
Ne-1 0
< Z e',',‘jgn(f) + Z e,—':.'(g(‘)+6c)
n=1 n=Ne
< oo (by assumption).

[o o}
m
Hence ) P(—E(Tn,m — npm) > €) < 0, Ve>0.
n=1
By a similar reasoning we can show that

o 0]
3 P(-’S-(T,,,m —npm) < —€) <0, Ve>0. O

n=1



3 Limits of bootstrap distribu-
tions : when normalizing con-
stants are unknown

Suppose that assumptions on Xj, X3, -+, X, and
Y1,Y2,---,Y,, given in section 2 hold and sup-
pose that a, and b, are unknown. Let dn
and 5,,, are estimators of a,, and b,, based on
X1,Xa, -+, Xn. Now, define the bootstrap distri-
bution of a;!(Xn.n — bs) With estimated normaliz-
ing constants by

Hym(z,0) = P(5} (Ymem — bm) < 2|X0).

The same choice of m(n) as in the case of known
normalizing constants gives the same results on the
consistency of Hy m(2,w) if @m and by, are correctly
chosen as shown in the next theorem. Let &, = [Z]
and k,, = (=]
Theorem 4 Assume that Fe D(A). Define

. - 1 _ 1

am = Fnl(l— %)'—Fn](l _E)
‘X'n.—k,'1 n

1
Fn_l(l - E) = Xn—knm-

- Xn—kn:m

~

bm
If m=o(n), then

sup | I?n'm(z,w) - A(z) |- 0, (10)
zeR

in probability. Moreover, if > o2, Am < 0,
Y0 < A < 1, then (10) is true w.p.1 .

Theorem 5 Assume that F€ D(®,). Define

1
drn, = Fill-2)= n—knins
a e
bn = 0.
If m=o(n), then

sup | Hym(z,w) — ®alz) |— 0, (11)
zeR

in probability. Moreover, if ¥.2, Am < oo,

Y0 < A< 1, then (11) is true w.p.1 .
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Theorem 6 Assume that F€ D(¥,). Define

‘ _ 1
aQm = 0}:‘" - Fn 1(1 - ‘E) = Xn:n - X’n——kn:ns
Bm oF,, = Xn:n-

If m=o(n), then

sup | f{n,m(a”“’) — ¥o(z) |- 0, (12)
zeR

in probability. Moreover, if 3 72, Am < oo,

V0 < A < 1, then (12) is true w.p.1 .

Note that the result of each of the above theorems
implies that

sup | ﬂn,m(z,w) — Gp(z) |- 0,
zeR

in probability if m=o(n) and w.p.1 if 372, Am <
00, V0 < A < 1. Therefore fIn,m(x,w) approxi-
mates G, (z) uniformly when n — oco. Note also
that m=o(ﬁ—1—z) is sufficient for ) o2, Am < 00,
Vo< A<,

The following theorem shows that the joint dis-
tribution of a; (Xpm — br), a7 (Xn—1:n — bn),
-, a7 (Xp—r41:n — by) can be bootstrapped suc-
cessfully.

Theorem 7 Assume the hypothesis on F and
choose @, and by, as in Theorem 4,5,0r 6 accord-
ing to the domain of attraction F belongs to. If
m=o(n), then

sup | P{&;I(Ym:m“‘am) S zlyé;zl(ym—lzm—gm) S I2,

Tty afr—nl(Ym—r+1:1'n. - i’m) < 2:.,~|Xn}

- F(z1,--+,2,) |— 0, (13)

in probability, where supremum is taken among ev-
ery x; > -+- > .. Moreover, if ) ooy Am < 00,
V0 < A < 1, then (13) is true w.p.1 .

Theorem 7 and the continuous mapping theorem
gives the following.

Theorem 8 Assume the hypothesis on F and
choose @, and b,, as in Theorem 4,5,0r 6 accord-
ing to the domain of attraction F belongs to. Let



f : R" — R! be continuous a.e.

F.(-,---,"). If m=o(n), then

sup I P{f(&_l(ym m"b ) A—I(Ym—-lm
yeR!

with respect to

m),...,

ar—rz.l(Ym—r+1:m - bm)) < ylxn}
~P{f(a7" (Xnn = bn), 03" (Xn-1:n = bn), -+
0, (Xn—rp1n — b2)) <y} =0,  (14)
in probability. Moreover, if 3 o0 A < o0,
Y0 < A< 1, then (14) is true w.p.1 .

Corollary 1 Assume that Fe D(¥,). If m=o(n),
then

m — Xnn

sup|P( < z|X,)
zeR mm"'Ym— 1:m
Xnin — OF
—P(————<Lz)|—-0, 15
(Xnn_Xn—ln ) (15)

in probability. Moreover, if Y2, Am < oo,
Y0 < A< 1, then (15) is true w.p.1 .

Confidence intervals for 8 based on the asymp-
totic distribution of (Xn.n — 0F)/(Xnin — Xn-1:n)
were considered by Ref. [12]. We apply above
corollary to approximate the critical points of
P((X'n:n - oF)/(Xnn - Xn—l:n) < 17)~ Let

Ym:m - Xn:n

Ym:m - Ym—l:m ’

R, =
First we obtain a large number, say N of bootstrap
replicates of size m(n) from F), (the empirical dis-
tribution of X3, X5, - - -, X,,) and then compute R, ;

fori=1,2,---, N and set

nm(z

N < EI(-OOII ni)-

As N — oo, HN =(z) approximate P(R, < z|X,)
which is close to P((Xpin —0F)/(Xnin — Xn—1:m) <
z) when n — oo. Thus a 100(1 - )% approximate
confidence interval for 6z will be

(Xn:n - Xn—l:n)a
Xpm — Tr,m (Xnm - Xn-l:n))7

where 7, ,, and 7, 1_,, are chosen such that

Tn,1-n2 (Xn:n -

) N
Hyj:{m(rn,m) =" Hn,m("n,l—nz) =1-

where

72,

7h>0, 772>07 7]1+’72='7-
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4 Conclusions

The proofs of the results in section 3 are in Fukuchi
(1994). We are currently working on extending the
present work to the case of stationary sequence of
random variables under appropriate mixing condi-
tions. Also some simulation work is in progress to
assess the role of the resample size m(n). We are
grateful to Professor S. Lahiri and A. Vidyashankar
for several useful discussion and comments.
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Extr»em'e Analysis Of Wave Pressure And
Corrosion For Structural Life Prediction

' Ayyub, B.M.
University of Maryland, College Park, MD

Extreme analysis can be used in structural life expectancy assessment. In this paper, extreme
analysis was used for this purpose in two aspects of life expectancy assessment. These aspects
are (1) extreme wave pressure prediction, and (2) extreme corrosion estimation. Then, they were
used in a time variant reliability assessment formulation of a marine structure. The result is the
reliability of a structure as a function of time, which can be viewed as the cumulative distribution
function of structural life. The presented methodology was performed in an effort to assess the
life expectancy of patrol boats. In the applications discussed in this paper, the underlying parent
distribution in the extreme value analysis was assumed to have an infinite exponential tail. This
assumption can significantly affect the resulting extreme value distributions and assessed
structural reliability levels. In dealing with waves or corrosion, the tails are limited based on the
physics of both problems. The former is limited by the hydrodynamics of waves, and the latter is
limited by the size of a corroded element. The effects of limiting the tails of parent distributions

on the results of these applications require further investigation.

1. INTRODUCTION

The factors that affect the life of a structure include
design parameters, design safety factors, design
methods, type of structure, structural details,
materials, construction methods and quality, loads,
maintenance practices, inspection methods, and other
environmental factors. These factors have different
types of uncertainty that can be classified as: (1)
physical randomness in magnitude and time of
occurrence, (2) statistical uncertainties due to using
limited amount of information in estimating the
characteristics of the population, (3) model
uncertainties due to approximations in the prediction
models, and (4) vagueness in the definition of the
factors, system and/or assessing their/its effect on
life. Therefore, the estimation of life expectancy is a
complex process. Because of the stochastic nature of
many of the uncertainties, a probabilistic approach,
as opposed to a deterministic approach, is better
suited for life expectancy prediction. Life
expectancy associated with failure modes such as
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yielding, plastic deformation and buckling can be
estimated using the extreme analysis, and life
expectancy associated with failure modes such as
fracture and fatigune are estimated using the
cumulative value modeling approach. In dealing
with corrosion, life expectancy assessment can be
based on extreme analysis. Example applications of
life expectancy prediction are provided by Ayyub et
al [4], Ayyub and White [3], Harris et al [5], and
Yazdani and Albrecht [12].

2. STRUCTURAL RELIABILITY
ASSESSMENT

The performance function that expresses the
relationship between the strength and load effects of
a structural member according to a specified failure
mode is given by

M= g(X1,Xp, .. Xp)= R-L (1)



in which the Xj, i = 1,..,p are the p basic random
variables which define the loads, material properties
and other structural parameters, g(.) is the functional
relationship between the basic random variables and
failure (or survival); R is resistance or strength; and
L is load effect. The probability of failure can be
evaluated by the following integral:

Pe= Jf ... [fx(xq, Xg, ooy Xp) dxydxy .. dxp (2)

where fy is the joint density function of X1, X2, ...,
X, and the integration is performed over the region
where M < 0. The strength (or resistance) R of a
structural component and the load effect L are
generally functions of time. Therefore, the
probability of failure is also a function of time. The
time effect can be incorporated in the reliability
assessment by considering the time dependence of
one or both of the strength and load effects.

3. EXTREME ANALYSIS OF WAVE
PRESSURE

Extreme values based on observational data are very
important in structural safety and life assessment.
The prediction of future conditions, especially
extreme conditions, are necessary in engineering
planning and design. The prediction is performed
based on an extrapolation from previously observed
data. For a set of observations (x{, X2, ..., Xg) from
an identically distributed and independent set of
random variables (X1, X2, ..., Xj), the distribution of
X; is called the parent (or initial) distribution. It has
the cumulative probability distribution function
Fx(x) and the density probability function fx(x).
The maximum value of the observed values is a
random variable My which can be represented as

» XK 3

The exact cumulative and density probability
distribution functions of the maximum value are,
respectively, given by

Fag, (m) = [Fx(m]*

f, (m) = K[Fx (m)]" fx (m)

It can be shown that for relatively large values of k,
the extreme distribution approaches an asymptotic
form that is not dependent on the exact form of the
parent distribution; but, it depends on the tail

Mg = Maximum (X1, X2, ...

(4)

(4b)
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characteristics of the parent distribution in the
direction of the extreme. The central portion of the
parent distribution has little influence on the
asymptotic form of the extreme distribution. For
parent probability distributions of exponential tails,
the extreme distribution approaches an extreme value
distribution of double exponential form as k—eo. For
example, a normal or lognormal probability
distribution approaches a Type I extreme value
distribution as k—eo. In this case, the difference
between an exact distribution for My and the Type I

extreme value distribution is relatively small. The
difference diminishes as k—oo. Practically, the
difference is negligible for k larger than

approximately 25.

For the purpose of life prediction, the mathematical
model for the extreme distribution needs to be a
function of k in order to relate the outcome of the
analysis of extreme statistics to time. Extreme value
distributions, like the Type I largest extreme value
distribution, are used in this paper to model extreme
load effects. Since the mathematical model is not
sensitive to the type of the parent distribution, as
long as it is within the same general class, the
mathematical model used in this chapter is based on
an parent distribution that follows the class of normal
probability distributions.

For a normal parent probability distribution of the
random variable X with a mean value [ and standard
deviation o, the cumulative distribution and density
functions of the largest value My of k identically
distributed and independent random variables (Xj,
X2, ..., Xk) are, respectively, given by

Py, (m) = Exp{-Epr—%k)(m—u-wk)}}@

f, (m) = (fgﬁjExp[(—fgijbn-u-cuk)}

(6)
Exp{-Exp[(—%)(m —U-ouy )}}
where
ag = [2In(k)]0- (Ta)
and
up = o - {In[In(k)] + In(47) }/(20) (7b)



The mean value and standard deviation of My can be
determined approximately using the central and
dispersion characteristics of Type I extreme value

distribution. They are given, respectively, by the
following:
Mean value, Mk = oup + [ + — (8)
Ok
T O

Standard Deviation, GMk = 9)

\/g o
The constants T and Y have the values of 3.141593
and 0.577216, respectively.

3.1 Example

The method is illustrated by considering the plastic
deformation failure mode of a marine vessel (Ayyub
and White [3], and Ayyub et al [4]) from which this
example is taken. Although this example deals with
random sea loads on marine vessels, the method is
equally applicable to other random loads, such as
wind loads and earthquake loads. For illustration
purposes the critical failure mode is assumed to be
plastic plate deformation of the shell of the vessel.
The objective of the analysis is to determine the
cumulative distribution function of structural life for
this failure mode.

The end of structural life of the vessel according to
the specified failure mode is defined as having to
replace more than five plate panels in a specified
critical region at the end of any inspection period. It
is assumed that plate panels are to be replaced when
the ratio of plastic deformation to plate thickness is
greater than or equal to 2.0. This assumption is
usually based on the resources allocated for repair
and steel replacement for the vessels in their lifetime
maintenance cycle. The inspection schedule of the
boat includes the warranty inspection at the end of
the first year followed by regular inspections every I
years, where I can be either one or two years.

In this case, the performance function takes the
following general form:

g = Resistance - Still Water Load - Dynamic Load(10)
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Each of the terms in the above equation are
expressed in units of pressure. The still water load is
the hydrostatic pressure at the depth of the critical
region. It can be determined based on the design
draft. The dynamic load is the extreme dynamic
pressure based on the results from full scale
experiments conducted on one of the vessels. The
resistance term is an empirical expression developed
by Hughes [6] based on elasto-plastic plate response.

In this example, only loads and load effects in head-
seas are considered. No other heading is considered
because reported stress records by Purcell et al [7]
indicate that they result in much smaller stresses than
the head-seas condition. Eight combinations of
vessel's speed and sea-state for the head-seas
condition are considered herein. These combinations
are summarized in Table 1. For the eight
combinations, strain measurements at locations of
interest were performed by Purcell et al [7]. The
combination of high sea-state and high speeds was
not tested. The percentages that are shown in Table
1 for each combination represent the percentage
usage of the vessel in the corresponding speed/sea-
state combination. These percentages are based on a
survey conducted by the same researchers. The total
of the percentages in the table is about 20%, which is
the expected percent usage in head-seas.

The performance function as given by Eq. 10
includes two components of pressure, i.e., still-water
and dynamic pressure. The stress due to the still-
water pressure component can be modeled using
random variables. Since the stresses due to still-
water pressure were not measured, the mean value of
the still-water pressure was determined based on
hydrostatic analysis using the vessel's draft and was
found to be 2.667 psi (Purcell et al [7]). The
coefficient of variation and distribution type of still-
water pressure are assumed to be 0.20 and normal,
respectively.



Table 1. Combinations of ship speed and sea state

follows Type I largest extreme value probability
distribution.

Sea State Ship Speed o
- _ Table 2. Statistical characteristics of pressure (15
[Wave Low (12 Medium High (29 years of usage)
Height] knots) (24 knots) | knots)
L Cana T Case Case 3 Case no.TMean oV INo. of Mean icov
ow ase ase ase . P
(Prax)  (Pmay)  fintervals in |(P, Y [P, )
2 (12 knots, | (24 knots, | (29 knots, 3 T ek | o T
[3 1t 3 fr) 3ft) ft) (psi) (psi)
4.0% 1.7% 1.0% 1 175 |0.0993 [R16000 [.55 0.0177
Medium | Case 4 Case 5 Case 6 2 1.89 0.0993 91800 2.71 0.0186
(12 knots, | (24 knots, | (29 knots, 8 199 [0.0993 54000 283 0.0192
[8 ft] $ ) 8 ft) ) 3 9 X . .
4.7% 1.3% 0.7% 4 6.17 0.0993  [253800 [8.99 0.0175
High Case 7 Case 8 Not 5 6.76 0.0993 170200 9.66 0.0189
[10 ft] (llosz)“o‘s’ g%“fk)“"ts’ considered 6 07 0993 P7800 W35 0196
t t
53% 1.0% 7 763  [0.0993 P86200 |11.13  [0.0174
3 13.37 1.0121 [162000 {74.30 0.0477

The strains due to the dynamic pressure were
measured, and the computed stresses should be
modeled using the statistics of extremes. The parent
distribution for the measured stress was assumed to
be the probability distribution of a random variable
that is defined as the maximum stress due to dynamic
pressure in 30-second interval for all the cases in
Table 1, except Case 8. For Case 8, the interval is
taken as 10 seconds. The statistical characteristics of
the parent distribution of stress for the eight cases
were determined using the data reported by Purcell
et al [7]. The mean values and coefficients of
variation (COV) for Cases 6 and 8 were based on 10
and 23 maximum values taken from 10 and 23
records of stress time-history, respectively. Other
cases were based on one record each. Then, plate
theory and finite element analysis were used to
determine the mean value of the maximum dynamic
pressure, Mean(Pp,4), that causes the measured
stresses. The results are summarized in Table 2. It is
reasonable to assume that the COV of the maximum
dynamic pressure, COV(Ppax), is the same as the
COV of the maximum measured stress. The mean
value and COV of the extreme pressure were, then,
determined using Eqs. 8 and 9 for an example
vessel's usage period of 15 years at a rate of 3000
hours per year and according to the percent use
presented in Table 1. The results are shown in Table
2. It was also assumed that the extreme pressure
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It is evident from the Table 2 that Case 8 is the most
critical sea state/boat speed combination. Therefore,
for this case the statistics of the maximum and
extreme pressures were determined using the usage
periods of 0.2, 0.5, 1, 2, 5, 10, 15, 50, and 100 years
using Egs. 8 and 9 as shown in Table 3.

Table 3. Statistical characteristics of pressure for

case 8
Usage | Number of Mean Cov
period | intervals in (Pextrm) Pextrm)
(years) life, K (psi)
0.2 2160 60.49 0.0732
0.5 5400 63.70 0.0657
1 10800 66.02 0.0610
2 21600 68.24 0.0569
5 54000 71.07 0.0523
10 108000 73.13 0.0493
15 162000 74.30 0.0477
50 5400000 77.67 0.0435
100 1080000 79.54 0.0414

The statistical characteristics of the strength of the
material used for the vessel and the dimensions of a



plate within the critical region were determined by
Ayyub and White [3]. The mean values and COV of
the yield stress and modulus of elasticity of the
material were estimated to be 47.8 ksi, 29,774 ksi,
0.13 and 0.038, respectively. The mean values and
COV of the thickness and the overall dimensions of
the plate were estimated to be 0.161 in., 11.75 in. x
23.5 in., 0.01, 0.05 and 0.05, respectively.

The failure probabilities of a plate according to the
limit state of Eq. 10 can be determined using Monte
Carlo simulation with variance reduction techniques
(Ayyub and Haldar [2]). The average probabilities of
failure of a plate (Pgp), coefficients of variation of
the estimate of the probability of failure COV(pr)
and the numbers of simulation cycles for different
usage periods of the boat are shown in Table 4.

The critical region for the vessel was defined as the
region that consists of a total of 28 plates. These
plates were assumed to experience the same loading
and have approximately the same strength
characteristics; therefore, have approximately the
same probability of failure. Since the end of life is
defined as failure of more than 5 plates (out of the 28
plates), the vessel (or structural system) can be
considered to fail if 6 plates or more out of the 28
fail. Let us first consider a warranty period of one
year and an inspection interval of one year. For a
period of one year, plate failure probability (Pgp) is
0.06765 (from Table 4). Since end of life is detined
as failure of at least 6 out of 28 plates, we can
consider the n-out-of-N system with n = 6 and N =
28. Failure probability of this system depends on the
statistical correlation between the plate failures. An
upper bound failure probability is obtained when the
correlation coefficient is unity and a lower bound is
obtained when the correlation coefficient is zero.
The correlation between the plate failures is assumed
to be small, and so the lower bound is closer to the
actual (unknown) value. The lower bound failure
probability can be based on the binomial distribution.
The probability of failure of at least six plates out of
28 plates (Pgg/28 1) at the end of one year of service
as 0.00989. Similar calculations for inspection
intervals of two years (I = 2) with Pfp = 0.09403
(from Table 4) yields Pgg/pg 1 = 0.042719. Since the
warranty period is one year (W = 1), Prg/og w =
0.009895.

35

Table 4. Probability of failure of a plate (without
inspection effect)

Usage | Number of Probability cov
period | simulation of failure (Pg )
(years) cycles pr P

02 3000 0.03004 , 0.0490

0.5 3000 0.05092 0.0401

1 3000 0.06765 0.0351

2 3000 0.09403 0.0294

5 2000 0.13950 0.0284

10 2000 0.17200 0.0244

15 2000 0.20310 0.0215

50 2000 0.27760 0.0155

100 2000 0.32900 0.0121

Failure probabilities at different durations of service
T (years of usage) were computed at T = 1,3,5, 11,
21, 31, and 51 years were computed and plotted in
Fig. 1. This graph of failure probability versus time
is also the cumulative distribution function of
structural life. It is evident from Fig. 1 that by
reducing the inspection interval, expected structural
life can be enlarged. This due to the fact that at the
end of each inspection interval, any reported
deformation damage is to be fixed before sending the
vessel for the next usage period.

L 0.8

2

e~ /

S QL 06 -

s A -

€0 02 =

L~ —_

NPz

A 0

0 20 40 60

Structural life (years)

— — ~— l-year inspection 2-year inspection

Figure 1. Probability of failure based on plate
deformation



4. EXTREME ANALYSIS OF CORROSION

One of the problems facing an engineer when
atterpting to perform life prediction of a structure is
how to adequately deal with corrosion. There are
handbooks available which are full of test data for a
wide variety of metals, exposure duration's, and types
of corrosive attacks (Schumacher [8]). The difficulty
comes in attempting to fit one of the examples to the
real case at hand. Typically, the information on
available corrosion rates is not the type of
information needed by the engineer. The engineer
needs to make a determination of remaining strength
of a panel of plating based on mean thickness and a
determination of the integrity of the plating from the
depths of pits. White and Ayyub [9] developed an
approach for both planning the number and location
of measurements to be taken using semivariogram
analysis (Ayyub and McCuen [1]), and for using the
information obtained to do a reliability-based service
life assessment of the structure (White and Ayyub
[10]). In this paper, a means of determining a
maximum value of pitting depth based on thickness
measurements is incorporated by treating the growth
of pits as a random process with some specific
statistical characteristics.

When performing a service life analysis of marine
structures both pitting and general wastage need to
be included in assessing a number of potential failure
modes. The determination of the rate of corrosion
and the rate of pitting has been a major difficulty in
designing cost-effective and reliable structures. The
extreme depth of pits can be estimated by (1) the
theory of extremes, or (2) sampling from largest pits.
These two methods are described in the following
sections. The methods serve different objectives.
The first method can be used in cases were the
corroded side of the metal is not accessible.
Therefore, general sampling can be used to determine
the statistical characteristics of thickness. The
resulting probability distribution of thickness can be
treated as an underlying parent distribution in the
theory of extremes. In cases that involve accessible
corroded sides, both methods can be used. However,
the second method provides a direct measurement of
pitting depth. Then the concept of percentile and
largest depths can be used to characterize the
extreme depths.
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4.1 Measurements Taken Without Knowledge of
Extent of Pitting

Consider a set of n observations (xi, X3, ..., Xp) from
identically distributed and independent set of random
variables (Xi, X3, ..., Xp). The distribution of Xj is
called the initial (or parent) distribution, that has the
cumulative probability distribution function Fx(x)
and the probability density function fx(x). The
minimum observed value is a random variable M;
which can be represented as

M; = Minimum (X, X2, ..., Xp) (11)

The exact cumulative and density probability
distribution functions of the minimum value are
given by, respectively:

Fy; (m) = 1 - [1 - Fx(m)]"
fapy, (m) = n[1 - Fx(m)]™" fx(m)

It can be shown that for relatively large values of n,
the extreme value distribution approaches an
asymptotic form that is not dependent on the exact
form of the initial probability distribution; but, it
depends on the tail characteristics of the initial
distribution in the direction of the extreme. The
Type I extreme value distribution is used in this
paper to model extreme corrosion. Since the
mathematical model is not sensitive to the type of the
initial distribution, as long as it is within the same
general class, the mathematical model used in this
study is based on an initial distribution that follows
the class of normal probability distributions.

(12)
(13)

For a log-normal initial probability distribution of the
random variable X with a mean value p and standard
deviation G, the cumulative distribution and density
functions of the smallest value M; of n identically
distributed and independent random variables (X7,
X7, .., Xp) are of a smallest-extreme Type I
distribution, and are, respectively, given by

Fum, (m) = 1 - Exp{-Exp[(0.1/0)(m - K - 6 up)]}(14)
fm; (m) = (0y/0) Exp[(o1/0)(m - p - 6 uy)]

Exp{-Exp[(0.1/0)(m - 1 - 6 uy)]} (15)

where
oy = [21In(n) ] (16)
u; = -a; + { In{ln(n)] + In(4m) }/2o;) (17)

The mean value and standard deviation of M1 can be
Jetermined approximately using the central and



dispersion characteristics of Type I smallest-extreme
value distribution, and are , respectively, given by

(18)
Standard Deviation, Gy, = (/+/6)(alay) (19)

Mean value, M; = cuj + - Y0/

In using this method, n can be assumed to represent
an approximate number of pits in a location of
interest.

4.2 Measurements Taken in Deepest Pits

In the pervious section, thickness sampling can be
performed in the form of a grid that cover a specified
section of a structure. The resulting statistical
characteristics were considered to constitute the
moments for a parent distribution with an
exponential tail (e.g. normal distribution). Then, the
theory of extremes was used to determine the
statistical characteristics of the smallest-extreme
thickness as a measure of the deepest pit. In this
section, the depth of k pits in a specified location ofa
structure are sampled. The statistical characteristics
of these pits can then be determined using the sample
of size k. Assume that the section of interest of the
structure has n pits, which is sufficiently large, and
also assume that the depth of a pit is a random
variable X with the following probability density and
distribution functions:

fx(x) = A exp(-Ax)
Fx(x) =1 - exp(-Ax)

where x >0 20)

2D
The parameter A can be determined based on the
sampled mean value X as A = 1/X. Then, the
deepest pit P in the section of interest has,

respectively, the following cumulative distribution
function Fp(p) and density function fp(p):

(22)
(23)

Fp(p) = exp[-n exp(-A p)]
fp(p) = n % exp(-A p) exp[-n exp(-A p)]

Integration or simulation can be used to determine
the mean value and standard deviation of the deepest

pit.

4.3 Example

This example was taken from a study performed by
White and Ayyub [11]. The data used in this
example were the results of an ultrasonic hull
inspection of one of the vessels of the Class being
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studied (White and Ayyub [9]). There were over
3,000 individual thickness measurements taken on
the roughly 82-foot long hull. The measurements
were reported on a shell-expansion drawing with
large sections marked to indicate areas of excessive
corrosion or pitting. Figure 2 provides an excerpt
from that drawing showing a section consisting of the
plating between transverse frames covering three
longitudinals. In this part of the vessel the frame
spacing is 60-inches and the longitudinal spacing is
24-inches. For this 2880-sq.in. area ten thickness
measurements were taken. Table 5 provides the
locations of the measurement points with respect to
the lower left corner of Figure 2. As can be seen
from Figure 2, all of the measurements were larger
than the nominal design plating thickness of the hull.
This fact was noted for all parts of the hull and not
just this section. The apparent discrepancy in the
measured values when compared to the design
thickness alone would lead one to suspect the
measurements and probably discard them as not
being useful. How then can the information provided
by the ultrasonic survey be effectively used?

b
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Figure 2. Measured Thicknesses on Example Bottom
Plating Panel
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Table 5. Thickness Measurements and Locations for
Example Plating
Point | x-Location | y-Location Thickness
No. (in) (in) (in)
1,2 4,32 4,5 0.231,0.228
3,4 60, 6 3,22 0.244, 0.236
5,6 33,61 23,23 0.240,0.248
7,8 2,4 30,43 0.240, 0.204
9,10 31,60 42,42 0.244, 0.255

The apparent thickness increase over the design
thickness may be the result of the measuring device
(or operator) not being able to either get good contact
with the surface, or misinterpreting the display of the
returning signal, or even a mis-calibration of the
measuring device. In each of these cases we can
treat the difference in the thickness as a bias error.
By taking the largest thickness measured and
subtracting the nominal design thickness we can get
an estimate of the bias. Later we could vary the size
of the bias to see what effect it has on the final
results. For the example case, an estimated bias of
0.07 inches was used. The ultrasonic measuring
device, if properly calibrated and used by an
experienced operator is capable of providing a very
high accuracy. The accuracy, however, is rapidly
degraded depending on surface conditions, what is
behind the plating being measured, and the skill of
the operator.

In performing the extreme analysis, the values for n
to be used in Eqs. 14 to 19 and the confidence level
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desired for the confidence interval computations are
needed. Because the area under investigation was
identified as being "heavily pitted”, a large number
of pits was assumed to be present. Though value of n
has little effect on the results once n exceeds about
100, we will use n = 1000 just to indicate severe
pitting. Figure 3 shows the PDF and CDF (from Egs.
14 and 15) for the extreme smallest value based on
the parameters for this example.

A confidence interval can now be computed. For this
example, a 90% confidence interval was desired as
well as a 90th percentile extreme smallest thickness
(largest pit depth). For pit depth the value is used in
the inverse CDF of the extreme to find that extreme
smallest thickness with only a 10% probability of
being exceeded (having a pit deeper). The results of
the analysis are presented in Table 6.

Table 6. Results of Analysis for Example Plating

Estimated Mean Thickness 0.1670 in.

Confidence Interval: ~ Upper 0.1733 in.
Bound

Lower Bound 0.1607 in.

Depth of Extreme Pit 0.1332in.

5. CONCLUDING REMARKS

In the applications discussed in this paper, the
underlying parent distribution in the extreme value
analysis was assumed to have an infinite exponential
tail. This assumption can significantly affect the
resulting extreme value distributions and assessed
structural reliability levels. In dealing with waves or
corrosion, the tails are limited based on the physics
of both problems. The former is limited by the
hydrodynamics of waves, and the latter is limited by
the size of a corroded element. The effects of
limiting the tails of parent distributions on the results
of these applications require further investigation.
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Distributions And Associated Inference
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In this paper, we study the upper record values from a Rayleigh distribution and derive ex-
plicit expressions for the means, variances and covariances. We also establish some recurrence
relationships for the single and product moments. These results are then used to derive ex-
plicitly the best linear unbiased estimators for the scale-parameter as well as the location-scale
parameter cases. Some associated inference with regard to the prediction of a future record
value and the test for spuriosity of the current record values are also developed. Next, we
present two examples and illustrate all these inference procedures. Finally, we extend all these
developments to the Weibull distribution and present the necessary explicit algebraic formulae.

1 Introduction

Record values and associated statistics are of impor-
tance in many real-life situations involving data relat-
ing to weather, sports, economics, and life-tests. The
statistical study of record values started with Chan-
dler [11] and since then have been pursued in different
directions by several authors; for example, see Glick
[15], Galambos [14], Resnick [20], Nagaraja [18], Nev-
zorov [19], Ahsanullah [2], Arnold and Balakrishnan
(4], and Arnold, Balakrishnan and Nagaraja [5]. The
record values from the exponential distribution and
the best linear unbiased estimators of the location and
scale parameters based on them have been discussed
by Ahsanullah [1]. The prediction of future record
values has been discussed for the exponential case by
Dunsmore [13]. Some work of this nature has been
carried out for the extreme value distribution by Na-
garaja [16, 17] and Ahsanullah (3], and for the normal
distribution by Balakrishnan and Chan [8].

In this paper we consider the upper record values
from a Rayleigh population and derive explicit ex-
pressions for the means, variances and covariances.
We also establish some simple recurrence relationships
for the single and product moments. These results
are similar to those established recently by Balakrish-
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nan and Ahsanullah [6] and Balakrishnan, Ahsanullah
and Chan [7] for the exponential and Gumbel distri-
butions, respectively. The latter problem has been
treated exhaustively in the order statistics context by
Barnett and Lewis [10]. Next, we derive explicitly
the BLUEs for the parameters in the one- and two-
parameter models. The BLUEs are then used to de-
velop prediction intervals for the future record val-
ues and also a test for spuriosity of the record value
just observed. Next, we consider the data set given
by Dunsmore [13] and also a simulated data set and
illustrate all the necessary formulae in explicit alge-
braic forms. Finally, we extend all these results to the
Weibull distribution and present the necessary explicit
algebraic formulae.

2 Record values and properties

Let Xy(1), Xu(z), -+ - be the upper record values aris-
ing from a sequence {X;} of i.i.d. Rayleigh variables
with pdf

fz)=ze" 12, 23>0 (2.1)

and distribution function

F(z)=1- =2, >0, (2.2)



Then it is known that the pdf of the nth upper record
value Xy (,,) is given by

fa@) = r—(l,s {~log[1 - F@)}™™" f(2),
z>0, n=1,2,... (2.3)

and that the joint density function of Xy(m) and
Xuy(n) is given by

frn(2,9) = W{—log[l—m)]}m_l

xle(;z—z)-{—log [1 - F(y)]

n—-m-—1

+og|1- F(z)]} 1),
0<z<y<oo, m=12..., m<n(24)
Let us denote E’(XU(n)) by ofP » Var(Xy(n)) by Ban,
E(X(my» Xt(ay) bY alr), and Cov(Xy(my, Xu(n)) by

Bm,n. For convenience, we will also use ay, for a( ) and
am g for a(l . We then have the following theorems.

Theorem 1 Forn=1,2,...,and k=1,2,...
I(”+£)
(k) _ok/2 " T 2/ 2.
o, =2 () (2.5)

end forl<m<n

I(m+3)T(n+1)

" =2"F(m) T(n+1) (26)
consequently,
E(Xupmy) = ﬁ{%}, (2.7)
14N 2
Var(Xy(y) = 2{n_(ﬂ%ﬁ>} (2.8)
and
I(m+ 3)

2

COV(XU(,,,),XU(,,)) T(m)

T(n+1) T(n+3)
"{r(n+%) ~ TTw } @9)

Proof: From (2.3), (2.1) and (2.2), we have

af,") = /000 a:"{—log[l - F(I)] }n_lf(:c)d:c
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1 had E 32 n-1 22/2
= — — - d
F(n)/ . ( ) e zdz

= 2}:/2/ k/zun—le-udu
I'(n) 0

(with u = z2/2)

ok/2 T(n+ 2)
I(n) ~

Next, from (2.4) we have for 1 < m < n

= ) _,,,_/ “’( )

z (-2— - —2—) ye ¥ /2d.1:dy
= 1 2 e~V 32
2m=1T(m)T(n — m) J,
y2 n-m-1
(2) o (210)
where
y 2\ n—m-—1
I(y):/ (z2)™ (1—%) dz.  (2.11)
0

By setting u = 22 /42, (2.11) becomes

1
umy2m 1 — )™ -1 du

- %yz’"“B(m + % n—m),  (212)

I(y)

where B(a,b) = T'(a)['(b)/T(a + b) is the complete
beta function. Substituting the expression of I(y) in
(2.12) into (2.10), we have

B(m+ %, n—m)
2mT(m)I'(n — m)

9\ P—m-—1
(%) ydy

_ B(m+%,n—m) °°e_u St
. 2"‘I‘(m)1‘(n—m)/0 (20)

v""™1dy (setting v = y?/2)
2B(m+ 3,n—m)
T'(m)L(n —
L(m+ 3I(n+1)
T(m)T(n + 1)
Formulae in (2.7)-(2.9) then readily follow. =
For the Rayleigh distribution, it is easily observed that

zf(z) = 2{— log [1 - F(:c)] } [1 - F(x)]. (2.13)

had 2
G eV’ 12y 2m+2

T(n+1)




By using this relation, we establish below some simple
recurrence relations satisfied by the single and prod-
uct moments of record values. Similar results for the
exponential and Gumbel populations are due to Bal-
akrishnan and Ahsanullah [6] and Balakrishnan, Ab-
sanullah and Chan [7], respectively.

Theorem 2 Forn=1,2,...,end k=1,2,...,

) _k+2n

ol =5 (2.14)

Proof: Let us consider
1 / - z¥ {=log[l — F(z)]}""" f(z)d=
I(n) Jo

2 = k=1 n
= g [ T lesll - F@)
[1 — F(z)]dz (using (2.13)).

o) =

Upon integrating by parts, we obtain

o) = ﬁ?(;) Uom x"{—log [1 - F(z)]}nf(z)dz
-n /ow xk{—log [1 - F(z)} }n-lf(x)da:]

A+ | o _ o
ET(n) |+

= [ ® - as,")]. (2.15)
Then, (2.14) follows by rearranging (2.15). ®
Theorem 3 Fork,1=1,2...,and m>1
oDy = alt) (216)
and for1<m<n-2
o) = _2m kD (2.17)

It kol

Proof: For proving (2.16), let us consider from (2.4)

oiny = /Ow /oy neky‘{—log[l—F(ac)}}m_1
(;z )f(y)drdy/l“(m)

1

= o / ¥ F(W)I(¥)d, (218)

43

where

I(y) Fe®

/oy z"{—log [l - F(z)] }""1
2/: x"-l{—log [1 - F(z)] }mdz

(using (2.13)).

(2.19)

Upon integrating by parts, (2.19) yields
I(y) = % [y"{—log[l ~ F(y)| }m
_m/ {—log 1 - F(z)] }"‘ N f(Fzz)dz]

Substituting the above expression of I(y) into (2.18),
we obtain

o = %[/wy"“{-log[l—F(y)]}mf(wdy

m~1
—m/ / {—log 1 - F(:c)]}
f(=)
) f(y)dzdy F(m)
= [ (k+1) _ (&D }
= k m+1 am m+1
Relation in (2.16) is simply obtained by rearranging

(2.20).
Next, for proving (2.17), let us write for 1 <m < n-—2

(2.20)

olfl) = m/ ¥ F)I(y)dy, (2:21)
where
I(y) = Ay:c"{—log[l—F(z)]} TE%;')

{— log [1 - F(y)] + log [1 - F(a:)] }n‘m—ldz
2/: x"‘l{—log[l - F(z)]}m
{——log [1 - F(y)] + [1 - F(m)] }n-m_ldz.



Upon integrating by parts, I(y) can be written as

%l:(n -m— 1)/: z"{—log [1 - F(z)] }m

%%{- log 1~ F(o)]

[<)]}

—m/: z"{—log [1 —F(z)] }m_l
1—%’52—5{—1% [1-70)

+1log [1 - F(a:)] }n_m-ldz] R

I(y) =

Substituting the expression of I(y) in (2.22) into Eq.
(2.21), we obtain

alkh = 2 [a("-’) (2.23)

k,
k m+ln = aSn,Q} .
Relation in (2.17) is simply obtained by rearranging
(223). =

If we interchange the order of the double integration
in the proof of Theorem 3 and proceed along the same
lines, we can derive the following relations.

Theorem 4 Fork,l=1,2,...,and m=1,2,...

ki I+2 &y Ed ke
Sn,rr)l+2 = 5 Sn,ﬂ)H-l - m(af('n+)1,m+2 - C"Sn+1) )
(2.24)
and forl<m<n-2
k) o H2An=m)

m,n+1 2(11. _ m) m,n

L BN (X RN 1)
n—m m+1ln+1 m+1,n

(2.25)

3 Inference for the one-para-
meter Rayleigh distribution

Suppose the first n record values

Yoy, Yuezy, -+ Yun)
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from a one-parameter Raylei]gh distribution with pdf

y y
fly;o) = 2 °XP (-ﬁ) , 2>0,0>0, (3.1)

are available. Then, by following the generalized least-
squares approach, we may derive the BLUE of o
(Balakrishnan and Cohen, [9], pp. 74) as

o =
ot = o QaY = EG;YU(i) (3.2)
and
Var(c*) = i (3.3
T a Qa’ 3)
where
Y = (YU(1)7YU(2)r'")YU(n))/a
a = (al,az,...,a,,)'
and

Q= ((BiiNijer2,.n = (@ij))ij=1,2,.n-

Since B; ; is in the form p;q; for i < j where

()

and

o s{TG+1) TG+
"’“ﬁ{r(ﬂ%) r(j)z}’

 can be written explicitly as

-(——’2——)-, i=i=1,
1 ’zq}"-;xl:? 1-Pi—19i41
i419i-1=Pi—19; e -
Gitici—ric 1) (Piqadi—pidig)’ 2= B%am-d
wi; = Qn—1 . .
W , izj=mn,
In(Prdn_1-FPn—14n)
PO WA P= i = —
Figiei-Fiaiar’ J=i+1,i=1,2,...,n—1,
0, I5—-il> 2
(3.4)
That is,
9
w1 = §)
82 +1
wii = 5 1=2,3,...,n~-1,
dn-1
Wpn = (2n-—1)——7,
an
Wiidl = —(2i+ 1), i1=1,2,...,n—1,
Wit1di = Wiitl, i=1)27"':n_1:
wi; = 0, Ij—i|>2.

Eqgs. (3.2) and (3.3), when simplified, simply yield

Yu(n
ot = “Un)
an

(3.5)



and I2(n)
) = g2 |\

Var(o*) = o [I‘z(n-l— 5 1] . (3.6)
Prediction of the future record: Suppose the up-
per records Yy(1), Yu(2), - *»

Yu@my,m = 1,2,... have been observed. Then the
best linear unbiased predicted value of the record
Yoy, n2m+ 1, can be written as

Yl;(n) = U‘an (3.7)

where o* is the BLUE of o based on m records. In-
stead of the predicted value, one might be interested in
the prediction interval for Yy (n) with a certain confi-
dence. The prediction interval for Yy (,,) may be based
on the scale-invariant statistic

Yo = Yo(m) (3.8)

o

where o* once again is the BLUE of o based on the
first m records. Using (3.5), we can rewrite the statis-
tic 77, in (3.8) as

TP, = am {Yum) = Yuem)} /Yuim)

Yy(n)
= am {YU(m) - 1} .

Since Y 2/20? is distributed as a standard exponential
variable, we can easily show that Y7,/ Y, is dis-
tributed as a beta (m,n—m) variate (for example, see
Dunsmore, [13]). Thence, the 100% prediction inter-
val for Yy (n) 1s obtained to be

[Yv(m» Yu(m)/ \/E]

where b, is the lower o percentage point of the beta
(m,n — m) distribution.

) —
Tln"'

Test of spuriosity of the current record: Sup-
pose Yy(1), - *» Yu(n-1) have been observed and a new
record Yy () has just been observed. Sometimes we
may be interested in testing for the spuriosity of the
current record value Yy (n). For this purpose, we may
use the scale invariant statistic

o _ U

o = oo (39)
where o* is the BLUE of o based on the first n — 1
records; using (3.5), therefore, T7, in (3.9) becomes

Yu(n)

T, = an— .
! ! Yu(n-1)

(3.10)
At a level of significance, we will conclude the current
record Yy(s) to be a spurious record if Yy (n) is greater
than Yy (s-1)/v/ba, Where b, is the lower o percentage

point of the beta (n — 1,1) distribution, namely, ba =
ot/ (n-1)
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4 Inference for the two-para-
meter Rayleigh distribution

Let us now suppose that the first n upper record values
Yuqy, Yu2),

-+, Yy(n) from a two-parameter Rayleigh distribution
with pdf

- (y=p)?
Y “e_ L Il<y<°0y‘7>0,

(4.1
are available. Once again, by following the genera.lizec;
least-squares approach, we may derive the BLUEs of p
and o (David, [12), pp. 130; Balakrishnan and Cohen,
[9], pp- 80-81) as

fly;p,0) =

n n
ut = Z a;Yyuy and o = Zb,-YU(;), (4.2)

i=1 i=1

where
= o Qal’ §—a Qla’ Q (4.3)
T (o Qa)(1’ 1) ~ (a’ N1)2 )
and 1’ Qla’ Q-1 Qal’ Q
b= waa@ o< (@ a9
with

=011"1ixn

and o and € as defined in the last section. The
variances and covariance of the above estimators are
(David, [12], pp. 130; Balakrishnan and Cohen, [9],
pp. 81) given by

Var(p") _ o Qa
T - (o Qa)(1/ 1) — (o 01)2’(4'5)
Var(c*) 1 01
o? - (o Qa)(1’ Q1) — (! Q1)2,(4.6)
ana
Cov(u*,0") _ o 01
o2 - —(a' Qa)(ll 91) _ (a, 91)2.
(4.7)

Omitting the intervening algebra, we get the coeffi-
cients of the BLUEs of u and ¢ from (4.3) and (4.4)
to be

e = g Andn
! 2angnA—1’
ai Indn i=23,...,n—1

(2)(engns — 1)’

n—1
ndn 1
1_.___.."___ 3+§ -1,
2((17.an— 1) [ =2 l:\

a, =



b = _ﬁ_qﬂ_
1 2a,q, A~ 17
o= i O =23,....n-1,

_EanQn.A -1’ :

n—-1
_ n 1
ba = 2angnA ~ 1) {3+§i}’

where

B 3 n—ll no1
A—{§+;§;+(2n—1)[ ; -1]}.

n

The variances and covariance of these estimators are

obtained from (4.5)—(4.7) to be

Var(u") _ Anfdn
o2 T apgnA -1’
Var(o®) A
o? T angnA -1
and
Covis,o™) _ _ g
o? T apguA -1

Prediction of the future record: Suppose the up-
per records Yy (1), Yu(a), - - -,

Yun-1),(n > 3) have been observed. Then the best
linear unbiased predicted value of the record Yu(n) can
be written as

Yoy = 1"+ 0"an, (48)

where 4* and o™ are the BLUEs of i and o based on
the first n — 1 record values.

Suppose we are interested in giving an interval for
Yy (n) with a certain confidence. This prediction inter-
val for Yy (ny may be based on the location and scale
invariant statistic

v = Yoo = Yuem-n

2n o*

(4.9)

where ¢” is once again the BLUE of o based on the
first n — 1 upper record values. For aiding the users,
we have determined some percentage points of the
statistic T3 in (4.9) through Monte Carlo simulations
(based on 10,001 runs). These simulated percentage
points of T5_ are presented in Table 1 for n = 3(1)11.
With the help of this table, one could easily construct
100(1 — a)% prediction intervals for the future record
value YU(n)-

Testing for spuriosity of the current record:
Suppose the upper records Yuay, Yu),- - Yun-1)
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have been observed, and a new record Yu(n) has just
been observed. We may sometimes be interested in
testing for the spuriosity of the current record value
Yu(n)- For this purpose, we may use the location and
scale invariant statistic

Yun) — u*
= O E (410)
where p* and o* are once again the BLUEs of u and
o based on the first n — 1 records. Large values of T,
will support the spuriosity of Yu(n)-

For assisting the users, we have simulated some crit-
ical points of the statistic T3, in (4.10) through Monte
Carlo simulations (based on 10,001 runs). These simu-
lated percentage points of T%, are presented in Table 2
for n = 3(1)11. By using this table, one could easily
test for the spuriosity of the current record value Yun)
at the desired level of significance.

5 Illustrative Examples

Example 1: Dunsmore [13] has given the size of rock
crushed by a rock crushing machine. The machine has
to be reset if, at any operation, the size of rock being
crushed is larger than that has been crushed before.
The following are the records of the sizes dealt with
up to the third time that the machine has been reset:

9.3,24.4,33.8.

Suppose for illustration that the sizes of the rocks to
be crushed can be represented by independent one-
parameter Rayleigh random variables. A simple plot
of these three upper record values against the expected
values of the Rayleigh upper record values indicates a
strong correlation (correlation coefficient as high as
0.984). Hence, the assumption that these record val-
ues have come from the Rayleigh model seems quite
reasonable. From formula (3.2), the BLUE of ¢ is
simply obtained to be
. 33.8

2 = -—_—

a3
14.38.

]

The 90% prediction interval for the fourth upper
record is obtained to be

[33.8,33.8/\/0.11/3] = {33.8,49.6].

Furthermore, if the fourth upper record has been ob-
served and it is not in [33.8,49.6], we can conclude



that the observed record is a spurious record at 10%
level of significance.

Now, suppose the upper records are assumed to
have come from the two-parameter Rayleigh model.
We then compute the BLUEs of 4 and o to be

gt = (2.000 x 9.3) + (0.333 x 24.4) — (1.333 x 33.8)
-18.33

o —(0.8511 x 9.3) — (0.1418 x 24.2)
+(0.9929 x 33.8)
= 22.91.

From Table 1, we determine the 90% one-sided pre-
diction interval for the fourth upper record to be

[33.8, 69.1] .

If the fourth record has been observed and it is greater
than p* +0* x 3.93 = 68.96, we can conclude that the
record is a spurious record at 10% level of significance.

It is of interest to mention here that the above given
prediction interval [33.8,69.1] is very close to the pre-
diction interval based on the exponential distribution
given by Dunsmore [13]. This is not surprising as the
Rayleigh distribution is also seen to fit the data very
well.

Example 2: For the purpose of illustration, we sim-
ulated a set of record values from the Rayleigh distri-
bution with g = 50 and o = 10. The following are the
simulated upper record values:

66.42,72.27,78.07,81.82,86.33,87.42,90.05.

The BLUEs of u and o are computed in this case to
be

pt = 1.2245 x 66.24 4+ 0.2041 x 72.27
+0.1361 x 78.07 + 0.1020 x 81.82
+0.0817 x 86.33 + 0.0680 x 87.42
—0.8163 x 90.05

= 54.54

and

o = —0.3332 x 66.24 — 0.0555 x 72.27
—0.0370 x 78.07 — 0.0277 x 81.82
—0.0222 x 86.33 — 0.0185 x 87.42
+0.4942 x 90.05

= 9.67.
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The 90% one-sided prediction interval for the next up-
per record (eighth record) is obtained as

[90.05,90.05 + 9.67 x 0.733] = [90.05,97.14].

6 Results for the Weibull Dis-
tribution

All results for the Rayleigh distributions developed in
the previous sections can be extended to the Weibull
distribution with pdf

fz) =2z £>50,¢>0 (6.1)
and cdf
F(z)=1-e"*/¢ £>0,¢>0, (6.2)

where ¢ is the known shape parameter. Analogous to
Theorem 1, we then have the following theorem for
the Weibull distribution.

Theorem 5 Forn=1,2,...,end k=1,2,...

JT(n+ l‘c-)
(Iglk) = Ck/ _—I‘—(;l-)_ (63)

and for1<m<n
_ cZ/cr(m+ HI(n+2)

Am,n = r(m) T'(n+ %) ’ (6.4)
consequently,
E(Xup) = cl/c{r(;(:)z)}’ (65
L(n+ 2 1\ 2
Yerue) = /{ (r(:f)’c(;(:f))}
(6.6)

and
Cov(Xu(m), Xu(n))

:cwcr("‘*‘%){F<n+%)_r(n+%)}
T(m) \L(n+21) T(n) [~

(6.7)

For the Weibull distribution, the following relation is
easily observed:

zf(z) = c{—log [1 - F(z)] } [1 - F(x)]. (6.8)

By using (6.8) and proceeding along the same lines
as in Theorems 2-4, we can establish the following
recurrence relations for the Weibull distribution.



Theorem 6 Forn=1,2,...,and k=1,2,...
X k+nc
ohy = ———alb). (89)
Theorem 7 Fork,l=1,2...,and m=1,2,...
k,l . mc k41
ol = Frmed i1y (6.10)
and forl1<m<n-—2
EJ
ol = Tl . (6.11)
Theorem 8 Fork,l=1,2,...,and m>1
I+c
k)l k1l k1l k+
e = ESah = (s — i1
(6.12)
and forl<m<n-2
N R l+¢(n—m) )
m,n+1 c(n_m) mn
m kI k|l
[ —— (O‘En+)1 nt+l " aEn-}-)l n)
(6.13)

From Theorem 5, we observe that the variance-
covariance matrix ((5; ;)) of the upper record values
can be written as pigj,i < j, where

ri+1)
.= cl/e c
pi=c I'(?)

and

;= 1,c{r(j+%) r(a’+%)‘}

IG+3:)  TO)
Therefore, using (3.4), the inverse of ((8;;)) can be
explicitly written as

w11 c2e (c+1)*

T(1+2)
L(3)
I YR S O
B ()
[c3(26% — 20 + 1) + c(4i — 2) + 1],
i=23,...,n—1,
wn,n C_zlc——'--—"-—:["(n)2 n-1
I‘(n+ ‘5) dn
x [(nc —c+ 1) (nec—c+2)],
I'(3)
. - ~2/c__— 3%
Wiit1 = —¢ ————ic(ic + 1),
' Ii+32)
1i=1,2,...,n-1,
wij = i—il>2
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One-parameter Weibull model: Suppose the first
n upper record values Yy (1), Yy(zy,- -+, Yy(n) from a
one-parameter Weibull distribution with pdf

e—~1

fly;0) =

( 1"7) y>0, >0, (6.14)

are available. The BLUE of ¢ can be derived, using
(3.2), as

. _ Yy
g = '—;:— (615)
with its variance as
T(n)I(n+ 2)
V =gl | el ], .
ar(c”)=0o [ Tm+D) 1] (6.16)

Two-parameter Weibull model: Suppose the first
n upper record values Yy(1), Yu(2), -+, Yu(a) from a
two-parameter Weibull distribution with pdf

) _ (-t 1 ¢
flymo) = ————exp|{—— (y—-m)F),
p<y<oo,oc>0, (6.17)

are available. The BLUEs of u and o can be derived,
using (4.3) and (4.4), as

,u' = Za;YU(,-) (618)
i=1
and n
ot = Z b,'YU(,'), (619)
i=1
where
S ngn ¢ e(c+1)
VT oanga-1 TA4Y
@ = anan_z/c(c - 1) r(l)
t angnA -1 T(@E+ %)’
i=2,8,---,n—1,
Andnc™?/*
a, = l——m
ongnl — 1
(e+1) em )'f NG
T1+2) < T(i+ %)
and
b o= cega(c+1)
' (angnd = DI(1 + %) ’
—2/c - ;
b; c gn(c—1) T(3) 93, n—1,

oangnA—1 T(i+2)



o (c+1
" T Gt A-I\TA+D)
+(c—1)n2:1 f(;,))
with
+rf;(:)—25(nc—c+l)(nc—c+2) [‘1';; —1]}.

The variances and covariance of these estimators are
obtained from (4.5)-(4.7) to be

Var(w) _ _ ants
o? T angnlAn—1'
Var(e®) @A
o? T apgnA -1’
and
Cov(p™,0%) _ gn
o? T angnA-1

Inference procedures for the Weibull distribution can
be developed along the lines of Section 3 and 4 by
making use of the explicit forms of the BLUEs pre-
sented above. For brevity, we have not pursued this
here.
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Table 1. Simulated percentage points of the statistic TP

for the two-parameter Rayleigh distribution

n 0.01  0.025 0.05 0.10 0.90 0.95 0.975 0.99
3 | 0.0048 0.0123 0.0238 0.0520 3.7321 7.6296 14.8732 38.4384
4 10.0041 0.0098 0.0199 0.0413 1.5834 2.4319 3.7907 6.5884
510.0033 0.0086 0.0177 0.0380 1.1380 1.6498 2.2644  3.3609
6 1 0.0034 0.0085 0.0166 0.0332 0.9045 1.2637 1.6990 2.3337
710.0032 0.0071 0.0137 0.0273 0.7326 0.9934 1.2950  1.7487

Table 2. Simulated percentage points of the test statistic 77
for the two-parameter Rayleigh distribution

n| 0.900 0.950 0.975 0.990 0.995
315.6121 9.5095 16.7532 40.3184 75.8375
413.9335 4.7821 6.1409 8.9401 12.6876
513.8797 4.3915 5.0061 6.1027 7.0952
6] 3.9888 4.3480 4.7833 5.4181 6.1317
7141750 4.4947 4.8057 5.2405  5.7279
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On The Estimation Of The Pareto Tail-Index
~ Using k-Record Values

Berred, A.M.

Université du Havre, Le Havre Cedex, France

Let {X,, n > 1} be an ii.d. sequence of positive random variables with a continuous
distribution function F having a regularly varying upper tail. In this paper we consider the
k-record versions of two statistics introduced in [1] and study their asymptotic behavior.
Such statistics can be used as alternative estimates for the exponent of regular variation of

the tail 1 — F.

1. Introduction

Let {Xn, n > 1} be an i.i.d. sequence of posi-
tive random variables having a continuous distri-
bution function F with regularly varying upper
tail. Namely

(F) 1-F(z)= e~V L(z), for z > a > 0,

where a > 0 and L is a slowly varying function at
infinity. Denote by X3, < .-+ £ Xy the order
statistics associated to the sample X;,...,X,. Let
k be a positive integer and define the sequences of
the k-record times and values (Ref. [2], [3]) by

By = &,
r®GE) = min{j > 7@ - 1),
X(k)(i) = X(lzz)(i)—k+1,f(k)(i)’ 121,

T

where R(n) is the sequential rank of X, in the sam-
ple X3,...,Xn , ie, Xn = XR(n)n, for n > 1 (for
the general theory of records Ref., e.g., chap. 6 of
[4], chap. 4 of [5], [6], [7], [8] and the references
therein). We consider the k-record versions of two
statistics (for other statistics based on record val-
ues Ref. [9], [10]) introduced in [1],

k
= ®)(n) - B (p —
oy {Iog XY (n) —log X\¥/( m)} ,
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-k
- n(m)

m
By, S log XE)(n —i+1),
=1
where 1 < k< n,1 <m < n and n(m) = nm -
m(m —1)/2.

The statistics a, and (3, can be used as esti-
mates of a. For the estimation of o based on ex-
treme values, Ref., e.g., [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20].

The paper is organized as follows. Section 2 is
devoted to the main results concerning the consis-
tency and the asymptotic normality of a, and 3,.
The proofs of these results are given in section 3.
Section 4 contains some examples which illustrate
the results of section 2. Finally, section 5 presents
some numerical results concerning the behavior of
the estimates o, and 8, in practice.

2. Results

In the sequel, we will impose some assumptions
on the increase of the sequences {my,, n > 1} and
{kn, n>1}.

(M1) m =m, — o0 is a sequence of integers
such that 1 <m < n and m/n — 0
as n — 00,

(M2) m = m, — oo is a sequence of integers



such that 1 < m < n and m/logn — o
with m/n — 0 as n — o0.

(K) k= kn— o0 is a sequence of integers
such that 1 <k <nand k/n — 0
as n — .

Whenever one of the assumption (M1), (M2) or
(K) is made, we write k and m instead of k, and
m,, for the sake of simplicity.

The notations “ 4 oo« R ¢ 2,» and

stand respectively for equality in dis-
tribution, convergence in distribution, convergence
in probability and almost sure convergence.

Denote by h(z) = —log(1 — F(z)) the cumu-
lative hazard function associated to F. The func-
tion h is nondecreasing on (—o00,+00), so that its
inverse function may be defined by

H(z) = h" ()

We now state our main results concerning the
limiting behavior of the above statistics.

“— as.”

=inf {t : h(t) > 2} on (0,+00).

THEOREM 1. Assume that (F) and (K) hold.
Then
(i) under (M1) with k = O(m),

an L5 o as n—s oo;
(ii) under (M2) with k = O(m),
Qa, — @ a.s. as n— 0.

THEOREM 2. Assume that (F) and (K) hold.
Then for 1 < m < n fixed or for m = m, sat-

isfying (M1),

Bn —> @ a.s. as n — 0.

Furthermore we need the following assump-
tions on the slow variation of L to ensure the
asymptotic normality of a, and G,.

(SR1) VA>1, LL((’\’)) = 0(g(t)) as t —> oo,
(SR2) VA> 1, LL((”)) K(\)g(t) as t — oo,
(SR3) VA>1, LL((/\t)) 1 = o(g(t)) as t — o0,
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where g is a positive function such that g(¢) — 0
ast — 0o0. The assumptions of slow variation with
a remainder term (SR1-3) were introduced in [21]
(for a general review on slow variation with a re-
mainder and its applications Ref. [22]).

THEOREM 3. Assume that (F), (M1) and (K) hold
with k = O(m) and m//n — 0. Then if L is
(SR1-3) with g nonincreasing and

\/_g( (S"’:m)) 2,0 as n—> oo, then

(2.1) l/&—m(an - a) LN(O,I) as n — 00.

THEOREM 4. Assume that (F) and (K) hold.
fFl1 < m < n and k/y/n—0 (n— )
or m = m, satisfies (M1) with k = O(m)
(n — ), L is (SR1-3) with g nonincreasing and

x/ﬁy(H( e

) as n— o0, then

(22) L (8, ) L N(0,1) 250 —co.

3. Proofs

Let {en, n > 1} be a sequence of i.i.d. unit ex-
ponential random variables and denote by S, =
e1+ -+ ey, n > 1, their partial sums. The fol-
lowing lemma gives a representation of the expo-
nential k-record values in terms of the partial sums
Sp,n 2> 1.

LEMMA 1. Let k be a positive integer, then
{e®(n), n>1} £ {8,k n > 1}

ProorF. The Theorem 1 in [3] (Ref. also Lemma 1
in [2] ) implies that the sequence {e(¥)(n), n > 1}
is a Markov chain with transition probabilities

P (e(k)(n +1) > zle®(n) = y) =

ezp{-k(z -9)}, >y,
1, z<uy.

and initial probability
P (e(")(l) > z) = ezp(—kz), = > 0.

Since the same holds for the sequence {S,/k, n >
1}, it follows that

{e(")(n), n> 1} d {Sn/k, n 21}

This establishes our lemma. O



We may assume, without loss of generality,
that the original probability space carries, in ad-
dition to the sequence {X,, n > 1}, a sequence
{en, n > 1} of i.i.d. unit exponential random vari-
ables (since h is continuous, we may take e, =
h(Xy)). Let {k,, n > 1} be a sequence of positive
integers such that 1 < k, < n, we consider the
double array {X (ki)(i), t>1,7> 1} of k-records.
Now by Lemma 1,

{e(k")('n—'r)a 0<r< n} L4 {SZ_T, 0<r< n}
n

Since h is continuous it follows that H is strictly

increasing and

{X("")(n— 7), 0<r< n} 4

{H (5;:) L0<r< n}
So from now on we shall assume without loss
of generality that X(¥»)(n —r) = H(Sn—r/kn), for
n>land 0<r<mn.

we state two lemmas related to the slowly vary-
ing function L in (F).

LEMMA 2. For every slowly varying function [
logl(z)

———= — (0 as z — 00.

logz

ProoF. Ref., e.g., [23], Proposition 1.3.6, p. 16.
0

LEMMA 3. Assume that (F) holds. Then
(i) log H(z) = az + log L'(e*), for 0 < z < o0;
(ii) log L'(z) ~ alog L(R*(z))
ProOF. Suppose that (F) holds. We prove (i).
Set R(z) = z?l:‘/L(:c). Note that h(z) = log R(z).
It follows that R is regularly varying with a pos-
itive exponent é. Hence (Ref., e.g., [23], Theo-
rem 1.5.12 p. 28) its generelized inverse R (z) =
z*L'(z), where L' is a slowly varying function.
Now H(z) = R (e%) and

log H(z) = az + log L'(¢%), for 0 < z < oo.

We show (ii). Noting that R(R(z)) ~ =z
as £ — 00, we have L’%(a:)/L(R“(z))——»I as
£ — oo and

log L'(z)
alog L(R-(@) U

as £ — 00. Our assertions are established. O
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To simplify the proofs, we introduce some no-
tations:

Aflz — aSn‘Sn—m

m

k S. Sn—

2 _ ’ ny _ ’ n—-m
Al = —{logL(exp—-k) logL(exp——k )},

’

1 _ d Em .
Bn = _'n(m) o Sn—1+1,
E & Sn—i
2 _ ! n—i+1
B, = () ;:1 log L' (exp % ).

It follows by (i) of Lemma 3 that

(3.1) a, = Al + A2,

(3.2) B, = Bl + BZ.

we implicitly make use of (3.1) and (3.2) in the
proofs of Theorems 1-4.

Proor oF THEOREM 1. Assume that (F) and
(K) hold with ¥ = O(m). We first prove that
42 L, (n —> o0) under (M1) and A2 — 0 a.s.
(n —>o00) under (M2). The Karamata Represen-

tation Theorem for slowly varying functions (Ref.,
e.g., [23], Theorem 1.3.1, p. 12) implies that

k S
2 _ LA
(3.3) AL = m{n(exp k)
Sn-m koS (1)
oS5} + [ 0
= Cn+fn’

where 7 is a bounded function or [a, cc) such that
n(z) — ¢ (z — 00, |¢| < o), and ¢ is a contin-
uous function on [a,c0) such that e(z) — 0 as
z —00. Under (M1), the law of large numbers
yields

Sn-m

(3.4)

—> 00 a.s. as n — 0,

(3.5)

Sn
— — 00 a.5. as B —> 0.
m

Hence (, — 0 as. as n—o00. Therefore, it
remains to show that £, -0 under (M1) and

&n — 0 a.s. under (M2). write £, as

Elr®
GOl = —|[or, e,
Sn - Sn—m +
< = sup Ie(e )I .

Sn—m S,
—F St



Now (3.4) imply that sup Sn=m 1< Sa le(e?)] — 0,
a.s. as n — 00. Since

m m

(3.7)
the assumption (M1) and the law of large numbers
imply again that

S‘n - Sn—m P

(3.8) — " filasn—o0.
m

Denote by {6, =en, —1, n > 1} the centred se-
quence of {e,, n > 1}. The moment generating
function of 6, is

®(t) = E(exp(th),
exp(-1)

1-t¢

, for t < 1.

Hence the assumption (M2) and the Theorem 2.1
in [24] give
Sn - Sn.—m

39) ——— —1las. asn—o0.
m

Finally, relations (3.8) and (3.9) yield respectively
(i) and (ii). The theorem is established. O

ProoF OF THEOREM 2. Assume that (F) and
(K) hold. We first suppose that 1 < m < n is
fixed. Note that n(m) ~ nm (n — 00), the strong
law of large numbers yields for 1 < ¢ < m,

(3.10) Snoitr 1o e
Consequently

Bl — @ as. as n — 0.

Therefore it remains to prove that B2 — 0 a.s. as
n—00. Since 1 < m < n is fixed, this reduces to
showing that

klog L'(exp &“T‘ﬂ-)

n(m)

— 0 a.s. as n— 00,

for 1 < i < m. Rewriting the argument of the last
limit as
log L'(exp S"—_k'ﬂ) Sn—it1

3.11 ; ’
(3.11) log exp §L§ﬁ n(m)
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the first term converges to 0 almost surely by
Lemma 2, the second one converges to — almost
m

surely by (3.10).
Assume (M1). Since

o - mS. i+1
B] -2 n—i
" m Z—; n(m) ’
is a Cezaro mean with the summand tending a.s.
to 1 by (3.10), consequently Bl — a a.s. as
n —> 00, Now write

g2 = Ly~log L(exp 22342) mS, iy
" m& logexp % n(m)

We see again that B2 is a Cezaro mean with the
summand converging to 0 by (3.11), it follows that
B2 —0as. asn—oc0. O

ProoF oF THEOREM 3.  Assume that (M1)
holds. By (3.7) and the central limit theorem for
ii.d. random variables

_\Q_Tn_ (A,ll—a) -—{LN’(O,l) as n— 00.

Now assume that L is (SR1). It is well known
that (Ref. [22], Theorem 2.2.2) log L has represen-
tation

log L(z) = 1(z) + [ O(9s(0) as 2 —oo,
where 7(t) = ¢+ O(g(t) (J¢] < 0,2 —00). In

view of (i) of Lemma 3), log L’ can be represented
as

’ / R (@) di
log I'(z) = n'(z) + /1 0g(t))F a5 2 — o0,

where 7'(z) =
00,z — 00). Hence

¢ + 0(g(R=(2)) (¢ <

logL'(e”) = ¢ +O0(g(H(2))) +

[ owan,
¢ +0(g(H() +
Joy OC0E@N 108 A ),



as £ — 00. It follows by (3.3) that

- Hob(u()
o)
6 = = for OOUHO)IoEHE)

as n —> 00. Therefore our assertion will be proved

if we show that \/mcn—ziao and /m &, 2,0 as
n— 00. Since k = O(m), g is nonincreasing and

m(a(5=) 2o,

we have v/m(, 2, 0as n—>00. Now we take care
of \/m £,. We have

\/_ Ifnl < O(l)an

Vvm g(H(t)),

sup
M<t<_n

Under the assumption that ¢ is nonincreasing, we
obtain

vm €] <

as n — 00. Now the assumption

and Theorem 1 imply that /m (, 2.0 as
n— co. The proof in the cases (SR2-3) is similar
to that under (SR1), We therefore omit it. O

To prove the asymptotic normality of 3, we

approximate the main term in (3.2) by 7"

LEMMA 4. Assume that (F) holds. Then
(i) if 1 £ m < n is fixed

Bl = %Sn +Op<%) as n — 00;
(ii) if (M1) holds

B! = %Sn+0p(%) as n — oo.
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Proor. This amounts to evaluating for 1 < ¢ <
m < n,

Sn

mn

S Sn _Sn—m +

mn

(m-1)
2nn(m) "

= O,,(l) as n — 00,
n

_ M n—i+1
n(m)

by Markov’s inequality. Hence

=18 Sn—i
1 POn _ YIn 141
By, S a; mn  n(m)
- Sn - Sn—m m(m - 1) )
B a( n 2nn(m) Sn);
m
= o(3),
1\, .
= 0Op <—) if m is fixed ,
n
as n—o00. This completes the proof of the
lemma. O

Proor or THEOREM 4. Applying Lemma 4 and
the central limit theorem for i.i.d. random vari-
ables, we obtain for 1 < m < n fixed or m = m,,
satisfying (M1) with v/m/n — 0 as n — oo,

vn

Q

We will be done if we show that

(B - a) <, A0,1)

as n— 00,

(3.12) VaB:2i0asn—o.

Assume that L is (SR1), 1 < m < n is fixed
and k//n — 0 (n — ). Since n(m) ~ nm
(n — o0), it is sufficient to prove that

i-logL'(e —-’i—""—l-) 2,0 as n— oo,

vn k
for 1 < i < m. In view (3.12) and the fact that g
is nonincreasing, we have

S.
l; n—i+1
—\/_ log L'(exp A —)=

e lerobn(22)]

sn—iil
k %

Zihhy  OWE®)dIog HG) <

% {c’ +0 [y(H (&T_m»]} ¥



1
Vg BGon®)

L o gt

as n —> 00. Now the assumption
ﬁg(H(Sn];m>) —p->0, as n — 00

implies that

Os(

(3.13) —% log L'(exp %) 2.9

as n—o00 and for 1 < 7 < n. When m = m,,
satisfies (M1), v/nB2 is a Cezaro mean with the
summand tending to 0 in probability by (3.13),
consequently (3.12) is true. The proof in the cases
(SR2-3) is similar. O

4. Examples

We give some examples of distributions satisfying
(F) and demonstrate the applicability of the pre-
vious results.

ExAMPLE 1. Let 1 — F(z) = cz~/*(logz)?, for
z large and ¢ > 0, 8 # 0. It follows that
L(z) = c(logz)? and logL(z) ~ floglogz as
z —>00. Therefore (2.2) is valid for 1 < k < n
fixed or sequences k = k, — oo satisfying (K1)
with k = o(y/n) as n — oo.

Now L is (SR2) with g(z) = 1/logz and
K()) = 6@logA. Hence by (i) of Lemma 3,
Lemma 2 and the law of large numbers,

Sn—m k .
g(H ( 5 )) ~ o Consequently (2.1) is true

for sequences k = k, — oo satisfying (K1) with
k = o(4/n) as n — oo.

EXAMPLE 2. Let 1 — F(z) = z~Y%*(c + dz~°) as
z —> 00; ¢,d,8 > 0. In this case L(z) = ¢ + dz~¢
and log L(z) — logc. Hence (2.2) is true for 1 <
k < n fixed or sequences k = k, — oo satisfying
(K1) with k& = o(4/n) as n — oc0.

Here L is (SR1) with g(z) = z~% but it is
more convenient to consider directly vk A2. It

3/2
follows that vk A2 = O Lkl (n — ), by
P\ on

the law of large numbers. Therefore (2.1) is true
for sequences k = k, —> oo satisfying (K1) with
k= o(y/n) as n — 0.
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EXAMPLE 3. Let 1 — F(z) = cz~Y/%exp klog z)’],
for z large and ¢ > 0, 0 < § < 1. Thus L(z) =
cexp [(log z)o]. We see that log L(z) ~ (logz)’ as
z — 00. Hence if 0 < 6 < 1/2, (2.2) is valid for
1 < k < n fixed or sequences k = k, — oo satis-
fying (K1) with k = o(y/n) as n — oo.

Clearly L is (SR2) with g(z) = 1/(logz)*~?

and K(\) = flog). T

k 1-¢ k
(£) s

~

Hence ¢ (H

by (i
pom as n— 00 by (i) of Lemma 3,

Lemma 2 and the law of large numbers. It fol-
lows that (2.1) is true for sequences k = k, — o0

satisfying (K1) with & = o(n;_:g%> (n—00,0 <

1
0(5)

5. Simulation and numerical results

To validate the theoritical results of section 2, we
give some numerical results to show how the esti-
mates a,, and 3,, behave in practice. The k-record
values are obtained by generating exponential ran-
dom variables and then applying the function H to
their sums. We consider here the Pareto distribu-
tions of the form 1— F(z) = ez'/* (1 + 2~1), where
a,c > 0.

5.1. Number of k-records

The expected number of k-record values and its
variance are related to the sequence k = k,, in the
following manner. Set m(*~)(n) = k, Yok, 1/1
and vk (n) = mn)(n)— k2 Y7, 1/i2 forn > 1.
Denote by N(*)(n) the number of k-record val-
ues in the sequence Xi,...,X,. Then (Ref., e.g.,
Theorem 3.2 in [6] and Lemma 2.1 in {8]),

EN®) () = mE)(n),
Var(NEn)(n)) = v*»)(n) for n > 1.

TABLE 1. The expected number of k-records in a
sample of size n for a given sequence k = k,,. The
notation [z] stands for the integer part of z.



n | k=k, | mB(n) | v")(n)
flogn] | 3.86 1.29
10 | [»%3] | 429 | 1.26
[n0F 3.87 0.88
llogn] | 1342 | 3.01
100 n> 23.58 3.75
n"® 37.42 3.61
flogn] | 31.21 4.97
1000 | [n°° 108.20 8.81
n°® 347.58 | 12.61

5.2. Consistency of a,, and 5,

The tables 2—-4 show that the estimates a,, and G,
behave quite well for a reasonable number of k-
records (see Table 1). For ¢ = 1, the statistic §,
is more precise than a, in estimating a. In the
other hand, when ¢ > 1, the estimate 3, tends to
over-evaluate the value of a for n < 10.

In the tables 2-4 below, n represents the num-
ber of k-records, a, the first estimate of o for a
given n, 8, the second estimate of o for a given n,
o the theoritical standard deviation for a given
n and o(ay, or 8,) the standard deviation of 5000
estimates of .

TABLE 2. The sequences k, = my = [logn].

n|lc| a| a o, | o(ay)
5 0.469 | 0.500 | 0.479
10 1105|0464 | 0.353 | 0.332
15 0.491 | 0.353 | 0.349
5 0.973 | 1.000 | 0.978
10| 1 (1.0 { 0.989 | 0.707 | 0.695
15 -1.008 | 0.707 | 0.719
5 0.988 | 1.000 | 1.005
10 | 2| 1.0 [ 0.982 | 0.707 | 0.706
15 1.013 | 0.707 | 0.731
5 2.047 | 2.000 | 2.076
10| 1| 2.0 (1.998 | 1.414 | 1.436
15 1.977 | 1.414 | 1.376
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nj|jc| a Br On a(ﬂn)
5 0.508 | 0.223 | 0.211
10111]10.5]0.511 | 0.158 | 0.152
15 0.502 | 0.129 { 0.131
5 1.004 | 0.447 | 0.442
10{1|1.0]1.011 | 0.316 | 0.318
15 1.003 | 0.258 | 0.265
5 1.135 | 0.447 | 0.469
102 ]1.0|1.138 | 0.316 | 0.344
15 1.097 | 0.258 | 0.276
5 2.009 | 0.894 | 0.899
10f1{2.0(1.992 | 0.632 | 0.632
15 2.002 | 0.516 | 0.520
TABLE 3. The sequences k, = m, = [n%%%].
n|lc| a an o, | oan)
5 0.471 | 0.500 | 0.491
10 (14 0.5}0.491 | 0.500 | 0.501
15 0.496 | 0.500 | 0.501
5 0.481 | 0.500 | 0.491
10| 3} 0.5 0.505 | 0.500 | 0.515
15 0.506 | 0.500 | 0.510
5 0.964 | 1.000 | 0.996
10 [ 1 (1.0 | 0.969 | 1.000 | 0.969
15 1.009 | 1.000 | 0.984
5 1.979 | 2.000 | 1.988
10 (1]2.0}2.028 | 2.000 | 2.015
15 2.006 | 2.000 | 1.983
nilc| a| B on_ | 9(Bn)
5 0.509 | 0.223 | 0.214
1011]0.570.501 | 0.158 | 0.163
15 0.499 | 0.129 | 0.129
5 0.613 | 0.223 | 0.246
1013 70.5}0.557 | 0.158 | 0.170
15 0.538 | 0.129 | 0.135
5 1.006 | 0.447 | 0.436
1011]1.0]0.995 | 0.316 | 0.314
15 0.999 | 0.258 | 0.257
5 2.006 | 0.894 | 0.889
10]112.0(2.001(0.632 | 0.627
15 2.004 | 0.516 | 0.517

TABLE 4. The sequences k, = my, = [n

0.49] )



nlc| a an on | o(ag)
5 0.579 | 0.353 | 0.325
1011 0.5 0.530 | 0.228 | 0.0262
15 0.469 | 0.228 | 0.276
5 1.068 | 0.707 | 0.667
1011 1.0 1.015 | 0.577 | 0.547
15 0.996 | 0.577 | 0.583
5 2.014 | 1.414 | 1.362
10{1]2.0(1.987[1.154 | 1.120
15 1.984 | 1.154 | 1.140
njlcl| a B on | 0(Bn)
5 0.540 { 0.223 | 0.209
10]110.5](0.5220.158 | 0.155
15 0.508 | 0.129 | 0.125
5 1.034 | 0.447 | 0.437
10(111.0]1.009 | 0.316 { 0.313
15 1.002 | 0.258 | 0.255
5 2.000 | 0.894 | 0.884
1011)2.0(1.994 | 0.632 | 0.635
15 1.997 | 0.516 | 0.513
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The Point-Process Approach To The Directional
Analysis Of Extreme Wind Speeds

Bortot, P.

Universita di Padova, Padova, Italia

In this paper the problem of directional modeling of extreme wind speeds is discussed. An adapted
version of the method developed by Smith in 1989 [1], based on a point-process view on extreme
value problems, is proposed. Techniques are considered to solve difficulties deriving from serial
correlation and angular dependence. The procedure is illustrated with an application to real data.

1. Introduction

The problem of directional modeling of extreme
wind speeds, although rarely discussed in literature,
plays an important role in civil engineering. In fact,
the directional analysis of the extremal behaviour of
winds provides engineers with useful information for
an accurate choice of building orientation and leads
potentially to considerable savings.

The problem has already been dealt with by Coles
and Walshaw [2]. They employ a modified version of
the r largest annual events model in which the
parameters of the Generalized Extreme Value (GEV)
distribution are expressed as functions of direction. In
this paper our aim is to use recent developments in the
methodology of univariate analysis of extreme values,
suitably adapted, to obtain a model which takes into
account directional aspects of wind process. In doing
this we will partly follow the ideas proposed by Coles
and Walshaw.

2. Description of data

The data analyzed were collected at the
meteorological Military Air Force station in Trieste,
Italy. The station is situated at 8m above sea level; the
anemometer reaches a height of 39m above ground
level. The data consists of measurements of the
direction and the average intensity of wind: averages
are calculated over the ten minutes preceding the
recording which is limited to the so-called synoptic
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hours (00, 03, 06, 09, 12, 15, 18, 21). The records
cover a period of 23 years: from the 1% of January
1951 to the 30t of December 1973, nominally 67200
observations. Of these values, 1361 are missing from
periods when the equipment was out of service. Wind
speed is measured in knots. There are 36 directional
sectors: the angle is recorded to the nearest 10° in
clockwise orientation starting from North.

Like most environmental data, the time series of
wind speed departs from iid sequences in two respects:
first, in being heavily seasonal and second, in
exhibiting short-range dependence due to the
persistence of the weather leading to clustering of
high-level exceedances. Seasonality and seral
correlation compel us to adjust the tools derived from
classical extreme value theory, since it concems
maxima of independent, identically distributed random
variables.

To assess the connection between wind intensity and
sector of origin, a boxplot of wind mean speed has
been constructed for each direction (Figures la and
1b). As we are only interested in extreme values, we
have discarded all the observations below 10 knots. It
seems clear that the extremal behaviour of wind is
strongly influenced by direction: the North-East sector
being the most affected.

3. The point-process approach

The method employed in this analysis is an adapted
version of the one developed by Smith [1] in the study
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Fig. 1b. Boxplot for wind speeds in each direction (190°-360°)

of ground-level ozone concentrations. Itis basedon a
point-process approach to extreme value problems,
- which was originally introduced by Pickands [3] and,
in more recent years, emphasized in the books of
Leadbetter, Lindgren and Rootzén [4] and Resnick
{5]. In its application to ozone data, the method has
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shown a considerable versatility and a wide
applicability. Moreover, it includes all the other
methods of analysis of extremes (the traditional
method, the Peaks over Threshold method and the
method based on the r largest annual events) as
special cases.

Let X,,X,,... denote an iid sequence with common
distribution function F and M, =max(X,..,X,).
Suppose that there exist normalizing sequences
a,>0, b, such that, as n— o,

P{(M,-b)a,<x} = F'(ax+b) > H(x),
where H is the Generalized Extreme Value
distribution, i.e.

H(x;p,0.k) = exp[~{1~k(x - p)[o}"]
valid over the range {x:1-k(x-u)/o > 0}
0>0, —o< i <o and —0 <k <+,

Let Y =(X,-b,)/a, and P, denote the point
process on the plane with points at (i/(n+1),Y,)),
i=1, ..., n. Then, under a topology which essentially
excludes points whose ordinates approach the lower
endpoint of distribution H, P, converges, as # —> ©, to
a nonhomogeneous Poisson process P with intensity
measure
Af{(t,1,) x (x,0)} =(t, = )[l-k(x-p)/cl" (3.1)
whenever 0<1, <1, <1 and 1-k(x-g)/o > 0.

This result may be regarded as fundamental in
yielding all relevant asymptotic distributional
properties. For instance, the limiting conditional
probability that ¥, >u+y given ¥ ,>u is given by

the ratio between the mean number of points that P
has on (0,1) x (u+ y,) and the mean number of

points on (0,1) x (u,). By using (3.1) we obtain

ky

[-k(u+y-mjot"
C—-ku+ku

3.2
[1-k(u-p)/ot* G2

1"

=[1-

which is the Generalized Pareto distribution with
shape parameter k and scale parameter o —ku + k4.

It should be noted that the parameters of the
intensity measure of the process P are the parameters
of the maximum limiting distribution. In an
application to real data this result enables us to use the
Poisson process P to represent the time series and, in



this way, to obtain more precise estimates of the
parameters of the annual maximum distribution.
Nevertheless, seasonal variation and serial correlation,
mherent in wind data, make it impossible to apply the
approach above described directly, since, so far, it has
been confined to iid sequences.

4. Seasonality and serial correlation

Smith [1] suggests overcoming the seasonal problem
by splitting up the year into a number of periods, each
of which is modelled separately: that is, allowing all
the parameters of the process P to be seasonally
dependent. However, to avoid further complicating the
analysis, we choose not to take seasonality into
account, believing that this simplification can be
justified.

With reference to serial dependence, since extreme
values tend to occur in clusters, a technique
extensively employed in this kind of application is to
try to identify clusters of high-level exceedances, with
the intention of concentrating on cluster maxima for
the rest of the analysis. There is no umiversally
accepted method for identifying clusters. The one
followed by Smith and adopted here consists of fixing
a threshold u and a cluster interval z*. Two adjacent
exceedances of u are deemed to lie in the same cluster
if the interval between them is less then 2°. If the time
interval between them is longer than z*, it is assumed
that the old cluster has finished and a new one begun.
In this way clusters are defined and only the largest
observation within each of them is retained for fitting.
Cluster interval and threshold are chosen empirically.
The technique that we suggest for this choice is to
assess the goodness of fit of the model for different
values of z* and u over a reasonable range and, finally,
select the smallest of the couples which yield
satisfactory results. In fact, if a certain value of z*
ensures independence between clusters, then this
independence is also ensured for all higher values of
z*. Nevertheless, the increment of z* reduces the
number of independent observations available, with
the twofold effect of: 1) raising questions about the
validity of the asymptotic arguments justifying
approximations based on the Poisson process P;
2) reducing the estimation precision. Similar
arguments are valid for u.

The properties of the point-process approach can be
employed to test the goodness of fit of the model on
varying z* and u. A first test is based on equation (3.2)
and consists of graphically assessing how closely the
excesses over the threshold « fit a Generalized Pareto
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distribution with parameters ¥ and o —ku+ku. It is
possible to carry out an alternative graphical test
using GEV distribution to transform annual maxima
to uniformity before plotting them against the
empirical distribution function.

5. Directional components

Following ideas by Coles and Walshaw, we choose
to calculate the directional components of velocity of
each recorded speed and then to model wind
components. This is because each recorded speed,
although associated to a certain direction, has a
contribution from all directions. This procedure is also
Justified by the fact that we work with mean speeds,
each of which is the result of speeds coming from a
number of different sectors.

So, let Y, denote a mean speed of magnitude Y in
direction . The component of velocity of Y, in
direction ¢ is Y cos(a — @) if |o—@ modulo 7<7/2;
otherwise it is zero.

Using the resolution into directional components we
obtain 36 complete series of wind intensities: one for
each sector. As with the original time series, the 36
sequences feature a high short range autocorrelation.

6. Direction as a covariate

We could easily apply the point-process approach
to the directional study of Trieste data by fitting the
model described in section 3 separately to the
observations of each of the 36 sequences.
Nevertheless, since data are recorded on a fine
directional scale, we can obtain a considerable gain in
efficiency modelling the parameters of the process P
(k, 4 and o) as functions of direction. This also has
the advantage of smoothing annual maximum speed
distributions across directions in accordance with the
features of the physical process.

Suppose that the annual maximum wind components
in direction & (& €A ={10°, 20°, ..., 360°}) have
GEV distribution with shape parameter k,, location
parameter 4, and scale parameter o,. As suggested
by Coles and Walshaw, a natural choice is to express
each of the three parameters as a sum of the first
terms in a Fourier series. Therefore, let

n
k,=a + ZbL, cos(ta—c,,),
=1



.
H,=a,+ Y by cos(ta—c,,),
=

3
O, =a,+» by, cos(ta—c,,).

=1

(6.1)

The parameters in the model are now 4,,, b,, and ¢, ;
t=1,..,n; m=1,2 and 3. In order for the model to

be well-defined we have to restrict 5,20 and
0°<c,,<360°. We have also to exclude models in
which b5, =0 for some m and ¢ with the
corresponding ¢, , # 0°, since 5, =0 corresponds to
the absence of the #-th harmonic term and, in this case,
the value of ¢,,, does not influence the model.

7. Angular dependence

Since we have chosen to model GEV parameters as
functions of direction, we can not ignore the
dependence of extreme wind speeds across directions.
This dependence, which Coles and Walshaw call
angular dependence to distinguish it from temporal
dependence discussed in section 4, is a consequence of
the fact that storms tend to give successive high
observations in a number of different directions.
Moreover, the resolution into directional components
itself induces dependence across directions.

To solve the problem of temporal dependence we
filter each of the 36 sequences of wind components
following the rule described in section 4 and using a
cluster interval z* = 24 hours and a threshold x=11
knots. These values derive from a previous analysis
which was carried out adopting the point-process
approach but ignoring directional aspects. They are
the smallest couple ensuring a good fit of the point-
process model to Trieste data. From this operation we
obtain 36 series of cluster maxima, each being
independent temporally; however, dependence across
directions remains.

We have overcome this further obstacle following
ideas proposed by Smith [6] for dealing with spatially
dependent data. It conmsists of constructing the
likelihood function as if there were independence
across directions. To account for angular dependence,
standard errors of parameter estimates and likelihood
ratio test are suitably modified.

Let G be the observed information matrix under the
model which assumes independence. If the
independence assumption were valid, G could be
used to approximate the covariance matrix of
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maximum likelihood estimates. Smith shows that, to
take account of dependence, this approximation should
be replaced by G'VG™, where V is the covariance
matrix of log-likelihood derivatives. If years are
independent, V may be obtained empirically. Similar
arguments are applied to adjust the usual asymptotic
distribution of likelihood ratio test for model
discrimination.

8. Directional model

In adapting the method proposed by Smith to our
study we assume stationarity from vear to year, since
the previous analysis, ignoring direction, proved that
there was no (linear) trend in the data.

Let M, denote the length of observation in days in
year i (i=1, .., 23), N, the number of cluster
maxima in year i and direction @ (@ €A)and ¥,
(j=1, .., N,) the cluster maxima in year i for
direction . Let # denote the fixed threshold (#=11
knots). Following the discussion of previous sections,
we assume that for direction &, in any given year, the
exceedance times of threshold # and cluster maxima
form a nonhomogeneous Poisson process with
intensity measure given by (3.1) with 4,,0, and %,
replacing #, o and k. Then, the likelihood function in
direction & is:

= i —ﬁ - - Vkg Y |
La—g[eXp{ e (AT 1)/o, )
ﬁ 'o'.l"(l'ka(ytav‘/‘a)/o'a Yaiy] 3.1)

where k,,4, , and O, are defined by equations (6.1).

Assuming independence across directions, the
log-likelihood is /=), ,InL,. Maximum likelihood
estimatesof a,, b, and ¢, (t=1, .., n,;m=1,2,3)
are obtained by maximizing numerically /.

The quantities of greatest interest for engineers are
return levels. The T-year return level in direction & is
the 1-7" quantile of the annual maximum
distribution in direction & ; it is given by

Gra =ty + 2= (1= (-In(1-T)].

It should be noted that g, is the quantile of the

distribution of the annual maximum component in
direction & .
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9. Resuits

The procedure followed for identifying the model
which yields the best fit to Trieste data consists of
varying the number of harmonic terms in equations
(6.1) and comparing fitted models using likelihood
ratio tests modified in the manner advocated by Smith.

The model chosen with this procedure has three
harmonic terms for the location parameter, two for the
scale parameter and for the shape parameter. Results
are shown in Table 1. Standard errors of parameter
estimates (shown in parentheses) are adjusted for
angular dependence. The parameters ¢,,, (1=1, ....n,;
- m=1, 2 and 3) are expressed in radians.

It is not possible to reduce the number of harmonic
terms for the three parameters, and, in particular, for
the shape parameter, without suffering a heavy loss in
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terms of goodness of fit of the model.

The last question concerns assessing the fit of the
chosen model to data. For each of the 36 sectors
separately we have employed the two tests outlined in
section 4: one based on the Generalized Pareto
distribution and the other based on the GEV
distribution. The plots (not shown) indicate a good
agreement between expected values and observed
values.

An alternative technique is proposed by Coles and
Walshaw. It consists of examining how closely
maximum likelihood estimates of k,, 4, and O,
follow the corresponding values when each sector is
considered separately. Figures 2a, 2b and 2c¢ contain
such comparisons. In each plot lines join the
maximum likelihood estimates and the upper and
lower bounds of the 95% confidence interval, while
the plotted points represent the parameter estimates
when (8.1) is maximized on each sector separately. A
similar comparison has been made for the 50-year
return level (not shown). It is important to recall that
maximum likelihood estimates derived from the
separate sectors analysis have larger standard errors
than those of the covariate model. For this reason one
or more points outside the confidence interval do not
necessarily indicate a lack of fit of the model. The
plots show no systematic deviation of covariate model
estimates from separate sectors analysis estimates.
Therefore, we can conclude that the chosen model
seems able to capture the variations induced by
direction on annual maximum wind component
distribution.

10. Conclusion

In this application to wind data the method proposed
by Smith has confirmed the qualities shown in the
study of ozone concentrations. Besides ensuring
accurate resuits and requiring very mild assumptions,
it is a flexible tool and can be easily adapted for
handling complex features of real data.

The analysis has led to the conclusion that direction
heavily influences the extremal behaviour of wind. As
before mentioned, the proposed model seems to
accurately describe vanations across  sectors.
Therefore, it can be of great utility to civil engineers
for a correct assessment of wind impact on structures.

As a final comment, we recall that we have only
adjusted the point-process method in order to take into
account angular dependence, with no attempt to model
such a dependence. This would require the use of tools
derived from multivariate extreme value theory.



Table 1. Maximum likelihood estimates and standard errors of the selected model

Parameters Estimates

a -0.001 (0.009)

by 0.180  (0.017)

Shape cu 1659 (0.201)
parameter b 0.099  (0.034)
G2 0.637 (0.182)

az 22.225 (0.585)

by 8338  (0.233)

2y 1.137  (0.052)

Location bz 5.260 (0.174)
parameter C22 2.221 (0.096)
bas 2.287 (0.202)

C23 3.703 (0.084)

as 3.791 (0.281)

by 0711  (0.113)

Scale Ca 6.189 (0.343)
parameter by, 0.590 (0.137)
Ci2 3.047 (0.255)
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High Boundary Excursions Of Locally Stationary
Gaussian Processes

Braker, H.U.

Institut fiir Mathematische und Versicherungslehre, Bern, Germany

Let {X(t), t € T} be alocally stationary Gaussian process and f(t), ¢ € T a continuous
function, where T is a finite or infinite interval. An asymptotic estimate for small
probabilities P(X(t) > f(t), some t € T) is derived by approximating the density of
the first passage time and integrating over T. This work extends a result proven by
J. Cuzick, Ref. [5], for stationary Gaussian processes.

keywords: locally stationary Gaussian process, boundary crossing, first passage time

Let {X(t), t € T} be a Gaussian process (T =
[0,7), 7 < 00) and f(t), t € T a continuous func-
tion. We are interested in

P(X(t) > f(t), some t € T). (1)

The asymptotic behavior of this probability has
been studied during the last thirty years.

J. Pickands, Ref. [8], proved the following

Theorem 1 Let {X(t), t > 0} be a separable
stationary Gaussian process with

EX(t) = 0 and covariance function

p(h) = 1— 1/2R*[h|* + of|n}*) (h — 0)
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(0 < R< o0, 0< a< 2) such that p(h)logh —
0 as h — oo (Berman’s condition).
Ifu=u, = 00 as 7 — oo such that

rHa(Ru)z/"‘z,b(u) — 7 € (0,00)

then

P(X(#)<u, t<r1) — €7,
where P(z) = (27)"Y2z"1e=="/? and H, is a
constant depending on a only.

(Here we use the definition of H, given by Qualls
and Watanabe, Ref. [9], which is also used by
Cuzick and differs slightly from that given by
Pickands.)

The probability (1) is analyzed by splitting the
interval T into ’small’ intervals T, ¢ = 0,1,...
and approximating the probability for an ex-
ceedance of f(t) in T;. This suggests that only
the local behavior of the process is important
and that the assumption of stationarity might
be relaxed. Therefore S. M. Berman, Ref. [2],
introduced the concept of local stationarity:



Definition 2 A real valued separable Gaussian
process {X(t),t € T} is said to be locally station-
ary if

(1) EX(t)=0 and EX?(t) = 1

(i) There ezist a continuous function R(t),t €
T with 0 < inf{R(t) : t € T} < sup{R(2t) :
t € T} < oo and a strictly increasing con-
tinuous function K(h),0< h < hg (ho > 0)
with K(0) = 0 such that

E(X(t+ h) - X(¢))?

R (T RO

uniformly int c T.

So the covariance function of a locally stationary
Gaussian process has the form

p(t,t + k) =1—1/2R*()K?(|h|) + o( K2(|])).
(2)
We will restrict ourselves to the case where
K?(R) is regularly varying at zero with index
a (0 < a < 2). It can be shown that such a
process has continuous sample paths with prob-
ability one.
Theorem 1 was generalized by J. Hiisler, Ref. [7],
for locally stationary Gaussian processes and
nonconstant boundaries.

In Theorem 1 both the length of the time interval
(r) and the boundary u = wu, must tend to oo
in order to obtain a nondegenerate limit for (1).
H r(< o0) is fixed and 4 — o0 or if r — oo
and the boundary is very high, then P(X(t) >
u, some t < r) — 0 and the question about its
convergence rate arises.

Assume for the moment that X(-) is stationary.
Then by Theorem 1

P(X(t) > u, some t < ) = rH,(Ru)¥/*y(u)

(3)
for large u (r < o). Cuzick showed that (3) is
indeed the correct convergence rate. He also ob-
tained the convergence rate for the case, where
the boundary is a function of t. His result can
be extended for locally stationary Gaussian pro-
cesses in the following way:
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Theorem 3 Let {X(t), t € T} be a separa-
ble locally stationary Gaussian process with co-
variance function (2), where R*(-) is uniformly
continuous on T and K?(-) is regularly varying
at zero with indez a, 0 < a < 2 such that
K-1(.) ezists in a neighborhood of zero. Let
(fa(t), t € T)new be a sequence of continuous

functions satisfying (f1)-(f3):

(f1) af 1)
wer ™Y 3,
(72)
[Uh Dy o, veso
where Ay (t) = K=1(1/R(t)fa(t)).
(13)

(fa(t+ TAg(t))) - fa(t)) fa(2) d 9(t,7),

uniformly int € T and 7 in compact sets of
IR, where g(-,-) is a function satisfying

sup lg(t,7)[ < 00, VB, 0<6< .
teT

Irl<e
Then

AiP(X(t) > fal(t), somet € T) _, 1

n— oo
with

M= [ Eolate, ) 2 o
+§‘(fn(0)) ’ l(g(o,l) > 0)
+&*(fn(7)) - 1(r < 00 and g(r,—1) > 0).

(4)

In (4) ®*(z) denotes the tail probability of the
standard normal law and the functional H,(w)
(0 < a < 2) is defined as follows:

Let {X4(7), 7 > 0} be a Gaussian process
with X,(0) = 0 as., EXo(7) = —72/2 and



Var(Xq(7) = Xa(@)) = |7 — p|*. For continu-
ous functions w(7), 7 > 0 define

Jo° P3(w,8,s)e* ds

H3(w,0) =
(0. 0) = T e ar

where

P:(w’ 9’ s)
= P(Xa(r) > s+ |w(r)|, some 7 € [0,6]N Ia)

with

I = {0,a,2a,...}, a>0
271 [0,00), a=0.

H2(w) is defined as

H3(w) = limsup H3(w, 0).

6— o0

Let

Co = {w:w continuousand monotone on
[0, ) and w(0) = 0}.

The following Lemma was proved by J. Cuzick.
Lemma 4 If w € Co then

a)
H3(w,0) — H(w),
600

untformly in 0 < a < 1.

b) 0 < Hi(w)<o0,a2>0, H&(0)= H3

c) H3(w,0) and HE(w) are jointly continuous
in a and w, where on Cq a sequence (Wn)neN
is said to converge to w iff

1) wn(1) = w(7) uniformly on compact
sets

2) (Joo et ar) ™
— (Jo e iar)
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The conditions on (fn)new imply that g(z,7) is
linear in 7, i.e. g(t,7) = C(t)7 with some conti-
nuous and bounded function C(t), t € T. There-
fore H%(g(t,-)) is well defined, continuous in ¢
and 0 < inf, H23(g(t,-)) < sup, H3(g(t,")) < oo.
For w(r) = ¢t (c € R) one can show that
Hy(w) = 1/2 and Hz(w) = ¢(c) - el &*(le]).
Remarks:

- Cuzick’s result can be obtained as a special
case of Theorem 3 by letting X(-) be sta-
tionary with R(t) = 1.

- If X(-) is stationary with R(t) = R,
K?(h) = h* and if 7 < 00, fa(t) = un, then
An = T Ho( Run)? 9 (uy).

- Note that Berman’s condition is not neces-
sary, since we are only interested in small
exceedance probabilities.

Let us consider two examples of sequences
(fn)nen which satisfy conditions (f1)-(f3). Sup-
pose that K %(-) has the special form K2(h) = h*
and let r < 00. (f2) follows then from (f1).

Example 1: f,(t) := n+ f(t) with f(-) positive
and continuously differentiable on [0,7]. Then

(7) {0, a<?2
g, 7) = _1;{% _
TR, =2

Example 2: fn(t) := nPf(t) (8 > 0) with
f(t) > § > 0,Vt < r and continuously differ-
entiable. Then

0, a<l
g(t)T) = Tszzt’stfzts’ a = 1
0o, l<a<?2

Here (f3) is satisfied for a < 1 only.

Sketch of the proof
As already mentioned, the excursion probabili-
ty (1) is analyzed by splitting the interval T



into subintervals T; = [t;,t;41] of ’appropriate’
length. The split points are chosen as follows:

to = 0

tiy1 = L+ 0,0,(8), i>1,

where 8, — oo ’slowly’ such that for instance
0,An(t) — 0 uniformly in t € T.

Letfor:> 0
A; = {X (%) < fa(ts), X(t) > fa(t), somet € T}},
a'rgmjn{fn(ti): fn(ti+1)}’

where t; =
Then

P(X(t) > fa(t), somet € T)

P(U (X 2 v 4))-

One can show that {X(t;) > fu(t:)} (1 <4 <
I) is either a subset of A;_; or of A;;; or its
probability is of smaller order than P(A;) (I =
sup{t > 1:t; < r}). However, {(X(0) > fn(0)}
and {X(r) > fa(r)} for 7 < oo are not negligible
if fa(0) < fn(t1) and fu(r) < fa(tr), respectively
(i.e. if g(0,1) > O or g(r,—1) > 0).

Thus
P(X(t) > fa(t), some t € T)
~ P(U4:) +2°(/a(0)) - 1(s(0,1) > 0)

[t
+@*(fa(r)) - 1(g(r,—1) > 0,7 < 00).
The proof consists of two major parts

1) Showing that

P(A)~/ti

This step is built upon the local behavior of
the process.

Hololt, )

2) Showing that
P(U 4) ~ S P(4)

Here the problem is to find a lower estimate.
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To 1)

Suppose fn(t;) < fa(tit1). (The case fa(t:) >
fn(ti4+1) is treated similarly.)

Write gn(t,7) = (fa(t + TAR(2)) = fu(2))fa(?)-
Using an idea of Pickands, Ref. [8], one can show
that

P(A)

a

W(falts)) /0 " Pa(gn(ti, ), b, )e* ds,

Q

"l’(fn(ti)) /09" e—g(ti,-r) dTH“(g(ti7 ))
1 tigr
=0 / $(falt)) dtHa(g(t:, ).

Application of the mean value theorem gives the
desired expression.

To 2)
Using Bonferroni’s second inequality we get

P(U4)
> ZP(A)(l—z;é:P(A DA)/ZP(A ))-

Unfortunately, it is not possible to show directly
that the ratio term is asymptotically negligible.
Therefore one has to use a discrete time approx-
imation first. The interval T; is split into N,
equally spaced intervals [t;;, ¢ j+1], 0 < 7 < Np,
where

i =1t + janAn(t;) (a,,. = n/Nn)-
Writing

Al = {X(t;) < fa(ts), X (i) > fa(tis),
some 0 < j < N,},

we have
P(UA) 2 P41 - Qn),
where

@n =) P(AI" N A}")/ ZP(A“")

1#£]



One can show that

_ 1 VB, [ Y(efa(t))
Q"_O(mu(ﬂ:a?.’ a2 Jr Aa(t)

dt))

(some € > 0), which tends to 0 if 6, — oo and
a, — 0 slowly enough. At this point the assump-
tion (f2) about (fn)nemw is needed. In this part
of the proof the asymptotic linearity of fa(t) on
the intervals T; is used several times.

As above one can show that

pa) ~ [ men(ott, ALt

Since H2(g(t,-)) tends to Ha(g(t,")) as a — 0
(Lemma 4), the proof is complete.

Application to first zeros of empirical
characteristic functions

Let Y be a random variable with E[Y|? < oo
some B > 0 and write u(t) = EcostY (real
part of the characteristic function) and o?(t) =
VarcostY. Let Y3,...,Y;, be a random sample of
Y and write Un(t) = (1/n) 3 ; costY; (real part
of the empirical characteristic function). Denote
by 7o and R, the first zero of u(t) and Un(t)
respectively. Heathcote and Hiisler, Ref. [6],
showed that if 1 — u(h) is regularly varying at
zero with index a (0 < a < 2), then for 7 > 0

P(Rn < 7)
~ P(X(t) > n/?u(t)/o(t), some t < 7),

where X () is a locally stationary Gaussian pro-
cess with index a (covariance function p(t,t +
R) = 1—-1/2(1—u(h))(1/c¥(t)+o(1)) as h — 0).
If a < 1and r < 7, Theorem 3 can be used.
The case a < 1 includes for example the Cauchy
distribution (a = 1), whereas distributions with
finite expectation (a = 2) are not included.
Suppose Y ~ Cauchy. Then u(t) = exp{-|t[},
ie. ro = oo and o2(t) = 1/2(1 — exp{-2}t[}).
Application of Theorem 3 yields for 0 <r < 00

P(Ra<T)
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Q

(n/,’r)l/z ./or e_t/(l _ e—2t)3/2
exp{—n/(e** — 1)} dt
= 1/(2\/7?)/ v 127 dy

n/(e?r-1)

as n — 00
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Asymptotic Approximations For The Crossing
Rates Of Poisson Square Waves

Breitung, K.
Sem. F.A. Stochastik, Akademiestr. 1/IV, Munich, Germany

For the extreme value distribution of functions of random vector processes it is difficult to derive
exact expresssions; therefore approximations are needed. A mdel commonly used for loads in struc-
tural reliability is the Poisson square wave processes z(t). Such a process is defined by a Poisson
point process and an additional sequence of i.i.d. random variables Yy, Y7, Yy, ... such that between
two points t, and ¢, 4+; of the Poisson process the value of z(t) is defined by z(t) = V,,. In this paper
the asymptotic Poissonian behavior of the point process of level crossings of functions of indepen-
dent Poisson square wave processes is shown. This can be used to approximate the extreme value

distribution of such functions.

1 Introduction

In many reliability problems it is necessary to calculate
the distribution of the maximum of functions of vector
random processes. A survey of random processes used
as models in load combination problems is given in [1].
For many models it is difficult or impossible to derive
the exact distribution of the maximum. Therefore it
is of interest to obtain asymptotic approximations for
high levels, since especially such results are needed in
reliability problems.

Here for a special model, Poisson square wave pro-
cesses, Lhe asymptlotic Potssontan behavior of the potut
process of level crossings of functions of such processes
will be described.

z(t)

Yo REX

_ Ys

Figurc 1: Poisson squarc wave process
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A Poisson square wave process consists of an homo-
geneous Poisson point process N(A) with intensity A
and a sequence Yy, Yy,Ys, ... of i.i.d. random variables,
which are independent of the point process.

‘The Poisson square wave process z(1) is then defined

by
z(t) = YN(M] =Y;, if N(0,¢] = j. (1)

The process 1s often used to describe loads wich
change in time (see [2], [1] and [3]). The model can
be generalized to a vector process by taking random
vectors instead of random variables. In none of the ref-
erences above a complete proof for the asymptotic Pois-
sonian character of the level crossing point processes is

given.
We consider now an n-dimensional Poisson square
wave process 2(t) = (z1(t),.... 2,(t)). The i-th com-

ponent is defined by an one-dimensional Poisson square
wave process z;(t) with intensity A; and standard nor-
mally distributed amplitudes. All component processcs
are assumed to be independent of each other. The pro-
cess z(t) changes its valuc at the jumps of the compo-
nent processes z;(t). As described for cxample in [4]
and {1], p. 73, all random variables X with c.d.f. I'(z)

and with a continuous p.d.f. f(r) can be transformed



into standard normal random variables U by the trans-
formation U = @~ }(#(X)) (®(z) the standard norinal
integral); therefore the assumption is not too restrictive
in the sense that we need this transformation only to
derive a simple proof for Poisson convergence.

Further a function ¢ : R® — IR is given. In the
reliability context, this function describes the state of
the engineering system under consideration. If g(z) >
0, the system is intact and if g(x) < 0, the system 1is
defect. 'I'he problem is to determine the probability

Pr(g(=(t)) 20, 0<t<T). (2)

This is the probability that the system remains intact

during the time interval [0,77]. The simplest example
for such a function is the sum of the processes, i.e.
g(z(t)) = B — 3, zi(t) with # € R.

To find approximations for this probability, we con-
sider the point process of the outcrossings out of the
domain S = {z;g(x) > 0} into the domain F =
{z;9(z) < 0}. The boundary of F is defined by
G = {z;9(z) = 0}.

Firstly, the point process of jumps of (t) is defined

A jump of one of the com- #
ponent processes z;(t) at t.

N(A) = #{t € A;

Then, the point process of outcrossings U(A) out of
S into F is defined by

U(A) = #{t € A;g(z(t — 0)) 2 0> g(=(t))}#.  (3)

Now, since z(t) changes its value at the jump times
only, we obtain

1~ Pr(g(z(t)) 20;0<t <T) (4)
=1-Pr(g(=(0)) 2 0,U(0,T) =0)
< Pr(g(z(0)) < 0)+ Pr(U(0,T) > 0).
Since I/(0,T) is a non-negative random variable, we
get
1 - Pr(g(a(t) 2 0;0<t < T) (5)
< Pr(g(2(0)) < 0) + E(U(0,T)).
Therefore, we obtain an upper bound for the probabil-
ity in equation 2. In the following we show that then

under some regularity conditions, U(A) is asymptoti-
cally an homogeneous Poisson process. This gives

Pr(U(0,T) =0) x e 20T (6)

with Ay the intensity of the point process U(A).
Then we get

1~ Pr(g(z(t)) 20,0<t < T) (M
~ Pr(g(=(0)) < 0) + (1 — e~ 7).
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2 The asymptotic behavior of
the outcrossing point process

Consider a Poisson square wave vector process z(t) as
defined in the last paragraph. Given is further a con-
tinuos limit statc function g(z) with minggy=o |z| = 1
and there is a unique point g on G with |zg]| = 1 such
that ncar this point g is twice continously differentiablc.
This means that the function |z| has a minimum with
respect to G at . We assume that this minimum is
regular, i.e. the main curvatures K;,...,Kq-1 of G at
xo are less than unity. (This follows the differential
geometry of G, see for example [5], chap. 12.)

We define two sequences of domains Sp =
{z;9(B~'z) > 0} and Fs = {z;9(8~'z) < 0}. Now
we consider the point processes Ug(A) of outcrossings
of the process z(t) out of Sy into Fj, defined by

Us(A) = #{t € A;gp(2(t = 0)) 2 0> g(=(t))}#- (8)

We will study the asymptotic behavior of the stan-
dardized point processes U;(A), defined by

U(A) = Us(E5 - A), with Es = E(Us(0,1)).  (9)

These processes converge towards a Poisson point pro-
cess under some regularity conditions.
It will be assumed that

zozzla,-e,-, doai=1 Ja >0, i=1,...,n (10)
i= i=1

Here e; is the unit vector in the direction of the n-th
component. This means that all direction cosines of g
are not zero. We define
o0 = min el (1)
Now, due to the definition of ®¢, there exists a 6 > 0
and an ¢ > 0 such that for all y with g(y) < 0 and
S yiai = yT®o < (1—6)ly| (i.e. the cosine of the
angle between y and zq is less than 1 — §)

lyl > (1 + e}lzo}. (12)
Elsewhere there would be another point on the surface
G = {z; g(z) = 0} with unit distance to the origin.
Let be defined
Fp
Fs

{2;95(x) < 0. 2720 < (1-6)|=|} (13)
Fp\ Fp. (14)

see figure 2.
The number of the points of the outcrossing point
process Ug(A) is bounded from above by the number



X2
Fa
Z/
Fs”
/
/
;// 9(3(2)-
/ [-,)’_‘o
’d Xq

Figure 2: ‘The sets +; and Fp.

of the points of the point process Ug(A), which counts
all jumps of the process #(t) into a point in Fy

Up(A) = #{t € 4;=(t - 0) # =(1), gp(=(t)) < 0}, (15)

i.e. Us(A) > Ug(A). Further, for the point processes

Us(4) = #{t € A;gp(=(t - 0)) 2 0,2(t) € Fy}#, (16)
we see by bounding from above that

E(Us(A)) (17)

<14 (Z ) Pr(ga(=(t — 0)) > 0, 2(t) € Fy)

< |4 (f: ,\,-> Pr(z(t) € Fp)

i=1

3

< 14| (Z Ai) Pr(ja(t)] > A(1 + )
i=1
= o(®(~f)), 8 — 0. (18)

The last inequality follows, since |=(t)|> has a x*-
distribution with n degrees of freedom and using equa-
tion 26.4.5 in [6] we get Pr(lz(t)] > B(1 + ¢)) =
(B3(1 + )" Zexp(—B(1 + ¢)) = o(®(~F)). There-
fore E(Us(A) — Us(A)) = o( E(Us(A)), B — o, Le.
asymptotically the point process of jumps which leads
to points in Fj is ncgligible in comparison with the
point process Us(A).
For the point processes Us(A) we get

E(U3(0,1)) = (Z,\) Pr(gs(z(t)) <0).  (19)

Using the results of [7] and [8] about asymptotic ap-
proximations for the probability content of dormains.
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we get asyrmptotically
. n-1
Pr(gp(z) < 0) ~ (=) [T (1 = #;)7"/%, 5 — oo, (20)
j=1

and therefore

E(U50.1)  (21)
n n—1
~ (Z,\,-) &(-p) [J(1—#;)7"2% 8 — 0.
i=1 i=1

Since Us(A) > Us(A), this yields an upper bound for
L (Up(0,1)).

We show that this upper bound is in fact an asymp-
totic approximation for this expected value as § —
0o. This is done by proving that the expected value
E(U3(0,1) — Us(0,1)) is asymptotically negligible as
8 — oo. The point process Us(A) — Us(A) consists of
all points t of Ug(A) with gg(z(t — 0)) < 0, i.c. the
points where the process was immediately before the
jump in Fg and afterwards again in this domain.

The probability of obtaining a point in the domain Fj
after a jump is of order o(®(—23)), as shown in equation
17. If the jump results in a point in the domain Iy, it
is obvous that this is due to the occurrence of a new
component amplitude, which has a value larger than
ao - B/2, since F3 C {z;mini=1, nlzi| > a0 - 5/2}.
"Cherefore the expected number E(Us(0,1) — Us(0, 1))
is less than the expected number of jumps multiplied
by the probability Pr(gg(=(1)) < 0) and the probability
of a new component amplitude larger than «p8/2.

An upper bound for the first probability is one and
the last probability is $(—aq3/2). Therefore

E(Us(0.1) — Us(0, 1)) (22)

< <Z Ai) Pr(gs(z(t - 0)) < 0)
i=l
x[B(—a0B/2) + o(B(~B))].

Asymptotically we get using equation 20 for the ex-
pected value

T30 1) = Ug(0,1))  (23)

~ (ZA.») 8(=3) L (L - ;)2
i=1 j=t

x[®(=03/2) + o(&(—7))]

= o(®(-3)), 8 — .

This shows the asymptotic equivalence of the two point
processes and gives finally

E(Us(0,1))  (24)

n n-1
~ (ZA,-) &(-8) [[(1—x;)"Y%, B — oo
i=1 ji=1 .



If there is instead of one minimal distance point x¢
a finite number of points =1, ..., ¢ with regular mini-
mal distance points, an analogous result is obtained by
splitting up the domain F into k disjoint sets 1, ..., Fi
with Uf_, F; = F such that for each F; exactly one
point z; lies on the boundary of F;, by treating each
sct seperately and then adding the results. We get then

E(Us(0,1))
n-~1

(1 - 'crn,j)-l/2 3 B — O0.

m=1j=1

with the k., ; the main curvatures of the surface G at
T -

We prove the convergence to a Poisson process for the
standardized processes Uj(A) in the next paragraph.
To this purpose we replace Ug(A) by an approximating
point process

Us(A)=#{t € A;g(=(t)) < 0,|2(t—0)| < B -log(8)}#
This is the point process of all outcrossings from Sp
into Fg, which start from a point in the sphere around

the origin with radius @ — log(8); since this sphere is
inside S, we have [Jg(A) < Ug(A) (see figure 3).

X2

/'/'

\ﬁx GlE)=0
20
Xy

fcircte rodius P
circle radius PB-logP

Figure 3: Approximatling poiut process ﬁ{@(A)

Using similar arguments as before it can be shown
that the two point processes Us(A) and Ug(A) arc
asvmptotically equivalent. Therefore, if Uﬁ(A), l.e. In
standardized form, converges to a Poisson process as
J — oo, this is valid for Ug(A) and Uj3(A) too. In the
next paragraph it is shown that for Ué such a conver-
gence can be proved.
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3 Convergence to a Poisson pro-
cess

To show the convergence of the standardized processes
[73(A) to a homogeneous Poisson process, the following
result 1s used.

Given is a sequence Ng{A4), § > 1 of stationary and
orderly point processes with the following properties:

1. £y = E(Ns(0,1)) =0, 8 — oo.

2. There exists a function a : (0,00) — IR with
a{r) — 0 as 7 — oo such that for all events Ap
and Bg, where Ap depends only on the behavior
of the point process Ng(A) until the time ¢ and
Bg only on the behavior of Ng(A) after the time
t+1E5!

| Pr(Ap N Bs) — Pr(4p) - Pr(Bps)| < o(7E;"). (25)

i.e. the standardized processes Nj(A) are uni-
formly mixing with mixing coefficient a(7).

F—x/z E—l/l
i 8 12
3‘ J j pﬂ(t;,tz)dtl dt2 = O(E ) ﬁ — 00,

where Pg (tl, t2) denotes the two-dimensional prod-
uct density of the point processes Ng(A).

Under the conditions 1 — 3 above the standardized
processes N3(A) = Ng(E5* - A) converge to an homo-
geneous Poisson point process with intensity 1.

As outlined in [9], p. 37 for a stationary and
orderly point process Ng(A) the factorial moment

E(N3(0,1))(Np(0,t) — 1)) is given by
E(Ng(0,1))(Ns(0.2) — 1)) (26)

t ot
=//Pﬁ(t1-t2)dt1 dts
00
t t2
:2‘//P5(i1.f'_))dt1 dtz.
0 0

This result can be shown by using theorem 1.3 in
a paper of Volkonskil and Ronzanov ([10]). This the-
orem says that stationary and orderly pointl processes
converge to a homogeneous Poisson point process, if the
conditions 1 and 2 are fulfilled and further for t — 0
and 8 — oc always

Pr(Ns(0, Eg - 1) > 0) — 0. (27)

But this condition can be replaced by the condition
given in equation 1.38 in the paper of Volkonskii and
Rozanov, i.e.

FE(N3(0, Fist))/ F(Np(0, Fst) = 1, t — 0, § — 00.(28)



Due to the stationary of the processes it is sufficient to
show this for the intervals (0, E;”z).

The third condition above says that
E (N5(0.B; " )(N5(0. 55 - D) (29)
= o( (N3 (0, B3 1), f— o0

and thereflore, since E(.«Vg(O,EEl/z)) — 0 as 3 — o0,
we have

E(NZ0,E;*)/ B(Ns(0, E; ) — 1, 8 — 0. (30)

Therefore then relation 28 holds. So the conditions 1-3
are sufficient for convergence to a Poisson process.

We show that the processes Us(A4) fulfill the con-
ditions; from this follows the result then for Us(A)
too. To prove this we note that equation 24 shows
that the first condition is fulfilled, since £y =
&(=p) (i M (1= k)12 — 0 as B — 0.

The second condition is fulfilled, if we take as strong
mixing function a(r) = Y1, e~ 7. This follows from
the fact that the underlying point processes N;(4) are
homogeneous Poisson point processes with intensities
A; and therefore Pr(N;(0,7) = 0) = e~*:7.

To show the third condition, we split the joint inten-
sity function, denoted by fs(¢,,2), into two functions:

fo(ts,t2)  (31)
= Py(ta — 01)f5(t1, t2) + Palta — 1) f3(t1, t2)
with
Pi(ta —ty) (32)

All point processes N;, i=1,...,n
= Pr S
have at least one point in (¢;,¢5).

:I(tx-—t:)

Pz(tz - tl) = 1 b Pl(tz -— tl) = Pl‘(l(tl - tg)c).

Further f(t1,t2) (resp. f3(ti,t2)) denotes the con-

ditional density of the point process U3(A) under con-
dition I(t2 —t;) (resp. under condition I(t> — t)°).
In the first case all point processes N;, i = 1,...,n
have at least one point between the two time points #;
aud (5. The probability for this event s P(l; — &)} =
V=T, Pr(Ni(ta, 01} = 0) = 1 = [T e~ M (=t < 1,

The condition means that all loads have changed and
that therefore the behavior of the point processes Ug(A)
at the points ¢; and ¢, is independent under this condi-
tion. Therefore the conditional joint intensity f3(¢,t2)
is just the product of the constant one-dimensional in-
tensity Ag of the process at these points. Since the pro-
cess asymptotically cquivalent to the process Ug(A), we
get from equation 24 Ag ~ K5 as B — oo. I'herefore,
we have

Pi(ty — 1) fa(t1,t2) < E§+0(E§)- (33)
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Integrating over this function gives

E;llz ta
2. / /Pl(tz—t,)fg(tl,tg)dtl dts (34)
o0
E;X/z i2
<2 / /(Eg + o(Eg))dtl dis = o(E';/Q), B — 0.
0 0

In the second case, at Jeast one of the point processes
N; had no point in the time interval between t; and ¢,
and therefore at least one of the amplitudes did not
change. Since these processes are independent Poisson
point processes, the probability for this is bounded by
0< P'_J(tz - [1) < Z?:l e~ riltz=t1)

The conditional intensity in this case is less than the
intensity of the point process of occurrences of a com-
ponent larger than log(3) at ¢,, since only in this case
a jump of the point process U;(A) will be at ¢, mul-
tiplied by the one-dimensional intensity of Us(A); this
intensity is asymptotically equal to Eg.

Therefore, as 8 — oo

Pa(ts —t1) f3(t1,t2) (35)

< (50) ac o ($remnm).
=1

i=1
Integrating over this function gives

-1/2
Eﬂ Y t2

2. / /Pz(tz — t1)f3(t1,t2)dt, dt,

0 0

<2 (E Ai) ®(~ log(8))2Ep
E;l/:‘ 2 i=1

2
: f /(sum?=1c—’\‘(”"‘)) dty dt;
0

0
= Ko(Ej*®(=log(B)) + o E5/*)) = o E5'*), B — 0,

with Ky a constant.
Together with the upper bound for the first term in
equation 34 this yields

EUs(0, £5*)(Ug 0, £71%) = 1)) (36)

F";UZ ta
= 2. / /fﬁ(tlat2)dtl dts ="(E;/2)’ f — oo
0 0

So the third condition holds too. Therefore we have for
the standardized point process I/; the convergence to
a Poisson point process, i.e.

Pr(U(A) = 0) ~ ™, 3 — . (37)



4 Summary

In this paper a Poisson convergencc theorem for the
point process of level crossings of functions of indepen-
dent Poisson square wave processes is shown. The idea
is to split the two-dimensional joint intensity of the
pointl process into two conditional intensities, one de-
scribing the behavior under independence of the pro-
cesses at the two time points and one under depen-
dence. Then by estimating it from above, it is shown
that the second intensity can be neglected asymptoti-
cally; this gives the Poisson convergence.
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Meso-Scale Estimation Of Expected Extreme
Values

Burton, R.M., Goulet, M.R., and Yim, S.C.S.
Oregon State University, Corvallis, OR

We consider algorithms for estimating the expected maximum value of a time series for a
period in the future given past observations. This is a “mid-range” problem in which the long term
asymptotics of extreme value theory do not apply. There are essentially two approaches, estimating
an ”extremal index” and the ”Poisson clumping heuristic”. Variations on these methods are tested
with simulated Gaussian data. Similarities in performance are explained rigorously.

INTRODUCTION

We consider the following problem. Given a time
series from a stationary process {X;}{2,, define the ex-

pected maximum E[Mn ~'], where N' > N and

MN‘NI = X;.

max
N+1<KI<NY
The problem is to find a good estimator of E[Mn n']
based on observations {X;}/_,. We will alway consider
Gaussian time series but it will be clear that our meth-
ods apply more generally.

Here we describe several estimators of E[Mn n/],
present some empirical results and give some theoreti-
cal explanations of our results.

DESCRIPTION OF THE ESTIMATORS

Time Rescaling. The idea is to estimate an ez-
tremal indez of the process for this time scale. We say
that p is the extremal index for {X;}§2; on the scale
of N if My has approximately the same distribution
as the maximum of [pN] independent random variables
with the same distribution as X, i.e Gaussian.

There are essentially three choices to be made in
approach.

The first is whether to use the time series itself or
an enveloped version of it. Given the data, {X Y, we
may construct the discrete Hilbert transform (v},
The process {R;}\; defined by

Ri= /X +Y?
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is called the analytic envelope. It covers the “surface”
of the time series, smoothing out the oscillations. The
maximum of the envelope is close to that of the original
process, especially in the narrow band case. It has
the further computational advantage of being Rayleigh
distributed. This is described in detail in Ref. [1, 2].
We call these choices direct and enveloped.

The second choice is how carefully to compute the
expected maximum of n independent Gaussian ran-
dom variables (or Rayleigh in the enveloped case) as
a function of n. One could either use a good but com-
putationally intensive numerical approximation or an
asymptotic formula, /2logn. We will refer to these
choices as strong and weak and call this approximation
we use L(n).

The third choice is how carefully to fit the empirical
expected maxima as computed from the data to L(n).
One possibility is to use one value of ng, say 50. Find
the average of the maximum value in the data for non-
overlapping windows of length ng. This value L{no) is
the empirical expected maximum at nq. To estimate
the extremal index then find p so that L(no) = L(pno).

The other possibility is to compute multiple window
lengths, i.e. to compute L(n) = L(n) for various n. If
we take n to be powers of 2 then the computation time
is not large because we may “nest” the computations
of the maxima. We will refer to these choices as single
window and multiple window methods.

We note that the prevailing method among ocean
engineers was the enveloped, strong, single window
method.



Poisson Clumping. Another possible estimator

is suggested by Aldous’ use of the Poisson clumping

heuristic, Ref. [3]. This heuristic assumes that the

set of t for which X; > b is given by random sets dis-

tributed as a Poisson process. We make the further

assumption that these random sets are intervals.
Consider, for b relatively large

{tIXt-l < b,Xg > b}

to be distributed as a Poisson process with rate Ap. The
following fundamental relation is assumed

P[X1 > b = ME[Ch),
where Cj is the random length of an interval (clump)

in which the time series spends above a given value b.
The event [My < b] is equivalent to

{8 Xe-1 <6, X >0} =0.
So by the Poisson assumption,
P[My < b] = e~V
and by the fundamental identity

P[My < t] = e PIX:20N/E[Cy],
Hence we have

o0
E[My] = / (1 - e PR2ON/EG) gy (1)
[0}

The work now reduces to estimating E[C}]. To do this
we fix a value of b and average the length of the in-
tervals where the time series is above b. Varying b and
plotting E[C}] versus b yields data which- is well fit by
a curve of the form

y=b""/A

Substituting this curve into (1) yields our estimator,
(o]
Ep[Myni] = / (1 — = APU U =NE7) gy,
0

As before we may use either the original or en-
veloped data. Note that the above analysis assumes
that the clumps are intervals so one guesses that en-
veloping narrow band data would be advantageous.

EMPIRICAL RESULTS
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We have described 10 possible algorithms in all.

In earlier work, Ref. [2], we investigated several al-
gorithms. The algorithm used by most ocean engineers
was due to Pierce, Ref. [1]. In our terminology this
was an enveloped, strong, single window time rescaling
method.

We proposed to modify this by removing the enve-
lope, that is to use instead the direct, strong single
window time rescaling method. In cases where com-
putation ease was paramount we proposed the direct,
weak, multiple window rescaling method. These were
compared with the direct Poisson clumping algorithm.
Here we describe the results of these simulations. In
subsequent versions of this paper we will also include
study of the enveloped Poisson clumping algorithm.
Work continues on the other variations.

In this study two types of Gaussian time series are
used. The first is a second order autoregressive moving
average.

Xn=aXn1 + bXn_2+ Zn,

where the Z, is are independent identically distributed
Gaussian random variables.

The second type is intended to simulate random
waves in the ocean and are obtained by superposition
of sinusoids, with amplitudes specified by the Pierson-
Moskowitz and JONSWAP spectrums, Ref. [4]. One
thousand cosines with unequal frequency spacings and
uniformly random phases are employed. More detail
on these processes is given in Ref. [2].

These time series are run for various parameters
and the expected maximum are estimated by the al-
gorithms. The mean relative errors are computed.

Relative Eror
0080~ | T T T T T T 7 Direct
0070 55;:
0.060 R
0050 - 8
0040 - -
0030 g
0020 - e
0010 |- -
0.000 - e
0010 &L L I L ! L ! E
0000 0200 0400 0600 080 1000 1200
Figure 1

Our results are pictured in Figures 1-3. To sum-
marize the ARMA experiments (Figure 1), the Direct
Method consistently gives the estimator with minimal
relative error, while the Poisson clumping and Log Fit
methods yield estimators with relative errors under 6%.
It is interesting to note that the results for Poisson
Clumping and the direct, strong, single window time
rescaling method follow each other.
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For the simulated ocean waves the results are sim-
ilar. In the case of the Pierson-Moskowitz spectrum
(Figure 2) the Direct Method consistently provides the
best estimator, regardless of the dominant wave length.
The JONSWAP spectrum (Figure 3) provides a narrow
band case and all the techniques yield relative errors
between 4% and 7%, while the Log Fit provides the
best estimator in two instances.

CONCLUSION

The theoretical underpinning for these algorithms is
given by theorems of O’Brien, Ref. [5], and indepen-
dently by Rootzen, Ref. [6]. There it is shown for pro-
cesses satisfying a strong mixing condition (as ours do)
that for long enough time scales there is an extremal
index which in turn gives the Poisson clump structure
of the exceedance process. Thus it is not surprising to
find the direct, strong, single window estimator and the
direct Poisson clumping estimator in close agreement.

Perhaps the most striking result in this study is the
performance of the direct, weak, multiple window esti-
mator. It is the simplest conceptually and algorithmi-
cally, and gives relative errors near 6%.
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An Expert System Prototype For The Analysis
Of Extreme Value Problems

Castillo, E., Alvarez, E., Cobo, A. and Herrero, M.T.

University of Cantabria, Santander, Spain

This paper presents an expert system prototype for the analysis of extreme value problems.
The system includes a package of computer aided instruction for the most common concepts
in Extreme Value Theory and illustrative examples of applications. The user can navigate
through the information at wish. The system incorporates a computer program to simulate,
estimate, draw samples on extreme probability papers and determine the domain of attraction
of a parent from samples, based on the Pickands' and/or the curvature methods. A set of rules
controls the selection of probability papers and estimation methods adequate to given

problems.

Key words: Extreme value problems, expert system, simulation, estimation.

1 Introduction

Extreme value problems are very frequent to
engineers. In fact, in many engineering situations,
design is based on the probability of occurence of
extreme values of single or combined random
variables. When dealing with extreme value
problems, engineers and scientists find some
difficulties due to the following facts:

¢ Extreme value theory is complicated.

¢ Extreme value theory is not easily available.

¢ In general, technicians have not been
prepared to deal with this problem.

In spite of its importance, extreme value theory has
not been included in standard curricula. Even in
some specific fields, such as statistics, for example, a
very large part of the student population ignore
fundamental aspects of this theory. This problem is
even more important in engineering areas where a
large amount of technical material must be covered.

On the other hand, extreme value theory is not
easily available to those who need it. Most of the
advances have been published in journals and books
mainly addressed to probability and statistic
specialists and using a langauge difficult to
understand for engineers and scientists.
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The consequence of all the above is that important
errors and inconsistencies have been made in the
past, such as: the use of incorrect models or
probability papers, the use of non-stable models, the
use of wrong estimation methods, etc. It is easy to
find examples of limit models for minima that are
used for maxima and vice versa, or examples of
incorrect use of probability papers. In other cases,
non-stable models, either in extreme or truncation
operations, lead to confusions and lack of
consistency.

All the above justifies the need for expert systems.
We must remind the reader that expert systems are
useful mainly when (see Ref[1]):

e there is a lack of human experts

e there is lack of knowledge among those
who need it

e one needs more reliable solutions

e one needs cost reduction.

To our knowledge no expert system exists covering
all these needs. This paper addresses this problem
and presents a simple prototype showing some of
the excellences an expert system should have.



2 Steps in the development of an extreme
value expert system

Expert system design must be carefully program-
med if success is desired. Some of the main steps to
be followed are (Ref[2]):

Statement of the problem to be solved.
Searching for human experts and/or data.
Design of the expert system.

Selection of the development tool, shell or
programming language.

Development of a prototype.

Prototype checking.

Refinement and generalization. Final expert
system.

Maintenance.

Updating.

\O 00 ~N QN ALY

The first step consists of defining the problem to be
solved. Under no circunstances should time spent on
this period be curtailed, and work should be done
with rigor and precision. All extra time dedicated to
this step will be saved in the following steps. This
step implies identifying all or a large part of the
possible difficulties to be encountered when dealing
with extreme values and the possible solutions to be
employed. When this is clear, a decision about which
of them are to be solved by the expert system must
be taken.

Once the problem has been completely defined, one
must look for human experts able to solve it with a
reasonable chance of success.

The third step is the design of the expert system,
which includes the structures for knowledge storage,
the inference engine, the explanation subsystem, the
user interface and so on.

In the following step we must decide whether to use
a shell or a programming language. It is important
to avoid useless efforts that are also expensive. The
final steps cover the prototype development,
checking, refinement and updating.

3 Minimal requirements

In this section we discuss some of its minimal
requirements. The expert system should include at
least:

Computer aided instruction on extremes.
Tools for doing statistics of extremes.
Tools for gaining experience and expertise.
Bibliographic information.

The first part should cover the most important
concepts relevant to extreme values by means of:
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theory, illustrative examples of applications,
interactive methods, such as, animations, examples,
hypertext (user driven navigation through
information), hypermedia, guided tours, etc.

The new computer aided instruction techniques,
based on hypertext and hypermedia, allow an easy
and quick development of a teaching module. A
guided tour guarantees the most important concepts
to be covered and aprehended by the user.

Determination of design values or probability
assessments are the result of an iterative method
based on a combination of different steps as drawing
data, selecting models, estimating parameters, etc.
Thus, the tools for doing statistics of extremes
should cover:

e Drawing data on probability papers and
other graphic representations.

Model selection.

Estimation.

Determination of domains of attraction.
Determination of design values.

Another interesting role of an expert system is its
possible contribution to the user in gaining
experience and expertise. For this to be possible, the
system should include:

e Access to real cases (data base).
e Simulation.

The easy access to previous experience and methods
facilitates the solution of many real problems. The
system could include practical cases and different
alternative solutions given to some typical problems.

A simulation system allows for gaining experience
and testing the appropriateness of some temptative
methods. Note that testing of several alternatives can
lead to a very useful information thus facilitating the
final decision.

Finally, a complete bibliographic information
including cross references should be available. This
facilitates the access and navigation of the interested
reader through the information.

4 Prototype description

The implementation of an expert system for the
analysis of extremal problems is a complicated task,
which must involve a group of people. In this
section we present a simple prototype including only
some of the above possibilities to show the
convenience of such a system.



We shall divide the exposition in three parts: the
computer aided instruction subsystem, the statistical
tools subsystem and the proper expert system.

4.1 Computer aided instruction subsystem

This package covers the material indicated on the
menu card (see figure 1), where different options
can be selected.

The user can select one of the topics by just clicking
the mouse on it and the system shows the relevant
information associated with it. In some cases this
produces a new menu, as in the case of figure 2,
where new options can be selected.

With the purpose of introducing some concepts
some animations are used, such as those illustrated
in figure 3, where samples are drawn at random
from the population and in figure 4, where the
whole process of simulating order statistics is
animated.

In other cases, graphical information is used to
illustrate concepts, such as that indicated in figure 5,
where the curvature of tails is used to decide about
domains of attractions. Other cards are used for
definitions of relevant concepts (see figure 6).
Information is structured in such a way that the user
can go back and forth at wish, consulting examples,
definitions, graphics, animations, etc.

4.2. Statistical tools subsystem

The expert system incorporates a set of computer
programs to do a statistical analysis of data.

If we choose reading data from a file, a dialog with
all available files is shown (see figure 7). Then, the
file is opened and data appears in the text window.

Once the statistical program is launched, a new
document is opened and two empty windows on the
computer screen are obtained. They hold the sample
data and its associated drawing, respectively.

Extremes

EXPERT SYSTEM

Figure 1: The main menu.
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Definition of order statistic

Joint distribution of several order statistics
Distribution of a single order statistic
Order statistics in samples of random size
Simulation of order statistics

This is the brdered sample
14,18,24,29,30,35,38,39)

Figure 3: The concept of order statistic.
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Extremes

Figure 4: Simulation of order statistics.

Extremes

Figure 5: Determining maximal domains of attraction.

89



Esttremes

Figure 6: Least squares methods.

The program allows for the four operations shown
in the main menu of figure 7.

Initially, due to the lack of data, only the "simulate"
option is available and the rest appear as dimmed.
At this step we can choose either reading data from
an external file, typing data directly on the text
window or simulate data.

If we choose the "simulate" option, the dialog in
figure 8 appears to allow us to choose the
distribution, its corresponding parameters, sample
sizes and range of order statistics to be simulated. In
any case, the text window ends up with the working
data. At this step all the options above become
available.

Selection of the "draw" option of the main menu
leads to the dialogs in figures 9 and 10, where the
desired probability paper and plotting point position
formula are selected. Then, the drawing of the
indicated probability paper and the sample is
obtained (see figure 11).

Selection of the "estimate" option leads to the
dialogs in figures 12 and 13, where the method of
estimation and the family of distributions to be used
in the fitting procedure are selected. Then, the range
of order statistics is given and the system initiates the
estimation process and informs the user of its
progress. At the end, it gives the estimates and, in
some cases, the variance-covariance matrix of
estimates as is shown in figure 14.

O Wwaves

& Macintosh HD

Simulate...

Draw...

Estimate...

Domain of attraction...

Figure 7: Reading from a file and the options menu.



Simulation =FFc———————=—=

Choose one distribution:

— Distributions
@® Gumbel (maxima)

QO Gumbel (minima)
O Weibull (maxima)
QO Weibuil (minima)
Q Frechet (maxima)
O Frechet (minima)

QO Exponential |
Q Uniform

Q Cauchy

O Rayleigh

O Pareto

O F(r)=enpl-1/(x*n)}

Sample size: l:’

[J Whole sample

ok )

Figure 8: List of distri

butions to be simulated.

Probab

ility paper

Choose probability paper:

Family — Problem
® Gumbel @® Magima
O Weibull O Minima
F
OfFrechet | = tomatic ticks
Title: | |

Figure 11: Sample drawn on probability paper.

Estimation

Figure 9: Choosing probability papers.

Plotting point positions

Choose plotting poi

— Method
@® Mean
O Blom
QO Hazen
QO Gringorten

nt position method:

Cancel

Figure 10: Choosing plotting point position formulas.

Choose one method:
— Methods

@ Probability least squares

O Return period least squares
{ Standard least squares

O Magimum likelihood

O Percentiles

{ Moments

] Whole sample

Figure 12: Estimation methods dialog.




Distribution to be Fitted

Choose one distribution:

Family Problem
@® Gumbel ® Magima
O Weibull O Minima
(O Frechet

s——

Figure 13: Choosing limit model to be fitted.

Family : bumbel
Plotting Point Method : Mean

Tail : right

Estimation Method : Magimum likelihood
First Order Statistic : 1

Last Order Statistic : 50

Location parameter: 0.353545

Scale parameter: 0.246368

Dariance-covariance matrix :
0.001356 -0.000331
-0.000331 0.000769

——————————————————)

Figure 14: Estimates.

Domain of attraction

I

Choose one method:

Methods ———
® Pickands

O Curvature

Cancel

Figure 15: Choosing one method to determine
domain of attraction.
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Finally, selection of the "domain of attraction”
option of the main menu leads to the dialog in
figure 15 which allows us to choose the Pickands' or
the curvature method.

4.3 The expert system

The system can be used by inexperienced users to
be guided in all the process of determining design
values, for example. The system starts by giving
some information to the user who must answer
questions to the system. Depending on the answers,
the progress is conducted in different directions. As
one example, we have included the diagram in
figure 16. Initially, the user is asked about whether
or not he is going to extrapolate available data. By
extrapolation we mean that the required values to
predict the random variable are out of the range of
the observed values, This can occur either because
we are interested in large or small values of the
random variable or because we deal with very large
or very small associated probabilities. If the user is
not dealing with extrapolation, the problem is not an
extreme value problem (limit) and standard
statistical methods can be used (see figure 16).

Next, we decide about dependence, independence or
asymptotic independence. The latter is handled by
means of the determination of a critical threshold
value above which independence can be assumed. In
the first case the system is unable to solve the
problem and informs the user.

In the case of independence, we decide about which
is the tail of interest (left or right) and the system
draws the sample on the corresponding Gumbel
probability paper to make a decision about domains
of attraction. Depending on the pattern of the
drawing, the system recommends one of the classical
models or some alternatives.

A whole collection of decision trees, similar to the
one above, can be easily incorporated to the system
to solve different extreme value problems. With the
guide of the system, the possibility of errors is
greatly reduced.

4.4 Software implementation

Tne computer aided instruction package was
initially implemented on a Macintosh computer
using SuperCard. The statistical tools (simulation,
estimation, drawing and determination of domains
of attraction) were implemented as external
commands in Pascal language to allow for a direct
access from SuperCard. Later, the convenience of a
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Weibull G 1
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Other
Frechet
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Figure 16: Decision tree.

separate module was recognized and a different
program was developed using the Think Pascal
object oriented library. Communication between
both programs can be solved via Apple events.

5 Conclusions

From all the above we can conclude the following:

e Expert systems can be a good help to
applied scientists and engineers to deal
with extreme value problems.

Control of usual errors must be
implemented in expert systems to avoid
risks and/or waste of money.

Recent developments of computer aided
instruction allows for an easy
implementation of teaching modules.
Use of a set of decision trees leading to a
guided determination of design values or
other extreme value problems can avoid
errors and leads to an important quality
improvement.
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e Simulation tools can be used to gain experience
and expertise on extreme value behaviour of

random variables.
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Poisson Approximation Of Point Processes Of
Exceedances Under von Mises Conditions
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Bounds on the Hellinger distance between certain truncated empirical processes and certain Poisson
processes are derived. These bounds depend, roughly speaking, on the rate at which a fairly general
von Mises condition holds. Applying these results, also approximations of the joint distribution of
the k largest order statistics w.r.t. the variational distance are established.

1 Introduction

Let X1,...,X, be i.i.d. random variables (r.v.’s) with
common distribution function (d.f.) F. Classical ex-
treme value theory deals with the distributional the-
ory and the asymptotic behaviour of sample maxima
M, max(Xi,...,Xn). From Gnedenko [7] one
knows that, if the distribution of the standardized max-
imum L(a;}(My — b)) converges weakly to a nonde-
generated distribution for some constants a, > 0 and
b, € IR, then the limiting d.f. must be of the following
type (up to a scale and location parameter):

exp(—z~1/#) >0, >0,
Gs(z) == { exp(—(—z)"/P) if £ <0, <0,
exp(—e~%) g=0.

Taking the logarithm and the first derivative, one ob-
tains the functions

‘I’g(z) = long(z) if Gﬂ(z) >0,
%x'llﬂ'll(o,w)(z) 8 >0,

Pa(z) = I%r(—z)_llﬂ—ll(—oo,o)(’:) if <0,
e~ B=0

that will serve as mean value functions and intensity
functions of point processes. Moreover, if ¥g(z) > —1,
1+ W¥g(z) defines a generalized Pareto d.f. with shape
parameter § and Lebesgue density t¢3(z). The impor-
tance of generalized Pareto d.f.’s in extreme value the-
ory was first pointed out by Pickands [15]. These d.f.’s
play a central role in the present paper.

More generally, one may deal with the k largest order
statistics, where k € {1,...,n}, or with those observa-
tions that exceed a given threshold. In the second case,
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one has to deal with point processes. For details about
point processes, we refer to Resnick [19] and Reiss [18].

The empirical point process based on the standard-
ized r.v.’s a;}(X; — b,), 1 < i < n, is defined by

n
Nn = Z Ed;l(Xi—bn)
i=1

where ¢, denotes the Dirac measure with mass 1 at z
and 0 elsewhere. Given a threshold ¢ € IR, the empirical
point process of exceedances and a truncated Poisson
process are defined by

Nag = Na(-[t,00)) (L.1)
and

Ny = N*(-n[t,00))

where N* denotes a Poisson point process.

In the following, we will prove results concerning the
strong convergence of distributions of truncated empir-
ical processes, that is, convergence w.r.t. the Hellinger
distance. Recall that the Hellinger distance H and the
variational distance || - — - || between two probability
measures @o and Q; on a o-field C are defined by

H(QO,Ql) = (/ (qéﬂ _ qi/z)zd#)l/z

and

Qe — Q1] := sup |Qo(C) — Q:(C)I
cec

1
§/|€10—41|dﬂ



where g¢; is a u-density of Q;, ¢ = 0, 1, and u is a measure
dominating @9 and @;. Note that the variational and
Hellinger distances are topologically equivalent, yet the
rates of convergence in terms of these distances can be
of different order.

The basic tool for dealing with the strong approxi-
mation of empirical processes is given by the following
two theorems.

Theorem 1.1 Let N, p := Nn(- N D) be a truncated
empirical process and N p, be a Poisson process having
the same intensity measure as N, p, D € B. Then

(1) I£(Na,p) — L(N; p)ll < P{X: € D},
(i6) H(C(Na,0), L(N} p)) < 312P{Xy € D}.
For a proof of that result, see Theorem 1.4.2 in [18].

Theorem 1.2 Let Ni, NJ be Poisson processes with
finite intensity measures v{ and v3, respectively. Then

(1) WE(NT) = LN < 3livt = w3l
(1) H(L(NT), L(N3)) < H(v,v3).

For a proof we refer to [14], Proposition 1.12.1, or
[18]), Theorem 3.2.2 and Theorem 3.2.1.

It was proved in [19] that weak convergence of the
sample maximum to an extreme value r.v. holds if, and
only if, weak convergence of the empirical processes N,
to a certain Poisson process N* is valid. It was shown
in [6] that the corresponding result holds w.r.t. the vari-
ational distance for the point processes of exceedances
N, : and the Poisson point process N; truncated left of
t > inf{z : Gg(z) > 0}. Moreover, certain bounds for
the accuracy of such approximations were established
in [17], [6] and [18].

The weak joint behaviour of several intermediate or-
der statistics was studied in [1]. The strong asymp-
totic normality of single intermediate order statistics
under von Mises conditions was proved in [4]. The ap-
proximation of intermediate empirical point processes
Na(- 0 [t1,t2]), truncated about the (1 — s/n)-quantile,
by a sequence of Poisson processes N;'%,, including the
homogeneous Poisson process, was investigated in [10].
There the accuracy of approximations was measured by
the rate at which a von Mises condition holds (see (2.1)-
(2.3)). This idea was also fruitfully utilized in [5] for
d.f.’s which are tail equivalent to a generalized Pareto
df.

It was shown in [11] that multivariate maxima, de-
fined by taking the maxima in each component, con-
verge w.r.t. the variational distance if, and only if,
certain truncated multivariate empirical processes con-
verge. In that context, random thresholds are permit-
ted. Approximation rates in the bivariate case were

established in [12].
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The paper is organized as follows: In Section 2, the
density of F' will be represented as the product of a
generalized Pareto density and a term depending only
on a von Mises function.

In Section 3, the truncated empirical process Ny, ; will
be approximated by a Poisson process N, with mean
value function z — s¥g(z), for £ > t. That goal will
be achieved in two steps by applying Theorem 1.1 and
1.2: first, we establish a rate of convergence of order
s/n for the Hellinger distance between N, : and the
Poisson process N, , having the same intensity measure
as Ny, ¢. In a second step, N;; ; will be approximated by
a ‘limiting’ process N,’. Our main result in Section 3
will be the following:

Corollary 1.1 Fort € IR, let

-

Then, under the conditions of Theorem 3.1 and 3.2, we
have

144t B>0,
—-(1+8t) if <O,
t s=0.

s S
H (LN ), LN = O(2 4 64280 5,01

for every fiz t € IR with 0 < Ga(tp) < 1 uniformly for
IBl<C <D™

The term Ay gs,1,, that is defined in (3.2), measures
the rate at which a von Mises conditon holds. More-
over, the term s serves as a parameter of the stan-
dardizing constants; for example, in case 8 = 0, the
r.v.’s Xy,..., Xp will be centered about the (1 — s/n)-
quantile. If the threshold ¢ is fix, the expected number
of exceedances is proportional to s.

In Section 4, we establish a bound on the variational
distance between the joint distribution of the k largest
order statistics and a ‘limiting distribution’ if k¥ := [s] >
logn.

2 Representation of Density

Subsequently, assume that the underlying d.f. F pos-
sesses a density f on (u(F),w(F)) for some u(F) <
w(F) :=sup{t : F(t) < 1}. Denote by a(F) := inf{t :
F(t) > 0} the left endpoint of the d.f. F. It is well
known (see, e.g. [17]) that F belongs to the strong do-
main of attraction of an extreme value distribution Gy
if one of the following von Mises conditions is satisfied
(for z T w(F)):

(i) w(F) = o0 and

f(z)=z

o) (2.1)

1
ppl(z) == —>E>0ifﬂ>0,



(ii) w(F) < oo and

pﬁ(z);=f(”_)(ﬂg_w_>_l>oifﬂ<o,

1- F(z)
(2.2)
(iii) f:((:;) 1 — F(u)du < oo and
“F) | _ F(u)d
pp(z) := 1) f(’l — F(z))z(u) Y _L1ifB=0.
(2.3)

Moreover, put ps(z) 1= 00, z < u(F), and pg(z) := 0,
z > w(F). The functions ps will be addressed as von
Mises terms.

A necessary and sufficient condition for a d.f. F to

belong to the weak domain of attraction of Go is the
existence of an auxiliary function U such that

1- F(zo + U(zo)z)
1 — F(zo)

— exp(—z)

for every z and zo T w(F) (cf. [8]). In this case, we may
choose

(Fq_
U(z) = U(a) = %(_F()M

(2.4)

for z < w(F) if f:(F) 1 — F(t)dt < oo. Notice that

Uy) = U(z) = [! po(u) — 1duif u(F) < z,y < w(F).
Moreover, define

po(zo + U(20)2)
1+ foz po(zo + U(zo)t) — 1dt

= po(zo+ U(”O)I)UT%%(E%;O)_:S

ﬁo,ro(x) =

if w(F) < zo,z0 + U(zo)z < w(F) and Po,zo(z) == 0
elsewhere.
The density possesses the following representation.

Lemma 2.1 (i) Let 8 = 0, zo € (a(F),w(F)), and
zg + U(zo)x > u(F). Then

U(zo)f(zo + U(z0)z)
= bo(@poso(@)exp (= [ Fosa() = 11)
x(1 — F(zo))- (2.5)
(i) Let B > 0, zo > a(F), and zzo > u(F). Then
zof(zoz)
= v ps(eeen (- [ 2N )
x(1 = F(zo)). (2.6)
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(ii) Let B < 0, zo € (a(F),w(F)), and w(F)—(w(F)-
zo)z > u(F). Then
(W(F) = zo)f(w(F) + (w(F) = 20)2)
= Yp(2)(=B)ps(W(F) + (W(F) = z0)z)
o (- [ DD 3112 )

-t

x(1 — F(zo)). (2.7)

ProOF. We restrict our attention on (i),'beca.use (i)
and (iii) can be dealt with in an analogous way. We
have

1~ F(zo + U(z0)z)
1-— F(.‘Bo)

zo+U(z0)z v
exp (— /; ) T——{—(ﬁ'—)(T) dv)

zo+U(z0)T
_ po(v)
exp ( /zn __U(v) dv)

* po(zo + U(z0)v)U (o)
exp(—/ £ Uo(:o+U(:co)v) dv)

exp(—z) exp (— /: P0.z0(V) — ldv) (2.8)
if zo, zo + U(zo)z € (u(F),w(F)) and hence
U(zo)f(zo + U(zo)z)

1]

il

_ po(zo + U(z0)2) 0 _ g .

= UG Glze 5 Tiaoyey -~ o+ V(02D

= exp(-2)poma(a)exp (= [ Fosol0) ~1d2)
X(l - F(zo))

0

Lemma 2.1 immediately yields an expansion for f in
terms of a generalized Pareto density and a remainder
term h, that is, f(z) = ¥s(z)(1 + h(z)) for sufficiently
large z. Moreover, conditions for tail equivalence may
be deduced. For example, in case of 8 = 0, tail equiv-
alence of the density f to an exponential density holds
if poro(z) — a € (0,00) and exp (- f: Pozo(t) — adt)
converges in (0, 00) if z — oco.

In the following section, it turns out that the fac-
torization in (2.5)-(2.7) in a generalized Pareto density
and a factor depending only on the von Mises term pg
is an useful tool for developing rates of convergence in
extreme value theory.

3 Point Processes of Exceed-
ances

In this section, rates of convergence are established for
the Hellinger distance between distributions of point



processes of exceedances N, ; and distributions of cer-
tain Poisson processes.

First let us point out the trade off between the ac-
curacy of the approximation and the efficiency of sta-
tistical inference in the Poisson process model. If the
expected number of exceedances increases and the sam-
ple size is fix, then the information contained in the
limiting model increases, but the accuracy of approxi-
mation decreases, and vice versa. For that reason it is of
interest to study the accuracy of approximation for sev-
eral thresholds and standardizing constants such that
the expected number of exceedances increases when the
sample size n tends to infinity.

Given a df. F with density f on (u(F),w(F)), for
some u(F) < w(F), define

0 B>0,
by = ¢ w(F) if <0,
Fl1-s/n) B=0
and
F'l(l—s/n) ,3>01

w(F)—F~Y(1-s/n) if <0,
U(F~1(1 - s/n)) B=0
where the function U is defined in (2.4) and s = s(n) €

(0,n). Hence the expected number of exceedances
E(Ny1(IR)) = n(1 — F(b, + ast)) depends on s and
t.

an

Applying Lemma 2.1, we see that the intensity mea-
sure of N, ; possesses the Lebesgue density

na, f(bn +anz) = syp(z)rpn(z)x 3.1)
Bexp (= [{ (ro.n(w) = 1/8)/udu),  f>0,
Blexp (= JZ,(ra.n(u) + 1/8)/(~w) du), B <0,
exp (— Jy ro,n(u) — ldu), B=0

for by + anz > u(F), where rsa(z) := pg(bn + anz),
B # 0, and ro o(z) := po s, ().

Denote by
Anpsp = 3.2)
SUPze(b,+an min(t,1),00) |pp(z) - l/ﬂl, B >0,

{ SUP¢[b,+an min(t,-1)w(F)) 1P8(Z) + 1/8], B <0,
SUPz¢[b, +a. min(1,0),w(F)) [Po(2) — 1], B=0

the distance of the von Mises term pg and its limit. Ob-
serve that A, 5, — 0 if s/n — 0 and the von Mises
condition is satisfied for 8. In the following, the accu-
racy of the approximations will be measured in terms of
Ap p,s,1- Notice that the term Ap st is related to the
term A, defined in [10], yet the normalizing constants
are different.

In the sequel, the following notation is used for the
approximating processes. Let N = N2*F denote the

Poisson process having the same intensity measure as
Nn, and N** = N**# the Poisson process with mean
value function z — s¥4(z).

In Theorem 3.1, N, ; is approximated by Np,wrt.
the Hellinger distance, where the error is, up to a con-
stant factor, the expected number of exceedances di-
vided by the sample size n. The conditions in The-
orems 3.1 and 3.2 are introduced to keep the terms
Cist, i = 1,2, defined in these theorems independent
of s, n,and F.

To simplify the notation, let (w(F) — b,)/an := 00 if
w(F) = 0.

Theorem 3.1 If 3 € IR, t € (a(Gp),w(Gg)), D €
(0,1), Angst < D and, in addition, |t| < 2'1A;’10/’3',
if =0, then

H(L(Nn), L(N; ) < Cupi>

where

t-1/5+sign(f~1)n B >0,
(_t)—l/ﬁ-szgn(1+1)D if [3 < O,
eTtt+5/4 g =0.

Cl’p’g = 31/2

Proor. It follows from Theorem 1.1 that
H(L(Nn 1), £(N7,0)) < 32 (1= F(bn + ant)).

First we are going to prove the case f# = 0. Let z,, :=

2'1A;’B{f’,. Notice that in the case w(F’) < co we have
by, + anzn < w(F). This follows from

j:u(F)l—F(u)du

U(z) = 1= F(z) Sw(F)—z—0
as ¢ T w(F) and, thus, U(b,) = — ;:(F)po(:c) —ldz <
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(W(F)=bn)An,0,5,:. Hence (wW(F)~b,)/a, > A;},,s

>
t 2
z,. We have for z € [t,z,,) and some J¥(z) € [-1, 1]

1Pos.(z) -1
po(bn + anz) _ ll
1+ [ po(bn + anu) — 1du
Po(bn + anx)
14 3(z)xAn 0,
2(1 + Izl)An,O,s,t

_1l

3D'/?

IA

<

(3.3)
and hence
T
I/ Po b, (u) — ldul <DY?41/4<5/4. (3.4)
0
Together with s/n =1 — F(b,) and (2.8) one obtains
1— F(bn + ant)
t

5 _, .
e exp (—/0 Pop.(z) — ldz)

s _
2 emt+5/4
n

IA



In the case 8 > 0, use the identity 1 — F(an) = s/n
to show that for appropriate ¥ € [—1,1]

1 — F(bn + ant)

' —
S4-1/8 exp (_ / pp(bn +anz) — 1/8 dx)
n 1

4

]
$4-1/8 exp (- 1
24 exp (— 98,50, /1 zd;r)

_s_t-llﬂ—dA.._p,.,;

t—l/ﬂ+sign(t—1)D .

n
8
n

IA

The proof of the case § < 0 can be carried out by
similar arguments. a

In a second step, the Poisson process N, , will be
replaced by the Poisson process N2

Theorem 3.2 If 3 € R, t € (a(Gp),w(Gp)), D €
0,1), Anp,st <D, D-! > |B] and, in addition, |t] <
9-1AY2,, if =0, then
H(L(NZ), LNT?)) < Caypes™ B st
where
Caps = IBI(—¥s())/? +(1+181D)/*x
¢ (G og |z 2
(fz @ (1_%]_1) ¥s(2)
1/2
x max(|z|?, |2|-?) dz)
- 1/2
( [ 4(1+ |z])?e" dz + (s/e)4)
(220 + 12?41 + 3DV e e

(afeyesrd)””

(3.5)

B#0,

g =0.

\

PRrROOF. Let

Lg(z) :=
JZ(pp(bn + anw) — 1/B)/udu,  B>0,
I7,(ps(bn + anu) + 1/B)/(—u) du, B <0,
Iy Bopa(u) — 1du, B=0

ift <z < (w(F)—bn)/an.

First we prove the case 8 = 0. Using Theorem 1.2,
one obtains that the Hellinger distance between Pois-
son processes is bounded by the Hellinger distance of
the corresponding intensity measures. Let N be a Pois-
son process whose intensity measure has the density

S sﬁo‘b“(t)e-_zl[tﬂn)(z) with Ty = 2_1A—1/2 AP-

n,0,s,t°

plying the triangle inequality and (3.1), one obtains

H(L(N3 ), £(N))
< H(L(N; ), £(N)) + H(EWN), L(N:™)
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< ( / " ((nan o + an2)?
(oo, (D) e @) d*“v)ll2

+( [ = ((shosn(@)e "1t 20) (@2
_(se-r)llz)2 dz)m

(s [ " (e (- Lo(z))l/z ~1) fosa(e)e" da
+n(l - F(ba + an,.xn)))l/2

Tn
+ (s/ (Popa ()2 —1)Pe™"dz + se"")
t

=: 51/2111/2 + 51/21;/2, say.

1/2

Taking into account that (z'/2 —1)? < (z — 1)? and
e=% < (ez/4)~*, z > 0, we obtain from (3.3)

Tn
I < / (o, (z) — 1)2e " dz +e*"
t

/’“(2(1 + |2])An0,5,8)%e " dz + (exn/4)™*

<

AZ,O’,’,(/ 41+ |zl)?e " dz + (8/6)4) (3.6)
t
Combining (2.8) and (3.4) leads to
n(1 — F(bn + anZn))
se”"exp | — n","u —1ldu
(= [ roaulw - 140)

< sBZ g, 4(8/e)%%".

3.7
A Taylor expansion yields

I — (n/s)(1 = F(bn + anZn))

[ (expt=Latar2) - 1) Fosa(2)e da

/t " (- Lo()/2)’ (exp ( = 9(@)Lol) 12))’
X o5, (z)e" dz
A2 e /t z'(l + |z)2e3/4(1 4 3DY?)e™" dz
(3.8)

IA

for some 9(z) € [0,1] where the last inequality follows
from (3.3) and (3.4). Combining (3.6), (3.7), and (3.8),
we get H(L(N; ), L(N:?*)) < C2,015Y%An 0,51 With
C3,0, defined in (3.5).

Next, we turn to the case § # 0. Check that

|Ls(z)| < An,p,s,ellog =]l (3.9)

holdsfor B #0ift <z < Q(Gp).



Let N be a Poisson process whose intensity
measure has the density z — spg(b, + anz)|f|
X¥p(2)1jt,w(G,)) (). Arguing as in the case 8 = 0,
one obtains

H(L(Ng ), L(N;*))
H(L(N; 1), C(N)) + H(L(N), L(N;™))

([ (00 + anepp
—(sps(bn + anz)]ﬁw)p(z))l/?)z d:c)llz

+( /t w(Ga) ((smi(bn + anz)|Bl¥a(2))?
~(svp(@)2)” dz) "

(s /:"(Gp) (exo (- Lp(z))1/2 . 1)2
xpg(bn + anz)|Blths(z) dz)l/z

+(s/tw(cﬂ)((lﬂlpa(bn 4 an))? - 1)?
x¥p(z) dz)” ?

31/2111’/,32 + s1/2121,/ﬂ2, say.

IN

IA

1

Moreover,

IA

g

w(Gg)
[ (18195 (b + anz) = 1)p(z) dz

INA

2 a3 w(Gg)
A2, / Vs(z) dz

B2AL 5.1 (—T5(t))-
Applying a Taylor expansion and (3.9), we obtain

/'w(cﬁ) (exp (- L,;(z)/z) - 1)2

xpp(bn + anz)|BlYs(z) dz

/ (- Lateya)’

x(exp (= 9@)Lo(2)/2))’

%p(bn + an2)| Bl (2) dz
Xy (= Goglely2)’

x exp (An,s,0.4/log )

x (57 + D) 1819s(z) da

18
A7 5,54(1+161D)

y [W(Gn) (

Lig

IA

IA

log |z|
2

) Ya(z) max((z|?, |=|P) dz
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for some ¥(z) € [0, 1]. a]

The rates established in Theorem 3.1 and 3.2 are
sharp if s > 5logn. This follows from results in Sec-
tion 4, where it is shown that for the k largest order
statistics (k = [s/5]) the same rates of approximation
hold as for the point processes and that the rates ob-
tained for the k largest order statistics are sharp. In the
case 3 = 0, similar bounds to that in the Theorems 3.1
and 3.2 are established in [2] for different normalizing
constants.

PrROOF OF COROLLARY 1.1. We have to show that
there exists a constant C' > 0 such that C; 5, < C,i=
1, 2. But this is immediate from the well-known formula
(14Bz)~Y/# — e as f — 0 and some straightforward
calculations. o

Using Theorems 3.1 and 3.2 (respectively Corollary
1.1), one may establish rates of convergence for point
processes of exceedances if the d.f. F' fulfills one of the
von Mises conditions (2.1)-(2.3). The proofs of the fol-
lowing examples may be carried out by elementary cal-
culations (cf. [10}).

Example 3.1 If F(z) := 1+ ¥p(z), ¥5(z) > —1, de-
notes a generalized Pareto d.f. for some 8 € IR, then

H(L(Na2), L(N;*)) < 8Y%(= 5 (1))

for t € (a(Gp),w(Gp)).

Since for the generalized Pareto distribution the ap-
proximating Poisson process in Theorem 3.1 equals the
process N;’, the bound in Example 3.1 is, up to a
constant factor, equal to the expected number of ex-
ceedances EN;(IR) divided by n.

The following example was first proved in [6], Theo-
rem 4.

Example 3.2 (é-condition)
Assume that for some 8 € IR, § > 0, and L > 0 the
density f has the form

f(z) = ¥p(2)e"®)
where |h(z)] < L(—¥g(z))°. Then

(3.10)

H(L(Nn o), L(NT?)) = o(% +51/2 (%)5) (3.11)
for every fix t € (a(Gg),w(Gp)).

Example 3.3 (Normal distribution)
Let F be the normal d.f. Then

s1/2 )

H(L(Noz), L(N;)) = O(Eg(n_/s)

for every fix t € IR.



4 Joint Distribution of Order
Statistics

In this section, we study an application of the preced-
ing results on point process approximations to derive
rates of convergence for the joint distribution of the k
largest order statistics. Expansions of the d.f. of sam-
ple maxima under von Mises conditions may be found
in Radtke [16]. Uniform convergence of order statistics
under von Mises conditions was studied by Falk [3].
Sweeting [20] has shown that the von Mises conditions
(2.1)~(2.3) are equivalent to the uniform convergence
of densities of maxima on finite intervalls. For a com-
prehensive treatment of order statistics and, in particu-
lar, approximations of intermediate and extreme order
statistics w.r.t. the Hellinger distance, we refer to Reiss
[17]. There a method was introduced for establishing
rates of convergence of point processes from rates for
the k largest order statistics. We use that method in
the converse direction.

In the following, we define for a point measure y on
IR and k € {1,...,n} the terms

my 1(p) = inf{z >t : p((z,0)) < k}

and
Mk,t(#) = (mm(ﬂ)a SR mk,t(l‘)) .

Notice that, for the order statistics X1.n < -+ < Xain
of X1, ..., X, and for the empirical process Ny, ; defined
in (1.1), the identity

k
(a;l(Xn—i-q—l:n - bn)) i=1 = Mk,g(Nn,g)

holds if a; Y (Xn—k41:m — bn) 2 L.

To obtain sharp bounds from Theorems 3.1 and 3.2,
one has to find conditions such that P{a;'(Xn_k+1:n—
bn) < t} is of the same order as the error of the point
process approximation. For that purpose, we use an
exponential bound for single order statistics, which is
a consequence of [17], Lemma 3.1.1. For a proof of
Lemma 4.1 see [9].

Lemma 4.1 Let Uy,...,U, be independent and uni-
formly distributed on (0,1), k € {1,...,n} and C > L.
Then

(C—1)%n?

P{Un—k+1:n < 1- Ck/n} S €xp (— km)

Notice that in Lemma 4.1 a bound of order O(n~1)
may be achieved by choosing k > logn and C > 5.

Denote by Qi s := L(Mk,—oo(N**)) the joint distri-
bution of the k largest order statistics of the Poisson
process N** with mean value function z — s¥4(z),
z > a(Gp). Our main result in this section is the fol-
lowing:
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Theorem 4.1 Let k € {1,...,n}, k > logn, C > 1,
s = Ck, and tg := sign(B). Then, under the conditions
of Theorem 3.1 and 3.2, we have

1C(a;5  (Xnoitrn — bn))izr — Qu.pll
< 2(n—£3%_?'%2‘—;; + 31/2e5/4g—k
= n

+C2,ﬁ,¢pcllzk1/2An,ﬂ,Ck,t,) (4.1)

where C2,5,¢, is defined in (3.5).

PROOF. Recall that F possesses a density on
(u(F),w(F)). The condition A, p.ckt, < D implies
u(F) < antg + by = F~}(1 — s/n). Hence F is con-
tinuous at F~1(1 — s/n). Denote by Un_g+1:n the kth
largest order statistic of n independent r.v.’s which are
uniformly distributed on (0,1). Since L(Xp-k41m) =
['(F_I(Un—k+1:n))a we may write

P{a;;l(xﬂ—k-i»l:n - bn) < tﬂ}
= P{Xﬂ—k+1:n S F_l(l - s/n)}

= P{F Y (Un-k+1m) < F7}(1-5s/n)}
P{Un—k+1:ﬁ <1l- s/n}'

Using Lemma 4.1, we get

C—-1)n?
P{az (Xn_r41n —bn) Stp} < SCOHIT. (4.2)

Recall that the Hellinger distance dominates the vari-
ational distance. The triangle inequality and the mono-
tonicity theorem (see, e.g. [13] or [18], Lemma 1.4.2)
yield

NL(an! (Xn—itrn = bn))izs — Qupll
< NIL(a7 (Xnmitiin — bn))zy = L(Mi 15 (N tp))
HIL(Mi 15 (Nn ) — L(Mi,15 (N
HIL(My,1,(N)) — Qrsll
< P{“;I(Xn—lwltﬂ - bn) < tﬁ}

HI|L(Nntp) = LING )+ P{N;,*(IR) < k}.
Since P{N;,"(R) < k} < P{Nn1(RR) < k} +
L(Nnts) — L(N;;")|], the assertion follows from (4.2)
and Theorem 3.1 and 3.2. o

Notice that mg _oo(N**) possesses the d.f.
P{mi -o(N**) < 2}
PAN"*((z,00)) < k- 1)
k-1 i
. (—log G(=))’
G3(z) Z il A ef

gl
1.
=0

for z > a(Gp) (cf. [18], E.6.2).

]



If £ > logn, the rate obtained in (4.1) is sharp for
distributions treated in Examples 3.1 and 3.2 with § =
1. That follows from [17}, Theorem 5.4.4 and Example
5.5.6. Sharp rates for every k € {1,...,n} may be
derived by direct calculations using Theorem 5.5.4 in
[17].

In the case of normal r.v.’s Theorem 4.1 yields more
accurate bounds than those known in literature if & >
logn (cf. [3], Example 4.53).

Example 4.1 Let X,,...,X, be independent, nor-
mally distributed r.v.’s and k > logn. Then

k1/2

1£(an (Xn-is1:n — bn))icy — Qrol) = 0(log(n))

where a, and b, are chosen as in Section 3 with s := 5k.

Proor. The proof follows from Theorem 4.1 and Ex-
ample 3.3. O
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Estimating The Extremal Index Under A Local
Dependence Condition By The Reciprocal Of
The Average Length Of Successive Runs

Duarte, L.C.C.
University of Lisbon, Lisbon, Portugal

Abstract: Whenever a strictly stationary, strongly mixing sequence, satisfies the local
dependence condition D"(up) of Ref. 1], the point process Ny defined by the upcrossings of a
high level up has an important contribution to the characterization of the limiting compound
Poisson process of exceedances.

For each n let N(n,un) = X2, 1(Xj>up) be the random variable that represents the number of

exceedances of u, in a sample of size n, and N(,up )=Zin=1 1 (Xi.12up <X;) the number of
upcrossings of the same level. Then, if we consider levels up(t) such that nP[Xj>uy (1)]-7,
when n—-e, the extremal index 6 verifies
‘ nP[X 2up ()]
lim

=1lim — == .
nowe 0P[Xgsun(0<X;] now E[Nmunp] ©

Now, if the sequence of levels is such that E[FI(n,un )] —1,when n—e, then the reciprocal of the

extremal index will merely be the limit of the mean number of exceedances. Based on this
result we have developed a method of estimation of  that consists on dividing the sample in kp

blocks of size rp and taking the average number of exceedances of the level uyj, suitably
defined for the i-th block, so that the mean number of upcrossings of this level in that block is

E[N@u, ()] 1

approximately 1. More precisely, we present here some properties of the estimator

1. Introduction

In this paper we study an estimator for the extremal
index which has been motivated by Ref. [1] and for
this reason we will assume for the underlying
stationary process, conditions analogous to those
used by these authors.

In order to make clear the origin of this estimator we
start with the presentation of some known results,
related to this subject.

Given a stationary sequence {Xj}, i21, and denoting

by ?{(u) the o-field generated by the events
{(Xswyi< k <j,
will be used

the following mixing coefficients
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21k=111 Nl (rn ,uni) -1
kn )

o, (2,u,)=sup { | P(AnB) - PAP®) | :
AT (u,), BeFp,y(u,)}

These are related to the well known long range
dependence condition A(up). More precisely, {Xj} is
said to satisfy A(up) if, for some 2 p=o(n),
Op(&p,un)+0 as n»>e. This condition is stronger
than D(uy) defined in Ref. [2], but it will be needed to

validate the convergence of some point processes
important in this work.



Concerning the local dependence structure of {Xj} we
assume henceforth the validity of the condition D"
defined in Ref. [1], which, in some way, restricts the
local occurrence of two or more upcrossings of high
levels.

Let k, be a sequence of integers, with kp —< and
such that kpon(fpup) » 0, ky 4ygn—0  and
knPXj>up) — 0. We say that {X;} verifies D"(uy) if

for rn{l?—] we have
n

rn-l
lim n P[ X1>up, X;<u .. .]1=0.
o j§2 n, XjSun <Xy

Note that we say that {X;j} has an upcrossing of the
level u at j if Xj.1<u<Xj. So, if we represent by p(u) the
probability of such an event (which is independent of
J by stationarity) then p(u) can be interpreted as the
mean number of upcrossings of u per unit time.
Considering that for a stationary sequence

na) = P(X;<u<X,) = P(XzSu | X1>u) P(X1>u)

we can conclude that for sequences with the same
marginal distribution, the lesser the value of pu for a
fixed level u, the stronger the tail dependence
structure near that level.

Notice that the extremal index of {X;} is equal to 8 if
for each sequence of levels up(t) such that

nP[X;>uy (v)]+7 the limit of P[My < up(1)] is e97,
(here My denotes the random variable maxi‘;l{Xi}).

This parameter 6 takes values in the interval [0,1]
and measures the strength of dependence of a
stationary sequence. The stronger the dependence
the lesser the value of 6 so that for an i.i.d. sequence
we have 6=1 whereas the value 8=0 corresponds to a
long memory sequence. In our study we admit a
weak dependent structure for the sequence in such a
way that its extremal index, when exists, is strictly
positive.

The connection between the last two paragraphs is
quite clear and it can be proved that for a suitably
chosen sequence of levels up, for which both
conditions A and D" hold, the extremal index can be
obtained as the limit of P(Xg<up | Xj>up) when n
goes to infinity. This result comes straightforward
from the following proposition established in Ref.
f1l:

Proposition 1. Suppose that A(uy) and D"(up ) hold for
some sequences {up}, {kn} and {r,} satisfying the
conditions mentioned above. Then

P[M; <up] » eV if and only if np(up) - v.
Hence, when the process has an extemal index 6, we
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have

np(up)» v ifand onlyif n PXji>uyl-> vie (1)

In the sequel we will also be interested in two point
processes relevant to the development of an
estimator of the extremal index. The first one is the
(time normalized) point process Ny, of exceedances
of a high level u,:

n
Nn(B) =215Vn(B)n &X;>u,), Bc[o,1].
i=

This point process has been fully studied in Ref. [3],
and it is shown, for example, that under A(uy) any
existing limit of N, must be a compound Poisson
point process. When wup=un(t) is such that
nPXj>up(t)]» 1, it is proved, under general
conditions, that the underlying Poisson point
process has intensity 0t and the mean value of the
multiplicities is 6-1. From the proof we can infere
that the Poisson points can be regarded as positions
of clusters of exceedances and the number of
exceedances in each cluster corresponds to the
multiplicities.

Let ny (j) be the distribution of the number of
exceedances in a cluster given that there is at least
one exceedance

rn
@) = P{ ¥ 1X;>u,)=j |

i=1

™n
Z 1X>u,)> 0},
i=1

=1, 2, ..

The result mentioned above can be more precisely
stated as follows:

Proposition 2. Assume that A(uy) holds for the
stationary sequence {X;j} and that, for some v>0,
lim P[Mp<up] =e”.
N oo
Suppose there exists a probability distribution n(j)
such that n(j) =1}im (), j=1, 2, ..., where nt, (§) is
o0

the conditional probability distribution of the
number of exceedances of u, defined for blocks of
size rp=[n/kp], with ky going to infinity in the
conditions stated above. Then N, converges in
distribution to a compound Poisson process with
intensity v and multiplicity distribution =(.).

As we have seen, for a stationary sequence with
extremal index 6 it is possible to consider
normalized levels uy (1) in such a way that we have
lim P[Mp<u,] = ¢9%. For this kind of levels the

n oo



mean number of exceedances in a sample of size n
is assimptotically 7, since

n
E{Np([0,i)}= ¥, €, (10,1]) E{f Xj>up (1))}
i=1
=n P[Xj>uy(1)],

and in turn, if A(up (1)) holds, it is proved in Ref. [4]
that the mean cluster size is approximately 6-1:

lim ¥ jma ()= 07,

03 21
Now, the size of a cluster induced by uy (1) is just the
number of exceedances of that level in a block with
size rp, conveniently chosen. A natural estimator of
0-1 would then be obtained by dividing the total
number of exceedances of a previously defined high
level by the total number of clusters. This procedure
is quite general and has been proposed in Ref. [5] . It
has the (not so minor) problems of choosing a
convenient block size and a convenient high level.
As we will see, the first problem can be avoided if we
assume a local dependence condition like D". This
is due to the important role played by the point
process of upcrossings in the characterization of the
limiting compound Poisson process of exceedances.
According to Ref. [1] the point process of upcrossings

n
Nn(B):E1 £, (B) 1(X; ysup<X;)), Bclo,1],
1=

converges to a Poisson process whose intensity
depends on the chosen sequence of normalized
levels and on the value of the extremal index.

Proposition 3: Suppose A(u,) and D"(up ) hold for a
sequence of levels u, such that the mean number of
uppcrossings is approximately v, i.e., nu(up )= v.
Then N+ N, where N is a Poisson process in [0,1],
with intensity v.

If, in addition, {X; } has an extremal index 0, (1)
holds and, consequently, 67 is the intensity of the
limiting Poisson process N, generated by the levels
up (1) such that nP[X1>up (1)]=7.

Under the conditions mentioned above the
equivalence (1) gives us two ways of constructing

normalized levels. In the following we denote by

up(3) levels such that np@@,(8))= 8, and by up(5)
levels such that nP[X;>up(3)]+ 5 \so, in case of

existence of the extremal index, uy (8) =1, (08)).
Another consequence of assuming D" is that it
enables us to identify clusters of exceedances with
runs of consecutive exceedances.
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Given a sequence of levels uy,, define for each n the

random variables Y; =Y(i,un) , 1<j<n, which
represent the number of consecutive exceedances of
the level u after time j,

{Y]=0} = {.X_"Sun)
fY,-=k}={’% >un,)%+1 >up ’---’5%+k-1>un)%+k5un}
k>1.

Denote by Zj(uy) the length of a run of consecutive
exceedances after the occurrence of an upcrossing at
time j, and represent by

fin(k) =PlZ(ug)=k]

its probability distribution (which does not depence
on j, due to stationarity).

The following statements established in Ref. [4]
summarize a few results that are essential to our
work.

Proposition 4. Let {X; } be a stationary sequence with
extremal index 6. If up=up (1) is such that D(u,) and
D"(up ) hold then

HmE[Z,(up)] =67
n oo

Proof:

In order to simplify the notation, let Z denote the
random variable Zj(up). Since Z takes only positive
integer values,

E@Z)= 3 (1-Fz(k-1)) = 3 P[Z2k]. (2)
k>1 k>1

But Z represents the length of a successive run, so
P[Z2k] = P[X>up;Xp>up ...; Xy >up |Xg<un<X,]

P[XOSun; Xy>up; .. X >up ]
B P[ Xg<up<X,]

P[X1>un;...;Xk>un] - P[X0>un;...;Xk>un]
P[ X <up<X,]

P[Y>k] - P[Y,>k+1]

P Xysun<X,]

Hence the mean value of Z can be easily calculated
from (2)



) (Ply2k]-PlY2k+1]) 4

[v,>1]
EZ)= = .

u(ayp)

P[ X, <un<X,]

The result follows immediately since P[lel] =

P[X,>up] and up=up(v) (=8n(67)). ¢

Proposition 5. If up is a sequence of normalized
levels for which both conditions D(up) and D"(uy)
are verified then, for each k=1,2,...,

lim [y (k) -7 (k)] = 0.

n-»o

After this result the following proposition, analogous
to proposition 2, becomes quite apparent:

Proposition 6. Assume that A(uy) and D"(up) hold

for a sequence of levels up=up(v), with v>0. Then, if
Z1(up) converges in distribution to some non
degenerated random variable Z, the point process of
exceedances Ny converges vaguely to a point process
N such that

N(B)

N@B) = 2 Z,, Bcl0]],{Z}iid. with Z,

i=1
where N is the existing Poisson limit of Nj. Hence
the point process N is a compound Poisson process
with intensity v and multiplicity Z.

The estimation of the extremal index presented in
Ref. [4] is based in these last results. From
proposition 4 we see that in the limit the cluster
centers can be identified with the upcrossings
whereas, by proposition 1, the mean size of each
cluster is aproximately 6-1. The suggested estimator
for -1 is then constructed by dividing the total
number of exceedances of a conveniently chosen
level by the total number of upcrossings of that level.

2. An estimator for the extremal index,
under D"

Given a sequence of levels up define for each n the
random variable N(n,un) which represents the
number of exceedances of up in a sample of size n,
i.e.,
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n
N@m,up)= z 1X;>up)

i=1
Note that N(n,up) is nothing but the measure of the
interval [0,1] through the time normalized point
process Ny.
In a similar way we denote by N(n,up ) the number of
upcrossings of up in a sample of size n, i.e.,

n
N(n,up) =21 1X, ;<up<X|).
=

Now, the mean values of these variables are
E(N(n,up))=nP(Xi>uy) and E(N(n,up))=np(up),
respectively. So, under D"(up) and if the extremal
index exists, we have, by (1),

ElNou)l 1

1i - =
- E [N@,uy)] ©

n—oo
for any sequence of normalized levels. If we
consider the sequence of levels in such a way that
E [N(n,un)]—)l,when n—oo, then the reciprocal of the
extremal index will merely be the limit of the mean
number of exceedances.

For i=1,2, ..., kp, let upi be a sequence such that
rpp(uy;)~1 (recall that ky is the number of blocks of
size rp in which we subdivide the sample). Represent
by N;(r,,u,;) the number of exceedances of u ; in

block i, and consider the following estimator for the
extremal index

o =(

To prove the consistency of én we use the assimptotic
independence of ap Nj(rp,up), i=1,2, ..., ky, for any
sequence of real numbers {ap}, under the validity of
the condition

1 -k -1

kg 2i=1 Ni(Tn ’uni))

kp[on (2n-2,un) + P(M, >up)l» 0  (3)

for some £, (Lema 5.2.1, Ref. [4]).

Proposition 7. Let k;, be a sequence of integers such
that ky—> « and let ry=[n/ky]. Suppose that the
stationary sequence {Xj} has an extremal index 6
and that for a sequence of levels up verifying
Tpi(up)=+1, A(up), D"(uy) and (3) hold. Then

kn
Z Nl (rn »Un )
i=1

kyp
under the condition that

BN

»

D | 4=



lim E[N2(ry,up)]=c2<ee.
n—oo

Proof:

Consider a sequence {NT(rn,un)}, i2l, of
independent random variables identically
distributed with Ni(rp,up). Taking ap=Lk; in
Lema 5.2.1, Ref. [4], we have the assimptotic
independence of Nj(rp,up)/knp  and the following

convergenge
kn kn *
E Ni (rp,up) 21 N i (rp,un) p
=1 1=
- 0.
En ka0

On the other hand, since for this kind of levels we
have li_x)n E[Nl(rn ,un)]=9'1, the result follows
n -3

immediately from the convergence in probability of
En

> N¥(ry,up) /kp to 6. Indeed

i=1

k;
P [| iéN’f(rn,un) - E [N;(nup)] | >e)
1|k
=P[k— | S (N¥@n,up) - E [N @q,u0)]) | ¢
n - i=1

kp
var [Zl N¥(rg,un)]
1=

kp 2 E2

IN

= o)

by the asymptotic boundness of var [N’:< (rn,un )] .

Proposition 8. If conditions of proposition 7 hold for

levels up;, such that ryp(upi)=1, i=1,2,..., ky, then én
is consistent.

Proof:
Letu, and u,'; be two sequences of levels such that

rp(uy)->1 and rnp,(ul',)» 1. Then, using (1) we derive
P[N(rp,up) # N(rp,up)]
<t | PIX;<up] - PIX;<ug] |
1 1
= 1 (G (101 - = A0(19) = o()

when n goes to infinity.
Consequentely N(rp,up) - N(ry ,q'l) 2) 0 and the

consistency of 5,1 follows from the identity
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kg
z Nl (rn >Un )
i=1
kn
kp
Z (Nl(rn yun)'Ni (rn ,uni)) -1
=1

'*'(gn)

kp

where the right hand side converges in probability to
1/8, by proposition 7, and the first term in the left
hand side goes to zero, in probability, by the above
remark. ¢

The Lindberg condition for the asymptotic

~

normality of &n = ljén is easily established from

the fact that &n is the arithmetic mean of
approximately independent random variables.

Proposition 9. Under the conditions of proposition 7
if, for each £>0,

lim ky E [N2(rp,un) 1(N@p up)>e)] =0

N300

( Lindberg condition)

)
£) N(O;%‘\IM)

then

kp
L2 (

lei (rp,Up) - kn E(N(rg up)
1=

@

Proof:

Let {N’f(rn ,up)}, i21, be a sequence of i.i.d. random
variables with the distribution of N(rp,uy). This
sequence verifies the conditions of Theorem 3 of
Ref. [6], p.101, from which, using the convergence of
E(N(rp,up)) to 1/6, we conclude that

k]-lyz(
3 N(O; %\/ml_).

The asymptotic distribution (4) follows immediately
since

kn
3. (W} o 00) - EOV}rn.u0)
i=



kp
( ZNi (rn,un)-kn E(N(rp,up) )j
1=1

kn
= (N(D,Un ) -Z]_I\I >i‘(rn »Un )j +
1=

kn
+ (Z( NT(I’n ’un)'E(NT(Tn Jup) )) )
i=1

and by Lema 5.2.1, from Ref. [4],

-1/2

kp
kn N(n,up) - %, N’f(rn,un)) converges in

=1
distribution to zero.e

Proposition 10. Suppose in addition to the conditions
of proposition 9 that

b
Vn (N;(rn un)-N; (r uni)) = 0. ®)
for levels upj, such that rpp(upi)-1, i=1, 2., ky.
Then

= D
VEkn ( o, -en) - N(o; o\ 62c2.1),
where 6,= (E[N(rp,up)] )'1.
If in addition 8,=6 + o( \/1_), then the following
kyp

(6)

convergence also occurs

Vi (5, -0)2 N(o, ove221).

)

Proof:

Let &n = 1/5n and ap = E(N(rp,up)). After some
rearrangements we have

Vicg (o - an)

il (

k-1/2

- Bn

kn

by Ni(l'n un) - kp anj -
=1

kn
(21 (Ni (rn,un)-N;(rg »“ni))),
i=

from which, using (4) and (5) we first conclude that

Vg (G -0m) S N(o; 2e2e21).

The asymptotic distribution established in (6) can
easily be obtained using for instance the §-method
(Ref. [7]).

The convergence in (7) is trivial after the
decomposition of the first member of (6) into the

terms\/fn_( 3,1-9) and \/E(O-Bn).o
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Remark: Both the consistency and the asymptotic
normality of this estimador strongly depend on the
applicability of Lema 5.2.1 from Ref. [4], in which
condition (3) is assumed. It is easy to see that, for
normalized levels up, A(up) is sufficient to (3), but
for practical proposes it is worth while to remark
further that, if rppu(uy )» 1, then

kn P(M,_>up) >k P(X;>up) _—lr‘f 6 + o(1)).
So, in this case, ky/rn +0 is a necessary condtion to
(3), that is, the number of blocks must be
significantly smaller than the size of each block.

3. Simulation results

In this section the results of a simulation study are
presented, in which we choose for {X;} the max-
autorregressive process studied in Ref. Ref. [8].
More precisely, let Xj=cmax(Xj.1,Y;), ce (0,1), where
the r.v.'s Y; are i.i.d. with a Fréchet distribution
function with parameter o. This process has a
stationary distribution, verifies conditions D and
D" and has an extremal index 6=1-c®. Further, it
can be proved that the limiting cluster distribution is
Geometric with parameter 6 and so, if we denote this
r.v. by Z, (in accordance with the notation of section
1), we have E(Z)=1/8, var(Z) =(1-6)62.

Now, in most practical cases, the levels up
satisfying the condition rpPXj<up<Xs]~1 are
typically unknown since they depend on the
knowlege of the joint distribution of (X1,X2). As in
other methods we will consider the replacement of
these deterministic levels by random ones in
accordance with the above relation. So we suggest the
following strategy:

— Choose ky (the number of blocks) in such a way
that [n/ky]=ry>ky.

— In each block pick up all the maximum terms
within the points j such that Xj.; >Xj, Xj41 >X;.

— For block i, consider Upj as the second greatest
value among these maximum terms.

In this way there will be in each block at most one
upcrossing of this level which will be as low as
possible. In most cases the level Up; corresponds to
the second highest peak in block i, as illustrated in
fig.1.

As n goes to infinity it is reasonable to think that the
exceedances of Upj occur in a cluster that is
asymptoticaly independent of the cluster that
contains Upj. Thus, the next result supports our
choice of Uy;.
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Figure 1: Construction of the random levels Upj

Proposition 11. Let (Xj be a stationary sequence with
extremal index 6 and a marginal continuous
distribution F. Let Mp=max(X1,X2,...,.Xn) and
consider a r.v. X with the same distribution F,
independent of {X;}. Then lim nP(X>Mp) = 67L.

n—oo
Proof:

Denote by Wy, the r.v. nF(Mn), where F=1-F. By the
definition of the extremal index it follows that

lim PWy>x} = lim P(My<F Jx/m)) = e %%, x50,
Do n—es

since ?‘—l(x/n) is a sequence of normalized levels.
This means that the distribution of Wy is
asymptoticaly exponential. Using this fact we have

nP{X>My}

= nP@OF(X)<Wy)
4oo

=J nP(nF(X)<x}dFyy_(x)

+oo

x
=Jn 2 dFWn(x)
0
= E(Wp)

and the result follows. ¢
In our simulation procedures the estimate of 6 was

computed based on levels Up; determined in
accordance to the above described algorithm.
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At a first step, sequences of size n=1000 of the max-
autorregressive process {Xj} with a=0.5, 1.0 and
¢=0.1, 0.5, 0.9 (i.e., ® = 0.05, 0.1, 0.29, 0.5, 0.8, 0.9)
were generated and estimates of © were computed for
rn= 5, 10, 15, 20, 25, 40, 50, 100, 200, 250. This
procedure was repeated 500 times and, for each pair
(a,c) and for each rp,the average and the mean
square error of the corresponding estimates of the
extremal index were computed.

In fig.2, ry is plotted against the estimates of E(én)
for the different values of 6 considered above. From
its observation we can conclude that for r, ranging
between 40 and 100 this procedure seems to work
reasonably well for all values of 6. Notice in
particular, the apparent agreement with the latter
remark about r, being significantly bigger than
kn.

The mean square errors represented in figure 3, do
not contradict the good behaviour of these estimates
for values of ry in the same region.

In order to examine the empirical probability
distribution of the number of exceedances of the
random levels Upj, which we expect to be
approximately geometric, another simulation
procedure that generates sequences of n=1000 of {Xj},
was made for the same pairs (a,c). This procedure
was run 1000 times and the empirical distribution of
Z, its sample mean and its sample variation were
computed for different choices of ry. Some of these
results are presented in table 1. Once again the
simulation results suggest that the behaviour of this
estimator is more sensitive to the ratio between the
size of each block and the total number of blocks than
to the value of 0.
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Figure 2. Estimates of E(én), for n=1000 and
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Figure 3. Estimates of MSE(an), for n=1000 and
r = 5,10,15,20,25,50,100,200,250.

Table 1. Estimates of E(6,), E(Z) and var(Z),
for n=1000 and rp = 5,10,15,20,25,50,100,200,300,400,500,1000

; z?z; n 5 10 5 2 % % | 100 | 200 | 300 | 40 | 500 | 1000
Var(z)

090 | 005 0.056 | 0055 | aos3 | aoss | 0053 | aoso

05 | 195 17.72 | 1830 | 1871 | 1882 | 1869 | 20,01

360 20 | 313 | 340 | 38 | 3 | w0

09 | 01 e11 | 0106 | 0103 | az02 | aor | o102 | a0ss

w0 | 10 94 | 94 | 97 | 98 | 99 | 975 | 102

%0 786 | 837 | & | 8 | 101 | 9634 | 1082

050 | 029 029 | 029 | 03 | 03 | 029 | 029 | 03 [0299 ] 020

o5 | 345 343 | 345 | 337 | 331 | 339 | 340 | 336 | 335 | 345

824 816 | 856 | 761 | 756 | 803 | 851 | 9.17 | 886 | 984

050 | 050 049 | 049 | 049 | as1 | 050 | 050 | 050 | 050 | 0505 | 0495

0 | 2 21 | 21 | 20 | 20 | 20 | 20 | 20 | 20 | 198 | 20

2 20 1 21§ 21§ 21| 21 )20] 2] 235 221 24

010 | o068 06¢ | 066 | 065 | 067 | 268 | 069 | 063 | 0 | 0o | o | ae7

05 | 246 156 | 152 | 152 | 150 | 148 | 144 | 146 | 146 | 145 | 144 | 188

068 086 | 071 | 074 | 072 | 069 | 062 | 067 | 069 | 075 | 060 | 084

0.10 | 090 071 {082 | 08 | 087 | 087 | 090 | 091 [ 090 | 090 | 0% | 091 | 0se

0 | 211 140 { 122 | 126 | 115 | 124 | 221 | 211 | 220 | 111 | 112 | 121 | 122

0.124 063 | 030 | 020 | 017 | 016 | 016 | 011 | o125 | 012 | 014 | 013 | 016
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Approximate Extreme Value Analysis For A
Rigid Block Under Seismic Excitation

Facchini, L. and Spinelli, P.

University of Florence, Florence, Italy

The problem of the collapse risk (due to earthquakes) of a rigid block resting on a rigid
foundation is dealt with in this work; and three hypotheses are introduced to describe the series of

the seismic events:

1. the arrival rates of the single earthquakes during the structural life can be described by means
of a counting process (specifically, a Poisson random process);,

2. the yearly maxima for the peak acceleration of the soil can be described by a Fisher-Typpet 11

distribution;

3. the single event can be described by a random non stationary process.

The behavior of the rigid block has been investigated via the statistical linearization method,
which can provide satisfactory approximations of the response of the system.

By means of a reasonable combination of the model for the seismic events and the
approximation of the peak rotation of the block, an approximation was obtained of the p.d.f. for
the extreme value of the rotation of the block due to earthquakes during a given period of time.

This is of crucial interest in the evaluation of the collapse probability of the block, as it can
conveniently be combined with material resistance distribution; the collapse mechanism for such a
system involves two distinct characteristics: the former is the overturning condition, and the latter
concerns the resistance of the block material (that is, the material can collapse before the
overturming condition is reached, thus causing the structural failure).

Introduction

The mechanical system taken into consideration is
sketched in fig. 1; it is a rigid block free to rock
without sliding on either the base comers; its
foundation is a rigid horizontal plane which moves in
the x-direction according to a given function of time
Xg (t) which, in this particular case, will be assumed

to be a realization of the random process X o (t )

In addition, let R = }é\/H2 +B? and 9(1) be the

angle measuring the tilting of the block; positive or

111

negative 8 means rocking about corner O or corner
O’ respectively.

The equations of motion about each one of the base
corners [5] are:

o-0+1= f(1)

o~ —1= f(1)

These equations describe the evolution of the svstem
via the lagrangian coordinate @ = 6/6 , , where 0,
is the critical toppling angle (see fig. 1) and fis a
function of non-dimensional time parameter T

2.1



besides, the non dimensional time parameter T = W

was introduced, where p is the frequency of small
oscillations of the block, when it 1s suspended from
one of the base corners; specifically,

MgR
W= f_g_
1o

where M is the mass of the block, g is the gravity
acceleration and /) is the moment of inertia about
the corner O.

22

Impact occurs between the block and its foundation
whenever there is a transition from rocking about one
comer to rocking about the other; the associated
energy loss is accounted for by reducing the angular
velocity of the block after impact.

Specifically, it is assumed that

lim o(t)=e- lim ¢o(1)

Tt T>T

23

where ¢ is defined as the coefficient of restitution of
the angular velocity, and T+ and 1~ are respectively
the nondimensional time parameters just after and
Just before impact.

The statistical linearization of the system

The two equations of motion (2.1) and the linking
condition (2.3) can be conveniently summarized into
the expression

6+(1-e)8(0)6™|67| -0 +sign(e) = £(x) 3.
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Here, 8(-) is the Dirac Delta function.

It is clear that the given system, even when it is
slender enough and the equations of motion can be
piecewise linearized, is still strongly non-linear.

When f (t) is a deterministic function of time, the
behavior of the block can be investigated easily
enough because a closed form solution can generally
be obtained for each half cvcle; on the other hand, if
f (r) is a realization of a random process, it is
generally necessary to make use of approximate
methods, such as statistical linearization [1] [4] 1s.

Before proceeding, we brieflv discuss
assumptions on the forcing process f ( ‘t).

the

Following Kanai-Tajimi [3] [6] thcorv, the power
spectral denity of the baseline excitation was
assumed;

S (0)=
1+ 452 (m/co 2 )2

2
1-(0j0,)" | +482(0/a,)’

where € =0.60 and © o =57 S is the intensity

=Sy

function of a non stationary white noise obtained
from a Gaussian stationary white noise multiplied by
a deterministic function of (actual) time x(t); in

particular, x(t) is madc up by:

1. a quadratic build-up:

(x(t) =12 /16 for t <1 = 4 secs.);
2. a constant term equal to
4 secs.=1) <t <1y =15 secs.).
an exponential decay:
(x(1) = exp(—0.0992(t -1 ))
for 15 secs.= 1, < t)(fig. 2).

unity  (for

(V3]

It can be shown that the power spectrum of the
forcing process f(t) is linked to Kanai-Tajimi model
by means of the relation:

T
2 :5 ‘KX' ((D )
(£0r)
Thus, one has to investigate the response of a linear
system whose equation of motion is

(V3]
(V3]

Spr(o)=



Bp+Co0p +(k, ~ 10, = f(7) 34

where

G

- o) {2

cezil_ﬁ € ke: —_— 1
7rl+e0'¢e T O,

and 6, and G4 are respectively the standard
e

(93]
W

deviations of the two processes @, and Oe .

Kanai - Tajimi model

)] i L
0 10 20 30

frequency o

Envelope function
1.2 | ]
1 L.
0 i L
0 10 20 30
time, t
fig. 2

It has been assumed that, when %(7)=1, i.c. from
1} =4 secs. to I = 15 secs. (or at least during a

portion of this time period), both the excitation and
the system response could be regarded as if they were
stationary. This is a rough assumption, and studies
are at present being carried out to evaluate its
adequacy. However, numerical results from [8] (see
next paragraph), suggest it velds satisfactory resuits.

As usual, the variances of the two processes, tilt
angle and angular velocity, were estimated via the
following relations:

e¢]
Gé’e = J.cozScbe@e (0)do 3.6a
—a0
o
ofbe = [So,,(0)do 3.6b
—oC
where
Srr(o)
o,0,(0)= i 3.7

Extreme value distribution for a single earthquake

Once the excitation intensity is given via the
parameter S, the extreme value distribution during
the time period 4 secs.<7 <15 secs.. i.e. when the
response is assumed to be stationary, can be
evaluated for the equivalent linear system by means
of Vanmarcke's [7] relation

F'q_)e (aeiap) =

2 Gq)e

=exp| —-v,T > 4.1
% |
exp 5 1
26

L ®. i
where:

1 %q
Ve = — % ; 42a

2n Co,




0
}"i = J‘(OISQ)E(_DQ (C'.) )dCl) 4.2b
0
The variable a, does not affect directly Fg, : A; and
e
q are functions of S¢ ¢, and therefore of a .

Bv means of relation 4.1, it has been possible to
check the validity of the approximations introduced
by the equivalent linearization; some numerical
results were available from [8].

Reference of [8] studied the behavior of a rigid block
with aspect ratio R=10ft. and slenderness
H/B=5. it was subjected to several ground
accelerations histories which followed the Kanai-
Tajimi model. The mean peak acceleration was
a,=0.4g.

The coefficient of restitution was varied from
e=0.90 to ¢ =0.95; twenty histories for each one
of the values of ¢ were numerically integrated, and
the ecmpirical cumulative distributions were
evaluated.

Fig. 3 shows the comparison between the empirical
frequencies obtained in Ref. [8] (the crosses) and the
curve obtained by Vanmarcke's rclation (4.1) for the
equivalent linear systems (computed according to the
proposed formulas) for four values of e (continuous
line); the dashed lines are the boundary of the
confidence interval of a Kolmogorov-Smimov
goodness-of-fit test.

Since each cross is contained in the confidence
interval, this gives evidence that the approximation
obtained was satisfactory.

Then, as the values of e did not differ much from
each other, all the empirical c¢.d.f. were consolidated
so as to obtain a sample population of 120 samples:
an equivalent hinear system was computed imposing
e =10.925 (that is, the mean of the previous values
taken for e).

Fig. 4 shows the extreme value distribution of ®g
together with the empirical frequencies and the
confidence interval of a Kolmogorov Smirnov test.
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Extreme value distribution
during the structural life

In the previous section the method for obtaining the
cumulative distribution function for the extreme
rotation of the block has been described. The starting
point was the shape of the power spectral density of
the forcing process, coupled to the mean of its peak
acceleration. ’

If an upper bound is imposed for the extreme rotation
of the block, for instance the toppling condition
l(pl <@ =1, a safety region can be determined and
the curve which expresses the collapse probability
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conditional on a given event having occurred can be
plotted.

In order for the seismic vulnerability to be estimated.
the collapse probability conditional on a given event
having occurred must be combined with the
probability that this event takes place during the
structure's life.

The upper bound for the rotation will be denoted by
¢ and SE[—6;6]€R will stand for the safety
region of the dynamic system.

Let B5(0lap ) be the safety likelihood and
Be(olap ) the collapse probability for the block



subjected to a seismic motion whose mean peak
acceleration is a p:

“c((p!ap) =1- 4(@“])) =
= Prob[[(pl < 6}ap] 5.1

We will assume that the time series of thc seismic
events can be modeled as a Poisson process and that
the safetv probability of the system does not change
with time: then the safety probability of the svstem
durning its life 7, is [2]

S(Tstr) =

o0
= exp{—Ts,r J(Bc <<p§ap}, )PAP}, (apy )dapy 52
0

where p Ay 1s the probability distribution function of

the vearlv maximum of mean peak acceleration of
seismic motion for the considered site.

Fromegs. 4.1 and 5.1

b(0ia,)=1-F5 (3.a,) 53

Once thc probability densitv function (p.d.f) of
vearly peak acceleration a py 18 given, eq. 5.2 may be
viewed as the probability of the rotation being less
than an arbitranly fixed value @ during the system
life 7;,,.; from this new point of view, eq. 3.1 defines

the cumulative probability function for the extreme
rotation during the whole structural life.

This new function takes into account the random
structure of the seismic events in the considered site
by means of the p.d.f. of vearlv maxima of ground

acceleration p Apy (a py) :

P(DS ((Ps) =
o
= expy = Tgy jg((Ps’apy)dapy =
0
= Problo<o,] 54
where
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5<(ps’apy) =

= [1 - F5e ((Ps 'apy)]pApy (apy)
during the whole structural life Tgy;.

The corresponding p.d.f. can be obtained by a
derivation of this last equation; it can be found that

~
C

pCDS ((ps): 3 P(DS((PS)Z
D
= =T exps — Ty J‘y((ps'apy)dapy
0

-~

X
-f%?((ps,apy )a’apy 55
0 §

Applications

The proposed method was used to evaluate the p.d.f.
of the angle of rotation of Foca's column in Rome

during a period 7, =50 years; the structure can
be roughly sketched as a 12.83 mt. cylindrical rigid
block whose medium diameter is approximately 1.27

mt (see fig. 5).
It shows a critical angle 6., = 0.0984 rads. and a
natural frequency 1 = 1.069 st

Several forcing processes were considered (following
Kanai-Tajimi model with mean peak accelerations
ranging from 0.001g to 1.000 g) and an equivalent
linear system was computed for each of them; in fig.
6 the extreme value c.d.f's are reported for ten
processes, whose mean peak acceleration ranges from
0.1gto 1.0g.
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This results were combined with the probability
distribution function of the vearlv maximum of mean
peak acceleration of the ground; a Fisher-Typpet Il
tvpe c.d.f. for the vearly peak acceleration was used:

Py )= lujon)”]

u

1y -1 uy
! 4
ap, ap,

Pa,, (apy) = 1y

where ) = 6.6552-107° and uy = 1.9313 (see
fig. 7).

The p.d.f. for the extreme rotation of the column was
computed (see fig. 8) by means of equations 5.4 and
5.5 assuming Tgy = 50 years.

Conclusions

A method to evaluate the extreme value distribution
for the response of a SDOF non linear system was
proposed; this method makes a massive use of the
statistical linearization technique, and is based on the
assumption that both the excitation and the response
are stationary for a certain period of time. even
though they are not.

An approximation of the extreme value distribution
of the response of a nonlinear system during a given
time period (in our case, 50 years) was obtained.

fig. 8
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The Rate Of Convergence Or Divergence For

Percentiles Of Gamma Distributions And Its
Application To Sample Extremes

Gan, G. and Bain, L.J.
University of Missouri, Rolla, MO

For a sequence (an,ﬁn) of positive constants with anlO and ﬂn¢0 as

In(a
nto, it is shown that if lim

o)

nteo 1n(ﬁn)

where np(ﬂ,k) is the 100pth percentile of the gamma distribution with

mean kf and variance k#?, and if lim
nteo

=a=0,

n

2

. ﬂl_an(91,k1) 6,
then Lim 57" k) 2
n
Ny (61,ky)
. n _
a>0, then iﬁg ;;—T?;TE;7 0
n

if ky<ky, = = if ky<k,;, and = al/k€1/62 if k,=k,. An example of its

application to sample extremes is given.

1. INTRODUCTION

It is well known that the normalizing
constants to any domain of attraction
are all related to the percentiles of
the underlying distribution, and that
the gamma distribution belongs to the
domain of attraction of the exponential
type for the maximum and is attracted
to the Weibull distribution for the
minimum. Also, by Ref. [1], the moments
of normalized extremes from the gamma

distribution tend to the moments of the

appropriate limiting distribution, and
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so the approximation for the moments of
sample extremes based on the limiting
extreme value distribution is con-

sidered.

If one is interested in asymptotic
expectations of sample extremes from
gamma distributions and their ratio,
the rate of convergence or divergence
for percentiles of gamma distributions
will be helpful. This paper will derive
the rate in Section 2, and give an ex-
ample of its application to sample

extremes in Section 3.



Throughout this paper, np(a,k), >0
and k>0, will denote the 100pth percen-
tile of the gamma distribution Gam(§,k)

whose density function is given by
<K-1g-x/6

r(k) ek’
and distribution function is denoted by

f(x;6,k) = x>0,

F(x;80,k), "x»y(x)" will represent a

(£(x)10)

will represent that ¢ is

function ¢ of x, and "{(x)!0
as X—o"
strictly decreasing (increasing) and

lim (x) =0.

X+

2. MAIN RESULT

LEMMA 1. Let (a_) be a sequence of

positive constants with anLO as nteo,

Then
N1.a (6,,k) 8,
(1) lim — B - —,
nte ”l-an(az’l) 62
and
(01 0 0<k,; <k,
a bl
FOND ¢ DO,
(2) i*z n (62.%2) @ O<k,<k;, .
n

91/62 O<k2-k1

PROOF. Since an~n1_an(6,k) is decreas-

ing and differentiable for ane]O,l[, by

L'Hospital’s rule,

.o (61.K)
lim — 22— =

a 10 M-o (f2:1)

ﬂl_an(ol yk) 01

6,

lim
an$0 -Bgln[l-F(nl_aéﬁl,k);01,k)]
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and (1) holds because anto as nto, Next
for ane]0,1[, since

and a > (8i,ki) is increasing and

a
n
differentiable,
. 8
i=1,2. Hence, for ane]O,l[,
ky
722 [n, (01.kp))
n n -
k
] !
aan [ﬂan(Hka2)]
ky
T(ky)8, ka-k;
%, [ﬂan(92,k2)]
L(kz)62

cexp[§ my (91.ki)- 5 M, (82,K2)].
n n

Finally, (2) holds from a backward ap-

plication of L’Hospital’s rule.

THEOREM 1. Let (an,ﬂn} be a sequence of

positive constants with anlO and ﬂnlo

ln(an)
as nto and lim T;?E—T = a>0. Then for
nte n
k;,ko>0,
’71"& (al»kl) 91
(&) lim n

nte 11.p (P2, K2) ~ % Fp
n
Mo (F1.1) 4,

. . n .
PROOF. Since iiz s .. 25, (4)
n

follows from (1).

LEMMA 2. Let a: )0,®{=]0,1[ and B:]0,=[

+]0,1[ both be differentiable functions



with a(x)+0 and B(x)40 as xte and
a(x)

lim -7
163
B(n) for n=1,2,.... Then
Mo (8,,k)

D ¢ S—
K = a
r’ﬂn(02) )

=a>0, and let an-a(n) and ﬁn-

lim
nteo

(5)

PROOF. Refer to formula (3). Ega(x) -
£l iy (1K) 01 Kk] 52 Mg () (43,10 and

g%izl—f[nﬂ(x)(ﬂz,k);02,k]§%nﬂ(x)(92,k),

d
TSNS 1
Hence, -;iﬁ(w exply Mp(x)(f2 %) - 7,
k _d k
02 3x[M4¢ )(91,k)]
.na(x)(él,k)] ;? 3 el . T and
1 ax[ﬂﬂ(x)( 2,K)]

(5) holds from a forward and a backward

application of L'Hospital’'s rule.

By applying (2) and (5), the follow-
ing theorem holds and the proof is

omitted.

THEOREM 2. Let (an,ﬁn) be defined as in

Lemma 2. Then

MTa (81,k1) 0 O<ks<ks
s n
- _ o<
PR CPRY - Ko<k
n al/Kg. /8, O<k,=k,=k

3. AN EXAMPLE

EXAMPLE. Suppose an electrical com-
pany’s charges are based on the maximum

power demanded over a time
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period of n days. A company has r
meters, and some of r meters will be
charged at a discount rate if kept
separate, but r meters will be charged
at the same rate if pooled. If Xij rep-
resents the power demand for the jth

meter on the ith day, and S; -Xil+...+

Xir’ then S(n)- max(Sl,...,Sn)s X(n)l
+.. .+ X(n)r' where x(n)j' max(le,
.,an). So the question is when will

the reduction in the peak demand ob-
tained by pooling meters offset the
added cost incurred by pooling. We need
an indication of the relative effect of
maximizing a sum compared to sums of
maxima. This information should be use-
ful in other types of applications as
well. For example, a greater peak load
capacity per work station is required
if the work stations are kept separate,

than if they are pooled.

There are many potential applications
where analogous results for minima
would also be useful, so both cases are
discussed below for the gamma distribu-

tion.

The gamma distribution is a flexible
two-parameter model, and results for
the gamma distribution should provide a

guide as to what effects might



generally be expected.

Let X3:,...,X :, j =1,...,r, be r in-

j nj
dependent random samples selected from

the ith smallest order

£.(k) - 5

statistic of le,...,X
and én(k)

nj’
1

E[X(ny3)- - gE[X(q1y;1-

the relative effect on maxima is given

€, (rk) _
by Rn(rk,k) - ;E;?ET, and the relative

Then

effect on minima is given by Qn(rk,k) -
ré (k)
6 (rk)"

and Qn(rk,k) based on the limiting ex-

The approximations for Rn(rk,k)

treme value distribution are given by

R_(rk,k) = R/ (rk,k) =

1x2 1(2rk) + (1-7)x? 1(2rk)
1 he 1

r{yx? 1(2k)+ (1-v)x? 1(2k)]
1-;; l-E
and
r2x?  (2k) T()
1/n
x?  (2rk) T(5)
1/n
where v=0.5772157 denotes Euler’s con-

Q,(rk,k) = Q) (rk,k) =

stant and x;(v) denotes the 100pth
percentile of the Chi-square distribu-

tion with v degrees of freedom.

It can be seen numerically from Ref.
[2] that the respective approximations
for Rn(rk,k) and Qn(rk,k) based on
Rﬁ(rk,k) and Qﬁ(rk,k) are surprisingly

good.
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By applying Theorems 1 and 2, the

following result holds.

lim R’ (rk,k) = * and lim Q’(rk,k) = O,
kY nte n

nteo r
which provides information for Rn(rk,k)

and Qn(rk,k) when n is large.
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.Ap.p_lication Of Extreme-Value Theory To
Reliability Physics Of Electronic Parts (On-Orbit

Single Event Phenomena)

Goka, T.
National Space Development Agency of Japan, Tokyo, Japan

Some models, for example weakest link model and bundle of fiber model used to be applied to reliability
physics in the fields of reliability and destructive engineering. To the test data and the statistical analysis of

the distribution of the smallest and the largest values that can be explained with these models, extreme-value

theory (particularly doubly exponential distribution) can be applied. The purpose of this paper is to examine

the application of extreme-value theory to the on-orbit data on single event phenomena of memory IC under

the space radiation environment. The application of extreme-value theory is compared with that of the

conventional Poisson distributions to verify the effectiveness of the application of extreme-Value theory

(doubly exponential distribution).

1LINTRODUCTION

Since the destruction of material is thought to take place
at the weakest point of the component (the weakest link
model), the material property has stochastic characteristics.
Therefore, to correctly determine the tensile strength and/or
the life of a material, the distribution of smallest values is
appropriate. On the other hand, the distribution of largest
values is significant to the leak current failure of electronic
parts or the corrosion pit depth for the rupture strength. The
selection of the smallest or the largest values of subject
data, in other words, will approach the extreme-value
distribution. Therefore analytical methods have been
established on the basis of extreme-value theory.

At present, a method based on reliability physics (a
method applied to developing high reliability parts that are
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completely fault-free by thoroughly pursuing the cause of
actually generated faults, detecting and correcting latent
faults through accelerated test) is drawing attention as the
ultimate decisive factor for reliability assurance. Under the
circumstances, there are high possibilities for utilizing
extreme-value distributions, particularly the doubly
exponential distribution, in the field of reliability data
analysis of electronic parts.

Single event phenomena are the well known interactions
between high-energy particles in the space environment and
electronic devices on spacecraft. These phenomena are
caused by high energy proton or heavier particles such as
helium, carbon, nitrogen, oxygen, iron and so forth in
galactic cosmic rays, the trapped Van Allen belt particles
and solar flares. These phenomena can be classified into
Single Event Upset (SEU) and Single Event Latchup (SEL).



SEU is a reversible soft error that the information (digit 1
or 0) which are maintained in the memory or the
microprocessor unit (MPU) of the spacecraft are upset (1—
0, 0—1) by the particles in space. Especially, the upset
caused by protons is termed as proton upset, and that occurs
even in the low-altitude orbit owing to the protons trapped
by the magnetic field of the earth. These protons are most
abundant above the south-Atlantic ocean, so called South-
Atlantic Anomaly(SAA).

SEL is an irreversible hard error which is caused by the
high-energy particles to the electronic parts of the CMOS
technology.

2 MEASUREMENT OF SEU AND SEL BY ETS-
A%

2.1 RAM SOFT-ERROR MONITOR
EXPERIMENT

Engineering Test Satellite-V (ETS-V) has been launched
by NASDA on August 27,1987 and has been put into geo-
stationary orbit at 150" east longitude. This spacecraft has a
Technical Data Acquisition Equipment (TEDA) aiming at
obtaining technical data which is necessary to develop
spacecraft. TEDA includes a RAM Soft-error Monitor
(RSM) that makes a measurement of the SEU or SEL
occurring at eight 64-kbit CMOS static RAM devices (NEC,
© PD4464D-20). The thickness of the shield of these
devices is estimated to be 21.5mm in Al. This monitor was
developed by NASDA in collaboration with NTT, Japan.[1]

2.2SEU AND SEL DATA ON ETS-V
(1) IN-ORBIT MONITORING RESULTS

Figure 1 shows the SEL data (sum of 8 devices) acquired
by the ETS-V TEDA RSM. The abscissa and the ordinate
axis in this figure indicate passing days and the number of
SEL that occurred in a week respectively. The period of data
acquisition is about 4 years from November 22,1987 to
Jan.31,1992. The solar activity became intensive since
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September, 1989 and the 4B-class solar flares were
observed on September 29 and October 1989. The number
of SEL drastically increased during these solar Flares. The
number of SEU (sum of 8 devices) measured by RSM each
week is also plotted in Figure 2. From this figure one can
see that the number of SEU is less than that of SEL, and it
also increased remarkably when the solar flare occurred.[2]
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2.3 POISSON DISTRIBUTION

The distribution of the frequency versus the number of
SEL and SEU in a week are plotted in Figure 3 and Figure 4
respectively.

The average number of SEL and SEU in a week are
ML=2.4(/week) and MU=0.76(/week) respectively. If the
phenomena are perfectly random and uniform process, these
distributions will agree to the Poisson distribution. In Figure
3 and Figure 4 dotted lines are the results of substitution of
these values in the formula of the Poisson distribution,
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K
P(K) = eM (1)
K!
where,
K:The number of SEL or SEU

P(K):The probability of observation of K SELs or K
SEUs
M:The average number of SEL or SEU (ML or MU,
namely)

These figures disclose that the observed data do not fit
the Poisson distribution very well. This is owing to a change
in the tendency of data before and after the solar flare which
occurred in the latter half of the total observation period.
Figure 5 and Figure 6 indicate the distribution in the first
(September 1, 1987 to June 11, 1989 : Solar Minimum) and
latter harf (June 11 , 1989 to January 31 , 1992 ; Solar
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Maximum) of the total period as to SEL and SEU
respectively.

Figure 5 and Figure 6 indicate the distribution of the
frequency in the first and latter half of the total period as to
number of SEL and SEU respectively.There are good
agreements between the data and the Poisson distributions
in these figures,and the number of SEL and SEU decreased
apparently after the solar flare.
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Figure 6 The Distribution of the Frequency Versus
the number of SEU (ETS-V)

The data during the solar flares,namely August
12,September 29,0ctober 19,1989 and May 21-25,1990 are
removed from these figures.It is apparent that the Poisson
distribution is inapplicable to the data when the solar flare
occurred.

According to Figure 5-Figure 6,the number of SEL was
about 3 times as much as that of SEU.Generally,when SEL
and SEU occured simultaneously,only SEL will be detected
by RSM because SEL is a hard-error.This means that the
condition for the detection of SEU is that SEL should not



occur at the same time. Namely,
The condition for the detection of SEL.:

LL<L
The condition for the detection of SEU:

LU<L<LL
where L is the LET (Linear Energy Transfer) of the incident
particle, LL is the threshold LET for SEL and LU is the
threshold LET for SEU of the RAM devices. It is expected
that SEU would be comparatively hard to observe when the
value of LU is close to that of LL.

2.4 DOUBLY EXPONENTIAL DISTRIBUTION
(EXTREME-VALUE THEORY)

Extreme-value theory is introduced to analyze the
maximum single event rate data inclusive of data during
solar flares. Suppose we have a random sample from a
probability density function which has a tail that decreases
as exponential type (Poisson, normal, log normal, logistic,
etc.) and we are interested in the upper tail of the probability
density function (largest extreme values). The distribution
function and probability density function of the so-called
Type-1 asymptotic distribution of largest values (double
exponential distribution) are, respectively,

F(y)=exp(-exp(-y)), (2)
f(y)=exp(-y-exp(-y)). (3)

Where y=(x- A )/ a ,-0<x< 0 ,-0< } <0, g >0, and
location parameter A and scale parameter o are unknown.
Taking the natural logarithm of the distribution function
twice,

we have

-In(-1n F(x))=(x- 1 )/ « (4)

Which stands for the equation of a straight line on the
extreme-value probability paper. Assuming that single
event phenomena comply with the Poisson distribution, the
distribution of the maximum values of the number of single
events will agree with the doubly exponential distribution.
The cumulative probability of the maximum single event
rates (events/week) in a month are plotted in the left side of
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Figure 7 (extreme-value probability paper).

For this analysis, the data during the solar flare namely
August 12,September 29,0ctober 19,1989 and May 21-
25,1990 are included to these figures. Figure 7 indicate the
distribution in the first half (1.7 years) and the latter half (2.3
years) of the total observation period. The distributions
become linear for the first half period, while the slope of the
line changes for the latter half period. Apparently this
discrepancy depends on the effect of the solar flares.

3 SEU DATA ON MARINE OBSERVATION
SATELLITE-1(MOS-1)

3.1 SEU DATA ON MARINE OBSERVATION
SATELLITE-1(MOS-1)

Marine Observation Satellite-1(MOS-1) was launched by
NASDA on February 19,1987. Figure 8 shows the number
of SEU that occured in a day at the stored command memory
used in the command decoder of MOS-1. The period of data
acquisition is about 4 year and a half from September 1,1987

10 T T
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000 500 1200 1800
DAY (The day of the origin -September 1,1987)
Figure 8 Measured Upset rate as a Function of

to January 31,1992.

This memory consists of three bi-polar Static Random
Access Momory(SRAM) devices(93419, 64 9bit SRAM,
Fairchild). The shield thickness is assumed to be about
2.7mm in Al. Though MOS-1 is a Low Earth Orbit(LEO,
909km) altitude and 99 degree inclination), one can see
apparently from this figure that the number of SEU (9 upsets
a day) increased by the effect of solar flare on October 19,
1989. The upset bits data are reported each second to the
ground. From this information the place where the upset has
occurred can be determined. Figure 9 is the upset map, in
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which the places where upset occurred from Feburary 1987
to August 1988 are indicated. This figure shows that the
upset places concentrated on the so called South-Atlantic
Anomaly.

Figure 10 shows geomagnetic field contour map on the
MOS-I orbit spherical surface using IGRF85. One can see
from Figure 9 and Figure 10 MOS-1 SEU occurred mainly
the region which corresponds to the area less than 20000
nano Tesla (geomagnetic total intensity) contour. A few
upsets occurred at both polar regions which correspond to
about 70’ north latitude and 70" south latitude. Ground
testing of the SRAM was carried out using high energy
proton at the cyclotron facility. Comparison of predicted
upset rate using NASA AP-8 model and orbital data was
carried out. There is quite good correlation between AP-8
predictiop and orbital data.[3]
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Figure 10 Geomagnetic Field Contour Map On MOS-1 Orbit

3.2 STATISTICAL ANALYSIS OF MOS-1 SEU
DATA

(1) POISSON DISTRIBUTION

The distribution of the frequency versus the number of
SEU in a day during the total period is plotted in Figure 11.
The distribution of the frequency versus the number of SEU
in a day during the first half period of the total period
(September 1,1987 to June 11,1989:Solar Minimum) and
during the latter half period (June 11,1989 to January 31,
1992:Solar Maximum) are plotted in Figure 12 and Figure
13 respectively. These average number of SEU in a day are
MU,=1.13, MU2=0.82 respectively.

In Figure 12 and Figure 13 dotted lines are the results of
substitution of these values in the formula of the Poisson
distribution. These are good agreements between the data
and the Poisson distributions in these figures. The number of
SEU decreased slightly in the solar maximum period even
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for the MOS-1 spacecraft.

(2) DOUBLY EXPONENTIAL DISTRIBUTION
(EXTREME - VALUE THEORY)

The cumulative probability of the maximum single event
rates (events/week ) in a month are plotted in the center part
of Figure 7 ( extreme - value probability paper ).

3.3 SEU DATA ON THE TRACKING AND DATA
RELAY SATELLITE(TDRS-1) [4]

The TDRS-1 was designed by NASA, and was launched
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from the space shuttle, Challenger in April 1983, and was
put into a geostationary orbit in July 1983. The SEUs were
observed in the Attitude Control System (ACS). The ACS
contains four pages of RAM, 256 bytes per page. Each page
consists of two static bi-polar Fairchild 93L.422(256k X
4bit)RAM chips.

The TDRS-1 weekly SEU count shown in Figure 14
begins in April 1986. Some SEUs go unobserved. The
spikes in August, September and October 1989 are
responses to solar flares. The off-scale responses in
September and October are for weekly SEU total of 83 and
157 respectively. [4]

The cumulative probability of the maximum single
event rates (event/week) in a month of the TDRS-1 SEU
data are plotted in the right side of Figure 7 (extreme-value
probability paper) even for MOS-1 SEU, ETS-V SEU and
SEL. Figure 7 indicates the distribution in the solar
Minimum and the Solar-Maximum observation period.
Solar Minimum corresponds to the period of MOS-1;
September 1987-November 1988, ETS-V; November 1987-
November 1988, TDRS-1; May 1986- November 1988.
Solar Maximum corresponds to the period; November
1988- January 1991 in all satellites. The distributions
become linear for the Solar-Minimum period, while the
slope of the line changes for the Solar-Maximum period.
Apparently this discrepancy depends on the effect of the
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Figure 14 The SEUs showing that the envelope of the TDRS-1 SEUs clearly follows the modulation of the galactic cosmic
rays. The smoothed line through the TDRS data was created by using a cubic spline function . The spikes in September and
October 1989 reach 88 and 157 SEUs per week respectively. (Wilkinson, 1991)
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solar flares. From all of ther analysis a decrease of the
number of single events could be found during the
SolarMaximum. This phenomena are due to the screen
effect, that is to say the solar flare particles screen heavy
ions from the Galactic cosmic ray.

4. CONCLUSIONS

Application of extreme-value theory (doubly
expotential distribution of the largest values) to the
observation data of Single event phenomena about 4 years
by the geostationary satellite and the medium altitude
satellite are examined.

In comparison with the Poisson distribution, the doubly
exponential distribution has the advantage to be able to
analyze the data include the big solar flare and to enable us
to discriminate clearly from the effect of solar flares.

A judgement from above point comes to the conclusion
that the doubly exponential distribution is preferable to the
Poisson distribution.
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Distributions
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A method of generating identities in expectations of functions of order statistics defined on
the positive real axis is obtained. These identities are specialized to the exponential, the
folded normal, the folded logistic and the uniform distributions. The specialized identities
are used to characterize the exponential, the generalized truncated normal, the folded logistic
and the uniform distributions.
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1 Certain Identities in Expec-

tations of Functions of order
Statistics. = ST Elg(Xin) ' (Xen)/ F(Xen)]

k=1

Z

Let X be a random variable having distribution
function F(z) and probability density function f(z) ProoF. For 1 <i< N
where the latter is zero for z < 0. Let g be a continuous
differentiable function such that differentiation of g(z)
with respect ot its argument and expectation of g(z) Ejg(Xin +1t)] = N!
with respcict to Sln a.l;fuolutely contlinuc;ls distri}l;ution 0<T1<.. . <op <00
are interchangable. rthermore let X3y < Xony < N
... < XNN fenote the order statistics in a random g(z: + t)”j =1f(z;)dz;
sample of size N drawn from f(z). Then we have the - NI / o /
following results.

Proposition 1. If f is differentiable, then for N
1<i< Nand N=2,3,... we have 9(yi)mi=1 f(y; — t)dy;

t<y1<...<yn<oo

E[¢'(Xin)] = =N f(0)Eg(Xi-1,n-1) = N /t f(yr — Oh(y1, t)dys
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where

h(y1,t) = // 9(y)m Lo f(y; ~ t)dy; .
¥1<y2<S<yn<oo
Then
B/ (Xen)] = 5 Elg(Xiw +1)leo = ~N'S(0)h(0,0)
—N!/O°<> ' (y1)h(y1,0)dy; + N!/O(of.l)
fy)R (y1,0)dy; (L.2)
where
h(0,0) = //
0<y2<yn~n<co
9(y:) 7)o f (5 )dy;
1
= wonite

(Xici,n-1) (1.3)
M /0 £ (u)h(vs, 0)dy; = N! / ()

L// g(yz')?rfv:zf(yj)dw} (1.4)
1<y2<...<yn<o0

_ ' Xaw)
= 2 st F]

M / " Fu) W (s, 0)dyy = N /0 " fw)
{ / / [ fl(yk)} f:zf(yj)dyj] dy;
Y1<y2<..<yn<oo

N

_ f'(Xen)
= ZE[g(X) kN)]. (1.5)

Using (1.2) (1.3) and (1.4) in (1.1) we obtain the de-
sired result.

Remark 1. This method of deriving identities in
expectations of functions of order statistics when the
support of the distribution is the real line has been
used by Seal [10] and Govindarajulu ([5], p. 638).
Corollary 1.1 Let g(z) = z in Proposition 1. Then
we obtain
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1= ~Nf(0)E(Xizy - 1)‘ZE{ Vi Jj‘(()}((:;v))}

(1.6)
Special cases. Now if f(z) = exp(—z), for z > 0.
Then (1.5) becomes

1= N{E(Xin) = E(Xicin-1)}.  (1.7)

If f(z) = (2/7)Y/?exp(—22/2) for 0 < z < oo, then
forl<i< N

N
1= =N/’ E(Xicin-1)+ Y E(Xin Xin).

k=1
(1.8)
If f(z) = 2¢77/(1+e"%)?forz > 0, thenfor1 <i < N

N
1=~NE(Xi-1n-1)+ Y E{X;nF(Xin)}. (1.9)
k=1

Using analogous methods one can prove the following
proposition.
Proposition 2. If f is differentiable then we have

(X kN)}
f(Xen) ™
(1.10)
Remark 2. If Xy n_; is taken to be zero, then
Proposition 2 can be included in Proposition 1.
Corollary 2.1 Let g(z) = z. Then (1.9) becomes

—-Z(wa(?‘]’:» (1.11)

Special cases.
(a) Let f(z) = ™% for z > 0 and zero elsewhere.
Then (1.10) becomes

E{g'(X1n)} = =Ng(0)f(0)— ZE{g(XlN)

I/N=EXn. (1.12)
(b) Let f(z) = (2/7)'/2 exp(—22/2) for z > 0.
Then (1.10) takes the form of

N
=Y E(X1nXkn). (1.13)
k=1

(c) Let f(z) = 2e%/(14€e%)2 for z > 0.



Then since —f'(z)/f(z) = F(z) = {2/(1 +
e~ %)} — 1, (1.10) takes the form of

1= E{X;NF(Xyn)}. (1.14)

Remark 3. Since f'(z) = 0 the above propositi-
ons are not applicable to the uniform density on (0, 1).
In the following we obtain the specific results for the
uniform density.

Proposition 3. If f is the standard uniform den-
sity, for L<i< N,and N =2,3...

E{¢'(Xin)} = N{Eg(XiN-1) — Eg(Xi-1 n-1)}
(1.15)
PRroOOF. For 1 < i < N, consider

N!

0<r1<...<zNn<1
g(zi +t)dz, ... dzn
= N!

1<Ys < <Y<t
9(¥i)dyr .. .dyn

N! 1+t
T G-y /,

(=) 1+t - y)Vg(y)dy.

Elg(Xin +1)]

Thus
N!
(i—1)(N—2)

1+t . .
[ G- - - g

H(N =)y =) 1+t —y)V 1] g(y)dy.

Hence

Elg'(Xin + )] =

N!
(i — DI(N —d)!

[/01 9y (1 — )N

E¢'(Xin) =

{(N =9y —(i-1)(1~y)}dy

N
T G-IV =i-1)

/0 oy (1 - )Ny

_%/0 9(¥)y 21— y)Ndy.
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Thus

E¢'(Xin) = N [Eg(Xi N-1) = Eg(Xi—1 N-1)]
1<i<N,N=23,...

Special Case 1 Let g(z) = z in (1.14) and obtain
1=N[E(X;n-1) — E(Xi-1n-1)]. (1.16)

By proceeding analogously we obtain Propositions 4
and 5.

Proposition 4. If f is the standard uniform den-
sity, then for N = 2,3,...

E(¢'(Xin)) = NEg(X1n-1) — Ng(0).  (1.17)

Proposition 5. If f is the uniform density, then
for N=23,...

E¢'(Xnn)=Ng(l) - NE{g(Xn-1n-1)} (1.18)

Special cases. Setting g(¢) = z in (1.16) and
(1.17) we have

1=E(Xin-1),N=2,3,... (1.19)

and
N~
]V
Remark 4. If X, y-1 is taken to be zero, then
Proposition 4 can be included in Proposition 3. If

XN~ ,n-1 1s considered to be unity, then Propostion 5
can be included in Proposition 3.

1 = E(XN—l,N—-l)’N = 2,3, e e (120)

2 Characterization of the Ex-
ponential Distribution

In this section we characterize the exponential dis-
tribution using identities (1.6) and (1.11). Toward,
this we need the following notation. Let

H(y)=inf{z: F(z) > u},0<u<1. (2.1)

Take F to be right continuous. Then for 0 < u < 1,
we have

Hu)<z<=u< F(z).

Let Uy,...Un be a random sample from the
standard uniform distribution. Then the distribution



of H(U1), H(U2),...,H(Un) is the same as that of
X1, X2,...,Xn. Also H(Uin) —é&ng H(Ug) has the
same distribution as Xy etc. Throughout, we assume
that F is absolutely continuous. That is, H'(u) exists
almost everywhere for 0 < u < 1. Then we have the
following propositions.

Proposition 6. Let F(A) = 0. Then for 2 <i <
Nand N =2,3,.. LE(XiN) - E(X,'_l,N_l) =1/Nif
and only if F(z) = 1 —exp(—(z — 4)),z > A.

PRrOOF. From the proof of Proposition 1, we can
write

N!
E(Xin) = TN =)

1
/ H(u)u' (1 - u)¥du.
0
Then writing N = (N — i+ 1) + (¢ — 1) we have
(N -1)
(i—2)}(N =)

/01 H(uw)u " ?(u—1)(1 - )N du

(N=1IN—i+1)
G- DN =)

/1 H(uw)uw' (1 - u)N du.
0

E(Xin)— E(Xi-1,n-1) =

Performing integrating by parts in the first integral
by writing u*~2du as d(u’~!/(i — 1)) we obtain (after
cancelling out terms and noting that H(0) = A)

E(X;n)— E(Xi-1n-1) = (—‘_%A

H' (w1 - v)N " du.
Now writing

1_1 N i N-i
Yv“ﬁ(i—n!(zv—i)!/o“ (1 —u)"du

we have
E(Xin)— E(Xicyn-1)=1/Nfor2<1< Nand
N=203,...
imply that

(T—-(—]]TI)T(—FD—'-T)‘ /{; Wl -w)VNTH{H (u)(1-u)-1}d
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u=0for2<i<N

and N = 2,3,.... Now the only continuous function
which is orthogonal to ui~*(1 — u)N~*, a linear com-
bination of u°,u,...uN~! for N = 2,3, ... is the zero
function itself.

Hence H'(u)(1 —u)—1 = 0 for almost all u in
(0,1). Integrating on both sides we obtain H (u)y+c=
—In(1 - u).

Now H(0) = A implies that ¢ = —A. Also H'(u)
exists for all u in (0, 1).

Now it follows that 1— F(z) = exp(—(z—A4)),z >
A.

Proceeding in an analogous manner one can prove
the following.

Proposition 7. Let F(A) = 0. Then for N =
1,2,...E(Xin) = A+ 1/N if and only if F(z) =1 -
exp(—(z — 4)),z > A.

Remark 5. By defining Xo xy-1 = A, Proposi-
tion 7 can be included in Proposition 6.

3 Characterization of the Ge-
neralized Truncated Normal
Distributions

In this section we characterize the folded normal
and the generalized truncated normal distributions,
using identities (1.7) and (1.12).

Proposition 8. If F(0) = 0, then for N =
2,3,..., 5N E(XinXin) =1 if and only if F(z) =
28(z)~1for 0 < z < 00.

Proof. See Theorem 3.2 of Govindarajulu ([6], p.
1013) or Theorem 6 of Lin ([9], p. 403).

Proposition 9. If F(A) = 0, then for 2 < ¢ <
N-—-land N=23,...

N,
3" E(XinXkn) = 1+ N(EX)E(Xi-1,n-1)

k=1
if and only if

&(z) — 2(4)

Fl)= =30

forA<zr<oo

where ® denotes the standard normal distribution fun-
ction.
ProoF. One can write

i-1

N
Z E(XiNXjN) = Z

i=1 i=1



N
+E(XI)+ Y E(XinXin)
j=i+l

scerety|

2wF 3 (w)[l - F(w)¥ "dF(z)dF(w)

N %
oD = i)!/o &
F=Y(2)[1 = F(2)]N~dF(2)

(2—1)'(N—l—1)'//

z<w

2wF ™ Y(2)[1 = F(2)V =i~ dF ()dF (w).

After performing integration by parts with respect to
w once in the first double integral we obtain

N —N!
;E(XiNXjN) GO = //
Fl(w)[1 ~ F(w)]V - dF (z)dw
N!
i D —icD)

/ / 2w {F~Y(w)[l - F(w)]¥~

z<w

+F )1 = F(2)N -1} dF (2)dF (w)

- z—l;?;—z)'//

z<w

2F Y (w)[1 — F(w)V i dF(2)dw

+ ( /A ” zdF(z))

N o miel
((i—l)!(N—i—l)lfo wF™ (w)
[1 - Fw)]" = dF (w)) .

Now when f is the truncated normal density, the right
hand side simplifies to

1= fAN{—pi=1, N1+ pin-1} + NE(X)pi N1
=14 NE(X)pi-1,n-1(since f(A) = EX).

On the other hand E 1EXinXin) = 1 +
NE(X)pi-1,N-1 implies that

(z——l;'ZV‘_—z)' // H(u)H'(v)v'™?

O<u<r<l
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(1 = v)V i dudy
+NE(X)M,',N_1 =14+ NFE
(X)/‘i—l,N—l . (31)
Since
N —1)! 1 . e
#i,N—l = (z_—(l)l(jv—)—ly/o. H(’U)UJ l(l—U)N 1d'U

and

N-=1)! ! .
Hi—-1,N-1 = (_1_(2—)'(]\’)‘—1),/0 H(v)v' 2

(N = 1)!

L=y = s

I D H @)1 - o))
0

__—(v-1t b e
= (N—i)'(z‘—l)!/o H'(0)o'™

- (v -1
(l—v)N dv+( DN =i=1)

/ H@)v'" (1 — o)V =i"1gy.
0

So
N(piN-1 = pi—1,N-1)

N1 ! l i-1 -1
:_—__(i—l)!(N—i)!/oH(v)v (1-v)N"idy

Hence (3.1) can be written as

N!
(i— DIV — i)

[ /0 1 v 1= )V = H' (v) /0 v H(u)du] + (EX)

/1 H'(v)v'™ (1 —v)V~idy
0

—/Olvi"l(l - v)N—idv]

=0,i=2...  N-1,N=23.. .
That is, for all most all v in (0, 1)

—H'(v)/v H(u)du+ H'(V)EX —1=0;
0
ie
H'(v) /1 H(u)du=1since EX = /1 H(u)du.
v 0
(3.2)



Now, using the arguments in Govindarajulu ([6],
p.1012) we can establish that F(z) {®(z) —
S(A)}/{1-®(4)} for A< z < 0.

Proposition 10. If F(A) = 0, then for N =
2,3,..

N
ZE JNXNN)—I-{-NE(X)E(XN 1,N- 1)
j=1

if and only if F(z) =
A<z <oo.
Proor

{8(z) — ®(A)}/{1 - B(A))} for

LHS= Z +E(XNN)-—N(N-1)//

z<w

FN=%(w)dF(2)dF(w) + E(X}y).  (3.3)

Now

B(Xw) = N / [/ dFiw)

:N//ZFN_l(w)dwdF(z)

w<z

+N(N - 1) // wzFV =% (w)dF(2)dF(w).

w2z

FN-I(w)dF(w)] dF(z)

Now use this in (3.3) and combine the two sym-
metrical double integrals and proceed as in the proof
of Proposition 9.

4 Characterization of the Fol-
ded Logistic Distribution

In this section we characterize the folded logistic
distribution using the identities in (1.8) and (1.13).
Proposition 11. Let F(A) = 0. Then
E{XF(X)}=1- ﬁz‘- if
1+ F(z)=2[1+&" 4] ' _1forz<A.

Proor After performing integration by parts
once we obtain

E{XF(X)} = /A ~ eFdF = / F( - F)dz

+/:c(1—F)dF.
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That is

2E{XF(X)}

/F(l—F)dz+/(1——F)da:+A

/{2f—(1—F)}dac+/(1—F)
dz+ A
= 24+ A4A.

Proposition 12. If F(A) = 0, then for 1 <i <
N,N=23,...

Zi\,:l E{X;nF(Xkn)} = %"E(Xi_]”N—l) +1if
and only if

14+ F(z)=2(1+&*"4) 2> 4.

Proor. Consider

N
> E[X: NF(Xe,n)]
k=1

i—1

=Y + E{XivF(Xin)}

k=1
N
+ > E{XinF(Xin)}
—z+1
(z— )'N—-z // wF'=?

z<w

(w)[1 = F(w)]¥ 7 F(2)dF (2)dF (w)

N1 o
+(i—1)!(N—z’)!/0 2
(2)[1 = F(2)]N'dF(2)

+(z—1>'(N-z-1)'f/ 2

()L = F()" "7 F(w)dF (2)dF (w) .

We can write the last integral (without the con-
stant multiplier) as

7= [ F [ [ rr@aa - ry)|

dF(w) = Fli‘, [— /A ” wF (1 - F)N"{dF(w)+

(i-1) / / ZF72(2)(1 = FYN = F(w)dF(w)

z<w



dF(z)+ / / F=1(2)

z<w

(1= F(z)N-! F(w)dF(w)dz] .

Thus
N N
X B} = =y
/ / {wF=2(w)[1 - F(w)]N~F(2)
4P - PV (w)
-dF (2)dF(w)
(,_1)1(1\7_,)1 //Fz l(z)
(1- (Z))N"F(W)dF(w)dz
1 N! ©  iea
TG -2 =) / F
(2)1 = F(2)]N'dF (2)
1 N i
2(2—1)’(N—z)'/ F
()1 - F(2)]¥ {1 - F?(2)}dz
N 1 N! o
E(Xz 1,N- 1)+2E—:1—)T(m/
F )1 = F(2)V (1 = F2(2))dz.

Now for the logistic distribution on (4,00), f(z) =
3(1 — F?(z)); hence the last integral on the right
51de reduces to unity. Now Zk —1 E{XinF (X, N)} =
JE(Xi-in-1)+1lfor1<i< Nand N =2,3,.
1mply that

N! v —; 1—u?
(z'—l)!(N—i)!/o (1) ) 2 1)
du=0,forl<i<Nand N=2,3..

That is, H'(u) = 725 for almost all u in (0, 1).
Integrating on both sides and using the fact that

H(0) = A, we obtain

H(u)—A = In{(14+u)/(1~u)} and H'(u) exists for all u.

Now letting v = F(z) and £ = H(u), we obtain the

result.
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We will give the following propositions without
proofs which are analogous to that of Proposition 12.
Proposition 13. If F(A) = 0, then for

N = 1,2,..., SN E{Xn~nF(Xkn)} = 1+
%E(XN_l,N_l) if and only if

Fz)=2{14+&"4} ' —1forz > A.
Proposition 14. If F(0) = 0, then

N
=Y E{XinF(Xx,n)} for N =1,2,... if and only if
k=1

F(z)=2(1+e ") —1forc > 0.

5 Characterization of the Uni-
form Distribution

In this section we characterize the uniform distri-
bution using the identities in (1.15), (1.18) and (1.19).
Proposition 15. For 1 <: < N,N = 2,3.

1= N[E(X,"N_l - E(Xi—l,N—l)] if and only if

Flz)=2z,0<z<1.
Proor. Consider

N{E(X,'VN-1) - E(Xi—l,N—l)}
N!

! 1 ) '
- G— DN —1-1) /0 H(u)u' " (1 — w)N-1=idy

N! ! -2 -1
—m/; H(u)u’ (1—-u)N du.

—1_—2, /0 H(u)u='d{(1 — u)M=i}

=~ [H @ (1 - 0

Now

- /1 H'(u)u= (1 = w)Vidu
0
1
—(i-1) / H(uw=2(1 - w)N=idu]

_ 1 1 i=1r1 _  \N=2
=N iOH(u)u (1-u)

i—1

dut 5

/1 H(uw)u' =41 - w)Ndu.
0



Hence
NA{E(X:,n-1) = E(Xi-1,n-1)}
/1 H'(wu' "1 —u)N~idu.
0

LHS=1 forl<i<N,N
= 2,3,... imply that

N
= G- DIV — )

(z—-—l_)—']\é'T—W‘/; ui_l(l - U)N_i {H'(v) — 1} du

=0forl<i< N,N=23,..:.

That is
H'(u) = 1 for almost all uin (0,1) . Thus
. , 1
H'(u) exists for all u in (0,1)and H'(u) = T
Hence
-j%a = lorf(z)=1.

Proposition 16. F(0) = 0 and E(Xiny) =
1/(N+1)for N=1,2,...ifand only if F(z) = 2,0 <
z< 1.

Proposition 17. F(0) = 0 and E(Xnyn) =
N/(N + 1) for N = 1,2,...if and only if F(z) =
z,0<z <1

Proofs of Propositions 16 and 17 are analogous to
the proof of Proposition 15. (For Proposition 16, see
also Galambos and Kotz ([4], pp. 53-57) or Lin"([9],
Theorem 1, p. 398)).

Remark 6 Ahsanullah [1] has characterized the
uniform distribution using the identical distribution of
Xnn — X1,v and Xn-1,n in the class of all super or
subadditive and absolutely continuous distributions.
Note that a distribtuion F is said to be super (sub)
additive if F(z+y) > F(z)+ F(y){F(z+vy) < F(z)+
F(y)} for all z,y > 0.
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Investigating The Bias And MSE Of Exceedance
Based Tail Estimators For The Cauchy
Distribution

Grimshaw, S.D.
Brigham Young University, Provo, UT

One approach to estimating the tails of the cumulative distribution function, quantile
function and probability density function is to use only those observations in the sample
which exceed a high threshold. This investigation for the Cauchy probability model will
indicate how the threshold selection affects the bias and MSE of tail estimators.

Key words and phrases: Generalized Pareto distribution, Hill’s estimator.

1. Introduction

Suppose that the possible observed values from
a population can be characterized by a random vari-
able X whose probability model is estimated using
a sample from the population. The properties of
this estimated probability model which correspond
to the population characteristics of interest are the
foundation of statistical analysis.

Three important functions of a probability
model for a continuous random variable are the ab-
solutely continuous distribution function F(z) =
P[X < z], the quantile function Q(u) = F~!(u) and
the density function given by f(z) which represents
Pla < X < 8] = [’ f(z)dz for a < b. The signifi-
cance of these three functions in statistical analysis
follows from their interpretation as key properties
of the population.

This work focuses on the problem of estimat-
ing the tails of F(z), Q(u) and f(z) from a random
sample. The sample (empirical) distribution func-
tion, sample (empirical) quantile function and non-
parametric density estimates are typically used in
early stages of statistical analysis when minimal as-
sumptions are made on the underlying probability
model. However, these estimators prove unsatisfac-
tory for values in the tail since they are confined to
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the observed sample values and ignore the possibil-
ity of more extreme values than the observed sam-
ple in future observations. For example, the empiri-
cal quantile function in the case of insurance claims
would not estimate any insurance claim larger those
already observed in the sample, that is, it assumes
the largest insurance claims have already been filed
and any future insurance claims will not exceed the
sample extremes. This restriction to tail estimation
is unacceptable.

The classical approach to tail estimation is to
assume the underlying probability model belongs to
some known class P whose elements are indexed
by a parameter § taking values in a set O, that is
P = {Py, 9 € ©}. The distribution function, quan-
tile function and density function then have para-
metric representations F(z;8), Q(u;8) and f(z;0).
Tail estimates are given by F(z;6), Q(ué) and
fz; é), where § denotes an estimate of the parame-
ter § based on the sample information. For example,
if the underlying probability model is assumed to
follow the normal probability law, then § = (u,0),
the mean and standard deviation, with estimator
§ = (X,s), the sample mean and sample standard
deviation. The tail estimator is formed by replacing
the unknown parameters with the estimators in the
normal distribution function, quantile function and



density function.

The beauty of this classical parametric ap-
proach is tarnished by what Fisher [1] called the
problem of specification. Often it is difficult to select
a single parametric family for the population. Sev-
eral candidates may appear reasonable judging from
their fit to the observed values. To demonstrate
this complication, suppose that a random sample
is taken from a population characterized by a sym-
metric unimodal probability model. Two possible
parametric families are the normal and the Cauchy.
Inference on the central values of the random vari-
able will be similar for either of these parametric
models. However, the focus of this work is on tail
values, not central values, and inference at the tails
is quite different under the two parametric mod-
els. Extremely small and extremely large values are
much more likely under the Cauchy modeling. The
distribution function F(z) approaches zero and one
much more rapidly under the normality assumption.
The quantile function Q(u) for the Cauchy model
decreases more rapidly in a neighborhood of zero
and increases more rapidly in a neighborhood of one.
The density function f(z) for the Cauchy model has
much more area in the tail.

It is very difficult to discriminate between the
different possible parameterizations even when the
possible parametric models specify very different
tail properties. Very large sample sizes are required
for a goodness of fit test to have sufficient power to
detect differences in the observed tail and the fitted
tail under the normal and Cauchy modeling.

2. Exceedance Based Tail Estimators and
Their Properties

The main objective of this work is to obtain
estimators of F(z), Q(u) and f(z) which allow the
data, not the parametric family, to dictate the tail
behavior of the underlying probability model. These
estimators can be used in applications to validate
tail behavior properties in probability modeling ap-
plications. In this discussion, the upper tail is dis-
cussed without loss of generality since the lower tail
results follow immediately after one observes that
the lower tail becomes the upper tail if the data is
negated.

Grimshaw [2] proposed the following paradigm
for tail estimation:

1. From a random sample X, ..., Xn, choose, as

a function of n, a threshold percentile t, = k/n

close to zero, for some integer k.

2. Estimate the corresponding threshold T,, =
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X(n = k;n), the (n — k)'* order statstic.

3. Obtain parameter estimates (j,d) from the ex-
ceedances X; — T, for all X; > T,,.

4. Estimate the tails of the quantile function, dis-
tribution function, and density function by

1—u
P P

forl —t, <u<l,

et [ ()

for T, < z < Q(1),

Q) =Tn+a [—g(

. 1 _ 1 .
F@) =t 3™ (~He - Toi=s)
for T, < z < Q(1).
where
-1
, A#0
9(zA) = A *
In z, A=0
(14+A2)12, X<0,2<0
“1(, A} = e, A=0, 2<0
97 (z,A) (1+/\z)1/)‘, A>0,
-1/A<2<0
and
(14 X2)/0-10 X<0, 2<0
—1y/ _ e®, A=0, 2<0
@@ =3 1 fanam-1, aso,
-1/A<z2<0

Grimshaw [2] has shown that these estimators are
asymptotically normal if the estimators (p,a) are
asymptotically normal as nt — oc.

Two options are available for estimating the
parameters (p,a). One approach suggested by
Pickands [3] is to model the k exceedances of the
threshold T}, as a sample from a generalized Pareto
distribution (GPD) whose parameters can be esti-
mated by maximum likelihood. One example of this
approach is given by Smith [4] to estimate extreme
ozone levels. Grimshaw [5] has proposed an algo-
rithm for computing the GPD maximum likelihood
estimates. Let (fgpp,dcpp) denote the maximum
likelihood estimates from the GPD model for the
exceedances.



A second approach was suggested by Hill [6]
using

k .
) 1 X(n—-i+1n)
PHill —Z;In [ X(n=k;n) ]
auin =puiTn-

It has been shown by many authors that for these es-
timators hased on the exceedances of a high thresh-
old, as nt — oo,

[Zzig] is AN([Z],(nt)‘lVGPD>
where
o= [ 001 2003
and

AHil - p 1y
[am“} is AN ([a} » (nt) Vqu)

p* ap
ap a?|’

where

Vhin = [

3. Effect of Threshold Selection for the
Cauchy Distribution

This investigation focuses on the Cauchy prob-
ability model with

F(z) =%+%tan'la:, zeR
Q(u) =tanw(u - 3), 0<u<l
1
f(.’l:) —m, z € R.
According to the tail behavior classification of
Parzen [7], the Cauchy distribution has a tail ex-
ponent of p = 1 and therefore is classified as a long
tailed distribution.

Figure 1 shows the bias of the proposed tail
estimators for t = 0.25, 0.15, 0.10, 0.05 for the
distribution function, quantile function and density
function, respectively. As anticipated, as ¢t — 0 the
bias is reduced. For both the distribution function
and density function it is interesting to note that
the largest bias occurs immediately following the
threshold. Figures 2(a) and 2(b) compare the MSE
of the distribution function tail estimator for the
GPD estimators and Hill’s estimators, Figures 3(a)
and 3(b) compare the MSE of the quantile function
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tail estimator for the GPD estimators and Hill’s es-
timators, and Figures 4(a) and 4(b) compare the
MSE of the density function tail estimator for the
GPD estimators and Hill’s estimators. A sample
size such that nt = 30 is assumed in each of these
figures. In all cases it is clear that the superior pre-
cision of Hill’s estimators translate into superior tail
estimators.

From these figures, it is obvious that a small
value for t results in better estimates. However, the
evaluation of a choice of ¢ must be based relative to
the desired region for the tail estimate. For example,
the choice t = 0.25 provides an excellent estimator
of the quantile function for 0.75 < u < 0.95. But
if a more extreme tail estimate is desired, say from
0.90 < u < 0.98, then ¢t = 0.10 is a more appropriate
choice.

A simulation study was performed to investi-
gate the effect of threshold selection on tail param-
eter estimators. In this simulation, threshold values
of t = 0.25, 0.15, 0.10, 0.05, 0.01 were chosen with
the number of exceedences of the selected threshold
of nt = 30, 50, 100. Table I contains the estimated
mean and estimated variance of the tail estimator
parameters for the Cauchy distribution based on 100
simulations.

Notice both the GPD and Hill estimators are
biased for the tail parameter p = 1. This bias is not
due to any failure of the methodology. Grimshaw
[2] showed that estimators of the tail exponent are
asymptotically unbiased as nt — oo, but the rate
of convergence can be very slow. Further, it can be
shown that for p > 0 Hill’s estimators are asymp-
totically superior. From the simulation, it appears
that Hill’s estimators are superior in finite samples
and that for the Cauchy probability model the bias
appears quite small.

It appears from the simulation that threshold
selection affects the GPD and Hill estimators dif-
ferently. For pgpp, as t decreases and nt increases
at each step the estimator improves incrementally.
In contrast, pyiy has a large improvement changing
from ¢t = .25 to t = .15, but the remaining choices of
t yield nearly equivalent estimators. Further, there
is little change in the bias as nt is increased. This
indicates that pgj) may be more robust to threshold
selection than jgpp.

Also notice that the parameter ¢ depends on
the choice of t. Grimshaw [2] showed that the pa-
rameter a is a function of ¢ and must be asymp-
totically equivalent to t/fQ(1 —t) as t — 0, where
fQ(u) denotes the density-quantile function. For
the Cauchy distribution, at t = 0.25, a ~ 1.571; at



t = 0.15, a ~ 2.286; at t = 0.10, a ~ 3.290; at
t=0.05, a ~ 6.419; and at t = 0.01, a2 ~ 31.841. In
estimating a it appears that agpp provides a good
estimator for all choices of ¢ but dg;) only performs
well for small values of ¢ and large values of nt.

Therefore, it appears that Hill’s estimator of p
is rather robust to threshold selection but the corre-
sponding estimator of a is poor except as ¢t — 0 and
nt — 0o. The GPD estimator of p is inferior com-
pared to Hill’s estimator, but the pair (gpp, dGprp)
demonstrate a steady incremental improvement over
the values of t and nt.
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es_tF(Xl..ZS)— F(x1)
estF(x2,.15) — F(x2)
.- —0.

estF(x3,.10) — K(x3)
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x1,x2,x3
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estQ(ul,.25) - Q(ul)
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estQ(u2,.15) ~ Q(u2)
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estf(x3,.10) - £(x3) — go4]

Figure 1. Bias of the Tail Estimators of F(z), @(u) and f(z), respectively, for the Cauchy Distribution for
threshold percentiles ¢t = 0.25, 0.15, 0.10.
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0.04

MSEF(x1,.25)
MSEF(x2,.15)
T 0.02
MSEF(x3,.10)

x1,x2,x3

Figure 2(a). Mean Square Error of the Tail Estimators of F(z) using the GPD parameter estimators for the
Cauchy Distribution for threshold percentiles t = 0.25, 0.15, 0.10.

0.04 — -1

MSEF(x1,.25)

MSEF(x2,.15)
o 0.02 — -
MSEF(x3,.10)

x1,x2,x3

Figure 2(b). Mean Square Error of the Tail Estimators of F(z) using the Hill parameter estimators for the
Cauchy Distribution for threshold percentiles ¢t = 0.25, 0.15, 0.10.
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Figure 3(a). Mean Square Error of the Tail Estimators of Q(u) using the GPD parameter estimators for the
Cauchy Distribution for threshold percentiles ¢ = 0.25, 0.15, 0.10.

10 T

MSEQ(ul, .25)
’ 5
MSEQ(u2,.15)

MSEQ(u3,.10)

0.75 0.8 0.85 0.9 0.95

Figure 3(b). Mean Square Error of the Tail Estimators of Q(u) using the Hill parameter estimators for the
Cauchy Distribution for threshold percentiles ¢t = 0.25, 0.15, 0.10.
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MSEf(x1,.25)
MSEf(x2,.15)

MSEf(x3,.10)

x1,x2,x3

Figure 4(a). Mean Square Error of the Tail Estimators of f(z) using the GPD parameter estimators for the
Cauchy Distribution for threshold percentiles t = 0.25, 0.15, 0.10.
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Figure 4(b). Mean Square Error of the Tail Estimators of f(z) using the Hill parameter estimators for the
Cauchy Distribution for threshold percentiles t = 0.25, 0.15, 0.10.
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TABLE I

Estimated Mcan and Estimated Variance of Tail Estimator Parameters

from a Cauchy Distribution Based on 100 Simulations

t=0.25 t=0.15 t=0.10 t=0.05 t =001
GPD Hill GPD Hill GPD Hill GPD Hill GPD Hill

nt=30 p 0818456 1133128 0919654 1044839 0974232  1.052050  0.987711  1.036878  0.906788  1.004992
(0.131044) (0.037187) (0.125110) (0.036518) (0.167713) (0.034125) (0.170044) (0.032416) (0.191387) (0.035137)

o 1544909 1146493  2.390553  2.149118  3.638868  3.245504  7.090819  6.473356  36.38250  32.28838
(0.338616) (0.120682) (0.709719) (0.353321) (2.916572) (0.647649) (7.156168) (2.776208) (184.4395) (82.55424)

nt=50 p 0894691 1.151105  0.895877 1.046539  0.985744  1.036116 0940233  0.983823 0914454  0.974548
(0.065732) (0.030686) (0.080714) (0.023244) (0.075546) (0.017996) (0.069046) (0.021497) (0.112587) (0.022282)

@ 1481984 1.145476  2.437840  2.100748  3.400780  3.120634  6.538807  6.051194  33.91855  31.53411
(0.184154) (0.041350) (0.514333) (0.180620) (0.821246) (0.366974) (3.510222) (1.319512) (117.2677) (35.81257)

nt=100 p 0047562 1160791 1002174 1.069873  0.967803 1023114  1.005176 ~ 1.005949 ~ 0.983477  1.007008
(0.042786) (0.014231) (0.043653) (0.010437) (0.035851) (0.010236) (0.038494) (0.009977) (0.043505) (0.010141)

¢ 1444734 1160812 2250815 2.086513  3.308631  3.088761  6.431612 6315314  33.41112  32.24122
(0.117365) (0.022773) (0.226079) (0.087502) (0.277570) (0.195727) (1.724948) (0.702704) (60.79857) (18.15151)




Estimating Quantiles For A Type IIT Domain of
Attraction Based On The k Largest Observations

Hasofer, A.M.
The University of New South Wales, New South Wales Australia

Wang, J.Z.
University of Western Sydney, New South Wales, Australia

A method of estimating the high quantiles of a distribution belonging to the
domain of attraction of type III extreme value distribution (reversed
Weibull) is proposed by means of the W statistic, which is used to determine
the extreme value domain of attraction. The procedure is based on the k
largest order statistics from a sequence of n observations. The problem is
treated by a three-parameter model and the endpoint of the distribution is
estimated. A test of hypothesis is used to eliminate cases where the endpoint

does not exist.
Simulation results are provided.

1. Introduction and summary

Suppose a distribution F(x) is in the
domain of attraction of a distribution
H(x), which has been identified to be the
same, up to location and scale, as one of
the extreme value distributions, whose
types are given by

Type 1 (Gumbel):
H (x) = exp{-exp(-x}}, co>x>-ee;

Type II (Frechet):

Hw(x) = cxp{-x'y}, x>0;
Type III (reversed Weibull):

H,,(0) = exp(-(-)7), x<0,

where 7y is some positive constant (see
Ref. [2]). The problem of estimating large
quantiles of the distribution has been
addressed by several authors.

In Ref. [6] an estimator for large
quantiles of a distribution based on the &
largest observations is derived. It is
assumed that the distribution belongs to
the domain of attraction of Ho(x) and the
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The estimators are shown to be asymptotically consistent.

derivation is based on the asymptotic
distribution of the k largest order
statistics of the sample as the sample
size goes to infinity. For distributions
in the domain of attraction of Hl Y(x) and

Hz,’y(x)’ three

parameters  and different
approach is needed.

For the three-parameter  problem
Hasofer and Wang (Ref. [4]) suggested
estimating high quantiles of a
distribution in the domain of attraction
of Hly(x) by a local maximum likelihood

method based on the extremal distribution
of the k largest order statistics. This
procedure works for all values of 7,
provided n, the sample size, and k are
large enough.

The  three-parameter problem for
distributions in the domain of attraction
of H2 Y(x) was studied by Smith and

Weissman (Ref. [5]). The method is based
on a local maximum estimation procedure.
However, the approach sometimes fails to
yield an estimator because the likelihood
function fails to have a needed local

however, there are

therefore a



maximum, when y<1.

In this paper, we suggest that the
three-parameter problem for a distribution
in the domain of attraction of H (x) can

be solved by means of the W stausnc The
endpoint of the underlying .distribution is
estimated by solving a simple equation
based on the W statistic and the relation
between Ho(x) and H2 Y(x). We shall show

that the estimator 1is  asymptotically
consistent. The W statistic was proposed
by Hasofer and Wang (Ref. [3]) for testing
the extreme value domain of attraction.
The statistical properties of the W
statistic were studied and the asymptotic
distribution was determined.

2. The W statistic

The statistic W introduced by Hasofer
and Wang (Ref. [3]) is a function of the
top k order statistics of a sample of size
n: X1n 22 an, and is given by

k (X-X,_)*
WX ,.,.X )= — .

1n S N QR G2

zi:l (Xi n-X)
where X = (Zizlxin)/k. The critical values
for the null hypothesis that the
distribution of X is in the domain of
attraction of Ho(x) are given in Table

VIII of Ref. [3]. It was shown there that
a value of W lower than the lower critical
point indicates that the  distribution
belongs to the domain of attraction of
HI Y(x), while a value higher than the

higher critical point indicates that it
belongs to the domain of attraction of
sz(x). It was also shown that under the

null  hypothesis the W  statistic is
asymptotically normally distributed with

mean k” and variance 4k™. The power of
the W test was studied by extensive
simulation.

3. Estimating the endpoint

Suppose that the distribution of X,
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F(x), is determined to be in the domain of
attraction of H Y(x) Then the support of

F(x) must have a finite upper bound ,,
say. Let Xln 2 e 2 an be the k top

order statistics of a sample of size n. In
this case the limiting distribution of the
Y = -ty - X), i =1, .., k is,

m
after a transformation of scale and origin
by a suitable pair of sequences, the
extremal distribution corresponding to a
distribution in the domain of attraction
of Ho(x) (Ref. [6]). Note that the value

of W is invariant with respect to the
above linear transformation.

Our proposal for dealing with the
estimation problem for distributions in
the domain of attraction of H2 7(x) is to

A
seek an estimator of @, ®, such that, for
a given sample,

W{-en(?o X ),

n(® - Xk,.)]
-E [W(Ul, . Uk)]

which is asymptotic to 1/k as k > . Here
E() is the expected value and the Ui’s

have the joint density
k
= z u.}a
1
i=1

ho(ul, v uk) = exp{-exp{-uk}

for In the following

discussion, we denote X, by X, i = 1,

., k, and

W@ = W[-ta(@ - X), ... a0 - xk)].

The estimation of @ enables one to

make the transformation and then to

estimate the quantile as for the case of a

distribution in the domain of attraction
of Ho(x) (Ref. [6]).

uz .. 2 u.
1 k

3.1. The limits of W(w)

We look at the limits of W as a
function of ®w, when  tends to Xl and oo.

Lemma 1. Suppose X, > X . Then



. 1
W(w) = .

Proof. Let Yi = -n(® - Xi), i=1, .,
k, and

G(m)=-—l—+ 1

kK k(k-1)W(®)
Then
k-1 5
T (YY)
_ =1
G(w) = k-1 2’
BIRA)
i=1
Note that Y > Y, Since Y, » oo and all
other Y,’s remain finite, then

ip G(w) =1
IR

and

! (k-1)?

Lemma 2.
}im W(w) = W(Xl, Xk).

Proof. This can be shown by observing that
}im oY, - Y =X, - X,
fori=1,.,k1 =

3.2. The monotonicity of W(w)

We are going to show that W(w) is an
increasing function for all ® > X 2 .. 2

X

Lemma 3. The function
_ _(x-c)/(cx)
fx) = —Faterx
is a strictly monotone increasing function
for all 0 <x £ c.

Proof.
af(x) _ x’z[ch-Enx+((x-c)/c)].
ox [en(c/x))?
By noting that

inx = 2nc+((x-c)/c)-((x-c)2/2§2), O<€<c,
the lemma can be directly proved. =

Theorem 1. W(w) is a strictly monotone

increasing function for all @ > X 2 ... 2
X where the Xi’s are not all equal.

Proof. Let
o-X
Osyi'-'Yi'Yk:M E—-_XE
and
y: = ay/few, i =1, .., k-1.
Then
8G(w)/dw = N/D
where
-1 3
D =2" [kz y,]
i=1 !

k-1li-1
N = Z I Oy)yylom)-om))
i=lj=1
(see Ref. [3]). Note that
[((O-Xi)-(CD-Xk )]/[(m-Xi)(m-Xk)]

!;n[((.o-Xk)/(o.)-Xi )]

Then by lemma 3, '
yly, 2 y}Jy, for i >,
since (:)-Xi > o-X. Moreover we have Y, <

yi/yi =

yp for i > j. Therefore N < 0. And, since
the Xi are not all equal, then N < 0 and D
> 0. So 3G(w)/3w < 0 and aW(w)/80 > 0. =

Now it is clear that the proposed
estimator of @, inevitably exists when the

W test rejects the null hypothesis at some
level less than 20%, say, in favor  of
H,: the random variable is in the domain

of attraction of type III, since W(w)
varies from 1/(k-1)°>, which is less than
E[W(Ul, Uk)], o WX, . X)

which is greater than E(W(U,, ... v)).
for k 2 3.

3.3. Simulation results

The simulaton 1is based on the
limiting distribution of the k top order
statistics of a sample from H2 Y(x). The

joint density is given by

hz'_{(xl, vees xk)



= PIx) - (xO1 exp(-(x)T) W(w)
for 0 > X 2 . 2 X (see Ref. [6]). Here 0030
we set k = 50 and /
E[W(Ul, Uso)} = 1/50. vl
Figure 1 shows a successful case when
the estimator of @), exists. As @ increases
from X, the value of W increases over 00104
1/50. Figure 2 shows a failure case when
the value of W(Xl, ooy Xso) is lower than 4 - ;
. -0.5 0 0.5
1/50. W(w) increases slowly up to W(Xl, Figure I
ees XSO) as ® tends to oo,
Table 1 is a simulation result with W(w)
2000 replications on estimating endpoint
of hZ‘Y(xl’ rees xso) with an endpoint ®, 0.030+-
= 0. N.L. is the number of samples for
which the solutions of & do not exist. The 0020+
differences in N.L. for each 7y are
apparently because of the power of the W
test: with lower value of y the power of 00101
the test is higher.
Table 2 is a simulation result with
2000 replications on estimating endpoint ) ' .
1 1 0.5 0 .
of hz,y(xl’ xlOO) with the endpoint - 0.5
(1)0 = O. g
Table 1
Y 0.6 0.8 1 2 3 4
EST IMATED | MEAN|-0.223 |-0.177 |-0.130 | 0.052 | 0.156 | 0.169
VALUES| SD | 4.195 | 2.077 | 1.535 | 1.354 | 1.334 | 1.313
N.L. 0 0 0 22 33 104
Table 2
Y 0.6 0.8 1 2 3 4
VALUES| SD | 3.819 | 2.014 | 1.416 | 0.807 | 0.954 | 1.144
N.L. 0 0 0 0 0 12
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3.4. Consistency of the estimator of
endpoint.

Assume that Xl 2 .2 Xk have the
joint density h2‘Y(x1’ e X ), Up 1O

location and scale with the end-point .
We have the following.

Theorem 2. The proposed estimator is
asymptotically consistent.

The proof is given in the appendix.
4. Estimating quantiles
Let the upper e-quantile, denoted by
of a random variable X be defined by
P(XSq1£)= 1-c¢,

where € is some positive small number.
Suppose that the distribution function of
X is in the domain of attraction of
H2 Y(x) and the endpoint @, has been

q1-8’

A
estimated with value @ by the proposed
method based on the top k statistics from
a sample of size n. Then the estimator of
quantile is given by

where
A kK =
a= pr(Y-Y)
and
A A
b = a(Sk - 'yo) + Yk
with
A
Yi=-2n(m-Xi),i=1, . k,
_ kel 1
Sk - 2i=1 !
and
Y, = 0.5772--
(Ref. [6]).

As an example of estimation of
quantiles, simulation based on u(0,1) with
replication 3000 is carried out (Table 3).
The sample size is 500 and the top 55 is
selected.

In order to compare our method with
some classical methods, the LINT procedure
for percentile estimation (see Ref. B8))
is carried out. Table 4 is obtained by
simulation with 3000 replications.

Another  example of  estimating
quantiles by the proposed procedure is
based on the reversed exponential

distribution with replicaton 3000 (Table
5). The sample size is 500 and the top 55

al-c/n =0 - exp{g - Qm} is selected.
Table 3

P 0.950 | 0.975 0.990 | 0.995 0.998

EXACT QUANTILE| 0.950 | 0.975 0.990 | 0.995 0.998

ESTIMATED MEAN| 0.949 | 0.975 0.990 | 0.994 | 0.997
VALUES| SD | 0.00866| 0.00626| 0.00369| 0.00256| 0.00216

Table 4

P 0.950 | 0.975 0.990 | 0.995 0.998

EXACT QUANTILE| 0.950 | 0.975 0.990 0.995 0.998

ESTIMATED _MEAN 0.948 0.973 0.988 0.993 0.996
VALUES| SD | 0.00989| 0.00718| 0.00487| 0.00355| 0.00276
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Table 5
p 0.950 | 0.975 | 0.990 | 0.995 | 0.998
EXACT QUANTILE|-0.0513 [-0.0253 |-0.0101 {-0.00501]-0.00200
ESTIMATED MEAN |-0.0517 |-0.0257 |-0.0106 |-0.00570{-0.00276
VALUES | SD | 0.00905| 0.00636| 0.00370( 0.00258| 0.00214

Appendix: Proof of Theorem 2

Note that the asymptotic solution of
W(w)=1/k is the same as the asymptotic
solution of kG(w)=2 (see the proof of
Lemma 1). Write now

h = (@o)k* 20

and

X; = oy
where o = 1/y and the Ui’s have the joint
density

k
h(u, ... uk) = exp{-exp{-uk} -Elui},

foru 2 .. 2 u. Then

1
Y. =

and

(o - X) = -n(o - o) + e'an)

Uky-O o OT; 4

(ke’* ) * + h

where T; = U; - U,. Following the same
steps as in Ref. [4] (proof of consistency
of 2), we obtain that

lim kG(@) = f()/[gh))* = {(h),
say, almost surely, where

Yi - Yk = "&l (ke

o0 -Olx
_ x , 2 € +h
f(h) = jo e tn [_____1+h ] dx
o0 -Olx
h) = x n i._..j-_h..]
g(h) J e [ 0] o

0

Since W(w) is a strictly monotone
increasing function of ®, kG(w) is a
strictly monotone decreasing function, and
thus {(h) must be non-increasing. Since

0) = 2 and, as will be shown, {(0) < O,
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it follows that the equation {(h) = 2 has
a unique solution: h = 0. Hence the unique

solution & of kG(w) = 2 will tend almost
surely to .

We now show that £(0) < 0 for all a >
0. By direct calculation we have the
following:

£(0) = 202,

fh) = J'oz [m(e'“"m)-wnh)]
[(e‘“"+h)'l-(1+h)"]e"‘dx,

g0) = -a,

g(h) = J’w ((e“‘+h)"-(1+h)") e™dx,
0

When 0 < @ < 1,
f0) = -2a[(1-a)'2 . 1],
g0 = (-’ - 1,
o) = EOF0)-26)gg(0)
g"(0)
= 20’ /0*(1-a)® < 0.
When o = 1, we have that

¢(h) ~ f(h) + 4g(h), as h > 0.
It is easy to show that

ff,h) ~ -(Inh)2+2(b1h)(b1(1+h)), as h > 0,»
g(h) ~ -Inh, as h » 0.

Hence
£(0) = Lim &(h) = -
When o > 1,
o?g(h) ~ f(h) + 4oglh).




It can be shown, by direct calculation,
that '

€lh) ~ [2B+2h"%enh-2Aen(1+0 )M,
as h » 0, and

g(h) ~ A/
as h » 0, where A and B are some positive
constants. Hence

o2lh) ~ 2Ata(l + UM, as b5 0,
and

g0 = Jimp ¢y = . =
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Extreme Value
Evaluation
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s Of Monotonic Functions And
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A univariate monotonic function is often a useful model in engineering risk assessment, e.g., in
relating the magnitude of flood discharge to the consequent economic losses. An approach is developed in
this paper to determine the domain of attraction for 2 monotonic function of an underlying random
variable. Using von Mises’ criteria, sufficient conditions are derived to find the domain of attraction of a

transformed variable for situations where only incom

plete knowledge concerning the underlying random

variable and the monotonic function is available. The sufficient conditions, along with relationships for
the transformation of the extremal statistical parameters, lead to a practical methodology for estimating the
expected loss, conditional on the exceedance of a threshold level or percentile. The conditional expected
value can serve as a measure of the risk of extreme events, such as catastrophic floods.

INTRODUCTION

In engineering assessment of the risk of extremes, a
univariate monotonic function is often a useful model
relating an underlying random variable and the
consequence. Knowledge of the tail of the probability
distribution of the underlying random variable can be
applied to derive the distribution of the system outcome.
There is considerable literature on applications of the
statistics of extremes in engineering, including Refs. [1]-
[4]. However, it is difficult to quantify the risk associated
with the extreme outcomes when the distribution of the
underlying variable is uncertain due to scarce data and lack
of knowledge of the physical process. Using statistics of
extremes, this paper studies the tail of the distribution of a
monotonic function of an underlying random variable
whose exact form of probability distribution is unknown.

Background

Let fX and FX be the probability density function and
cumulative distribution function, respectively, of an
underlying random variable X. The largest sample value,
XTlax, from n independent observations of X is itself a
random variable with the following cumulative
distribution function

Fxg‘“(x) = [Fx(F* M

As n approaches to infinity, the distribution of the largest
sample value from X usually converges to one of the three
particular forms, or domains of attraction: the Gumbel,
which is of a double exponential form; the Frechet, which
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is of an exponential form; and the Weibull, which is of an
exponential form with an upper bound (Refs. [2], [3], and
[5]). There exist in the literature (Refs. [3]-[6]) various
forms of necessary and sufficient conditions for
determining the domain of attraction of X. A simple set of
sufficient conditions for determining the form of the
asymptotic distribution is von Mises' criteria (Refs. 2]
and [7)).

From (Ref. [2]), the distribution of the largest value
from X converges to a Gumbel form if X is unlimited in
the direction of the largest value and

lim 4|1 -Fx®) _

x—0 0] EX() ] =0 @
In the Appendix of this paper it is shown that Eq. (2)
implies that

li 1-F

m __.XEZ =0 (3)

x—oo  x fxX(x)
and that Eq. (3) implies Eq. (2) if the function (1 - FX)/fX
is a monotone function (increasing or decreasing) for large
x. The monotonicity condition is satisfied by most, if not
all, common distributions in the Gumbel domain of
attraction. Following Ref. [2], we consider in this paper
only distributions of Gumbel forms that are unlimited in
the direction of the largest value.

From (Ref. [2]), the distribution of the largest value
from X converges to a Frechet form if X is unlimited in
the direction of the largest value and there exists a strictly
positive constant k such that

lim  x fx(x) —k k>0

x—e0 1 = FX(x) @)



From (Ref. [2]), the distribution of the largest value
from X converges to a Weibull form if X has a finite
upper bound w which satisfies w = sup{x : Fx(x) < 1} and
there exists a strictly positive constant k such that

lim (w-x)fx(x)

x—-w 1 -Fx(x) =k k>0 ®

Two important parameters in the statistics of extremes
are the characteristic largest value and the inverse measure
of dispersion. For the underlying random variable X, the

characteristic largest value, ui](, is defined in (Ref. [2]) by
1

X
Fx(up)=1-+

©
and the inverse measure of dispersion, 8)5, is defined in

(Ref. [2]) by

X
8%y = n fx(up) ™
or equivalently,
X
1 duy
-8? = d].n(n) (8)
n

Ref. [2] shows that for many distributions of engineering
interest, the characteristic largest value and inverse measure
of dispersion as defined here are sufficient to parameterize
each of the three extremal forms.

The hazard function fx(x)/[1 - Fx(x)] (Ref. [2]) is
equal to the corresponding inverse measure of dispersion

Sﬁ(x), where n is determined by Eq. (6) with uif equal to
X.

ives of the P,

A strictly monotone increasing function represents
situations in which the higher the realization of the
underlying random variable, the higher the outcome. A
function, Y = g(X), of an underlying random variable X is
considered in the following, where g is assumed to be a
strictly monotone increasing function. It is often possible
from the observation data to determine for X a domain of

. . . X
attraction, the characteristic largest value, u n’ and the

. . . X
inverse measure of dispersion, Sn, by means such as

Gumbel's extremal probability paper and the method of
moments or the method of order statistics (Refs. [2] and
[31). However, the exact form of the underlying
distribution of X is probably never certain. The problem is
to study the extremes of the function Y with only limited
knowledge of the probabilistic description of X. In this
direction, Ref. (3] demonstrates conditions under which a
monotone transformation preserves the Weibull asymptote
in the smallest value.

Sufficient conditions are derived in this paper to
identify for the random variable Y its domain of attraction
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based on the von Mises criteria. Expressions are also
obtained for the characteristic largest value, uz, and the

. . . Y A
inverse measure of dispersion, Sn. The derivation does not

assume or require knowledge of the specific form of the
distribution of X. These results are then used to evaluate a
conditional expected value that is a measure of the risk
associated with extreme events. The organization of the
paper is as follows. Results in the form of nine sets of
mapping routes and conditions are first derived that identify
the domain of attraction of the function Y. Expressions are
then developed to derive the characteristic largest value and
the inverse measure of dispersion for the function Y. These
results are used to assist in the calculation of the estimate
of a conditional expected value of Y in the extremal range.
An application of the developed method in assessing
catastrophic flood losses is presented.

PRESERVATION AND TRANSFORMATION
OF DOMAIN OF ATTRACTION
Preservation and Transformation of the Gymbel Domain of
Attraction

Assume the distribution of the largest value from the
initial variate X to be of the Gumbel asymptotic form.
Sufficient conditions are derived here under which the
asymptotic distribution of the largest value from Y is
preserved in the Gumbel asymptotic form or is transformed
to the forms of Frechet or Weibull.

Theorem 1: Assume Y = g(X) is unlimited in the
direction of the largest value. The asymptotic distribution
for the largest value of the function Y = g(X) is of a

Gumbel form if (i) [1/8):(7&)] [dg(x)/dx)/g(x) is monotone
for large x and its limit is O as x approaches infinity, or
(i) the limit of d(Ing(x)}/d(Inx) is finite as x approaches
infinity, X satisfies the condition in Eq. (3), and [1/8):(x)]
[dg(x)/dx1/g(x) is monotone for large x.

Proof: We consider convergence criterion of the
Gumbel domain of attraction in Eq. (3) for Y:

lim 1-Fy(y)
y—eo y fy(y)
_ lim 1 - Fxlg~1(y)]
y=>y fxlg~1(y)) dg~L(y)dy
_lim 1 - Fx(x)
T x—0 g(x) fX(x) dx/dg(x)
lim 1 -Fx(x) x dg(x)/dx

x> X fx(x) ®)

g(x)

The above limit is equal to zero if either the limit of
[1/8~(x)] [dg(x)/dx}/g(x) is O as x approaches infinity, or if
d[Ing(x)]/d(Inx) is finite as x approaches infinity when X

satisfies the condition in Eq. (3). Then it can be concluded
from Eq. (3) that the asymptotic distribution of the largest



value of the function Y is of a Gumbel form if [1/87 ()]

[dg(x)/dx]/g(x) is monotone for large x. 0

Theorem 2: Assume Y = g(X) is unlimited in the
direction of the largest value. The asymptotic distribution
for the largest value of the function Y = gX)isof a

Frechet form if the limit of 8)§(x) g(x)/[dg(x)/dx] exists

and is strictly positive as x approaches infinity.
Proof: We consider the von Mises convergence criterion
of the Frechet domain of attraction for Y:
lim _y fy(y)
y—o 1 -Fy(y)
tim y fxfe~ 1)) dg)/dy
yoe  1-Fx(g ()]
lim fx(x) g(x) a10)
x—0 1 — FX(x) dg(x)/dx
If g(x)/[dg(x)/dx] and [1 — FX(x))/fX(x) are of the same
order of magnitude as x approaches infinity, then the limit
in the last expression is strictly positive and it can be
concluded from Eq. (4) that the asymptotic distribution of
the largest value of the function Y is of a Frechet form. ¢
Remark. Note that if X satisfies the convergence
criterion of the Gumbel form in Eq. (3), a necessary
condition for Y = g(X) to satisfy the von Mises
convergence criterion of Frechet is that the limit of
d(inx)/d[Ing(x)] exists and is equal to 0 as x approaches
infinity.
Theorem 3: The asymptotic distribution for the largest
value of the function Y = g(X) is of a Weibull form if
there exists a finite © such that ® = sup{y: Fy(y) < 1} and

the fimit of 8 (x)[> - g(x)}/[dg(x)/dx] exists and is strictly

positive as x approaches infinity.
Proof: We consider the von Mises convergence criterion
of the Weibull domain of attraction for Y:
lim (@ - y)fy(y)
y—o 1-Fy(y)
lim (@-y)fxig )z oVdy

y=o 1-Fxlg~ ()
T o1 Ex® O ) an
It (ggzxf,g) and [1 - Fx(x))/fx(x) are of the same order of

magnitude, then the limit in the last expression is strictly
positive and we conclude from Eq. (5) that the largest
value from Y is asymptotically of the Weibull form. ¢

Remark. Note that if X satisfies the convergence
criterion of the Gumbel form in Eq. (3), a necessary
condition for Y = g(X) to satisfy the von Mises
convergence criterion of the Weibull form is that the limit
of [0 - g(x))/(x[dg(x)/dx]} exists and is equal to zero as x
approaches infinity.
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Preservation and Transformation of Frechet Domain of
Attraction

Assume the distribution of the largest value from the
initial variable X to be of the Frechet form and that Fx
satisfies the von Mises convergence condition in Eq. (4).
Sufficient conditions are derived here under which the
asymptotic distribution of the largest value from Y is
preserved as Frechet or is transformed to Gumbe! or
Weibull.

Theorem 4: Assume Y = g(X) is unlimited in the
direction of the largest value. The asymptotic distribution
for the largest value of the function Y = g(X) is of a
Gumbel form if the limit of d[In g(x)}/d(In x) exists and is

equal to zero as x approaches infinity and

[I/S)If(x)] [dg(x)/dx)/g(x) is monotone for large x.

Proof: We consider the convergence criterion of the
Gumbel domain of attraction in Eq. (3) for Y:

lim 1-Fy(y)

y—e y fy(y)
lim 1-Fxlg~ly]
y—=y txlg~1(y)] dg~1(y)/dy
lim 1 - Fx(x)
x—»o g(x) fx(x) dx/dg(x)
1 lim  x dg(x)/dx

k x— g(x)

When the limit of d[in g(x)]/d(In x) is equal to zero as x
approaches infinity, from Eq. (3) the distribution of the
largest value from Y = g(X) is asymptotically of a Gumbel

form if [llﬁﬁ(x)][dg(x)/dx]/g(x) is monotone for large x. 0

(12)

Theorem 5;: Assume Y = g(X) is unlimited in the
direction of the largest value. The asymptotic distribution
for the largest value of the function Y = g(X) is of a
Frechet form if the limit of d{In g(x)}/d(In x) exists and is
strictly positive as x approaches infinity.

Proof: We consider the von Mises convergence criterion
of the Frechet domain of attraction for Y:
lim _y fy(y)
y—=1-Fy(y)

lim y fxlg~ () dg~l)dy

yo=  1-Fxlg~1(y)]

lim  g(x) fx(x) dx/dg(x)

X—o0 1 -Fx(x)

lim g{x! (13)
X—o0 x dg(x)/dx
If the limit of dln g(x))/d(In x) exists and is strictly
positive as x approaches infinity, from Eq. (4) the
distribution of the largest value from Y = g(X) is
asymptotically of a Frechet form. ¢ _

Theorem 6: The asymptotic distribution for the largest
value of the function Y = g(X) is of a Weibull form if
there exists a finite @ such that ® = sup{y : Fy(y) < 1}




and the limit of [dx/dg(x)][® - g(x))/x exists and is strictly
positive as x approaches infinity.
Proof: We consider the von Mises convergence criterion
of the Weibull domain of attraction for Y:
lim (- y)fy(y)
y-e 1-Fy(y)
lim (- y)fx[ge)ldg ¢y
yo0  1-FxE o)
lim xfx(x) o-gx) &
x—o1-Fx(x) x dg®
lim ©-gx) _Qx_
x—e0 x  dgx)
If the limit of [dx/dg(x)][® - g(x)}/x exists and is strictly
positive as x approaches infinity, then we conclude from

Eq. (5) that the distribution of the largest value from Y =
g(X) is asymptotically of the Weibull domain of

attraction. ¢

k (14)

main of
Attraction

Assume the random variable X to have an upper bound
w such that w = sup{x: FX(x) < 1}, that the distribution
of the largest value from X converges to a Weibull form,
and that X satisfies the von Mises convergence condition
in Eq. (5). Sufficient conditions are derived here under
which the asymptotic distribution of the largest value from
Y is preserved as Weibull or is transformed to Gumbel or
Frechet.

Theorem 7: Assume Y = g(X) is unlimited in the
direction of the largest value. The asymptotic distribution
for the largest value of the function Y = g(X) is of a
Gumbel form if the limit of [(w — x)/g(x)] dg(x)/dx exists

and is equal to zero as x approaches w and

(18 ()1 dg(xVdx1/g(x) is monotone for  close 1o w.

Proof: We consider the convergence criterion of the
Gumbel domain of attraction in Eq. (3) for Y:
lim 1-Fvy(y)
y—eo y fy(y)

lim __ 1-Fx[g~l(y)]

y—==y (g~ 1()] dg~L(y)dy

lim 1 -Fx(x)

x—-w g(x) fx(x) dx/dg(x)

lim 1-Fx(x) (w-x)dgx)/dx

x—w (w — x) f(x) g(x)

1lim (w-x)dg(@)

k xow gx) &

If the limit of [(w — x)/g(x)] dg(x)/dx exists and is equal to
zero as x approaches its upper bound w, then from Eq. (3)
we conclude that the distribution of the largest value from

15)
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Y = g(X) is asymptotically of a Gumbel form if

[1/8):(x)] [dg(x)/dx]/g(x) is monotone for x close to w. ¢

Theorem 8: Assume that Y = g(X) is unlimited in the
direction of the largest value. The asymptotic distribution
for the largest value of the function Y = g(X) is of a
Frechet form if the limit of g(x)/[(w — x) dg(x)/dx] is
strictly positive as x approaches its upper bound w.

Proof: We consider the von Mises convergence criterion
of the Frechet domain of attraction for Y:

lim _yfy(®)
y—»1-Fy(y)

lim y fx[e )] dg~e)dy

y=>e 1-Fxlg ()]

lim  g(x) fx(x) dx/dg(x)

X—>wW 1 -Fx(x)

lim  (w-x) fx(x) g(x)

x—=>w 1-Fx(x) (w-x)dg(x)/dx

k x—w (w —x) dg(x)/dx 19
If the limit of g(x)/[(w - x) dg(x)/dx] exists and is strictly
positive as x approaches its upper bound w, then from Eq.
(4) the distribution of the largest value from Y = g(X) is
asymptotically of a Frechet form. ¢

Theorem 9: The asymptotic distribution for the largest
value of the function Y = g(X) is of a Weibull form if
there exists a finite ® such that ® = sup{y : Fy(y) < 1}
and the derivative dg(x)/dx exists as x approaches w.

Proof: We consider the von Mises convergence criterion
of the Weibull domain of attraction for Y:

lim (0 -yfy@y)
y-wo 1-Fy(y)

lim (@-yfx@E¢))dgl)dy

y=0  1-Fx@E o)

lim (w-x)fx(x)o-gx) d

x->w 1-Fx(x) (w-x) dgx

K lim o-g(x) dx

x—w w - x dgix)
lim dg(x) lim _dx
x-w & x—wdgR)

k

= k an
where I’'Hépital’s rule is used in the second step from the
last. It can be concluded from Eq. (5) that the distribution
of the largest value from Y = g(X) is asymptotically of a
Weibull form. ¢

mar f nditi reservation

Transformation of the Domain of Attraction

We emphasize here that the exact form of the
monotonic transformation is not always needed to obtain
the domain of attraction of Fy. Consider, for example, the
cases where Fy is any distribution that satisfies the von



Mises convergence criteria to be of a Frechet domain of
attraction, and g(X) is of the polynomial form, such that
N

g(X) =p(X) = D aiXi (18)
i=0
and satisfying
N
o pixdy/dx > 0 (19)
i=0

Since d[In p(x)}/d(In x) is equal to N as x approaches
infinity, the polynomial function p will always preserve
the domain of attraction of the underlying variable X, by
Theorem 5.

Theorems 5, 6, 8, and 9 require only knowledge of the
transformation g when the von Mises condition is assumed
to be satisfied by the underlying distribution Fx. The

remaining theorems require knowledge of both g and S)If

where the second alternative (ii) of Theorem 1, Theorems 4
and 7 assume the satisfaction of the von Mises condition
while the first alternative (i) of Theorem 1 and Theorems 2
and 3 do not necessarily assume satisfaction of the von
Mises condition for the underlying random variable X. For
engineering application, a table of the order of magnitude

of the function 8§(x) for large x for some common
distributions is useful (Ref. [8]).

ESTIMATION OF THE CONDITIONAL
EXPECTED VALUE

From the definition of the characteristic largest value of
Y:

a1 -Fy@l)]=1
uYn can be derived as a function depending only on u

(Ref. [9]),

(20)

X
n

Y = gud) @1
From Eq. (7), 8:]1 can be expressed as a function of both
u§ and 8§:

Y _ Y:

&, =nfy(uy)
- Xy &
=nfx(uy) a0 | X
n
_ sX A2
- 5% x @)
n

Note that the formulas for uK and 8;{ do not rely on

knowledge of the exact form of the underlying distribution
Fx.
Reference [10] proposes a conditional expectation

E[YIY > F}l(a)] to represent the extreme risk realized
from the tail of the distribution, where FY is the inverse
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of the cumulative distribution function and o is a
partitioning probability that is chosen to bound from
below the range of extreme events. Building on this
concept, Ref. [11] presents a result in approximating the
conditional expectation based only on the knowledge of the
domain of attraction, the characteristic largest value uX,
and the inverse measure of dispersion 8?{. The conditional
expectation E[Y= g(X) | Y > Fy (0)] can be obtained based
on the identified domain of attraction of Fy without
knowledge of the exact form of the probability distribution
of X. These approximations are nearly exact for large
values of n, and, equivalently, large values of the partition
probability a, since there is the relationship

n= 1

1-a

between the selected partitioning probability o and the
corresponding value of n (Ref. [9]).

For a random variable Y of the Gumbel domain of

attraction, unlimited in the direction of the largest value,
and of an exponential tail (Ref. [2]), the approximation to

E[Y |'Y > Fy}(a)] is given by (Ref. [11])

(23)

Y
dn
For a random variable Y of the Frechet domain of

attraction and of a polynomial tail (Ref. [2]), the
approximation to E[Y | Y > F}l ()] is given by (Ref.
(11D
1 Y
E[YIY>Fy(@]=ug +

E[Y Y >Fy(@)=uy + 24

1

1.2 v 1
<+ (F n - 25
sy 8% " 8k
For many (see the qualification in Ref. [2]) distributions of
the Weibull domain of attraction, the approximation to

E[Y | Y > Fy ()] is given by (Ref. [11])
E[lYIY> F_Yl(a)] = uX +

8%

1
8%

T o -u)sY + 1)

where ® is the upper limit of Y. These approximations
are important in that no assumption of an exact
distribution Fy is needed.

EXAMPLE--FLOOD LOSSES

To illustrate the use of the derived results, we consider
the evaluation of extreme monetary flood loss when the
underlying probability distribution of peak discharges is
uncertain. Denote X to be the peak discharge in unit of
m3/sec and assume that statistical analysis of the peak
discharge record yields the following estimates of the
characteristic largest value and the inverse measure of
dispersion:

uy 3y = 6.000 m3/sec @7



(28)
8100 .

and that the distribution Fy, of peak discharges could be of

the Frechet domain of attraction. The stage-discharge

relationship is assumed to be of the following form for

large flows (Ref. [12]):

X \0.30 ,
Y=gX)=392 (10,000) (m);

X 2 1,000 m3/sec (29)
where Y is the stage in unit of m. The stage-damage
relationship h is assumed to be of the following form for
high stages (Ref. [12]):

Z=h(v)=15000000 (1 - 140 (s

Y =110

where Z is the monetary flood loss in unit of dollar.

Assume that the peak discharge Fy satisfies the von
Mises criterion to be of the Frechet domain of attraction. It
can be concluded from Theorem 5 that the Frechet
asymptotic form is preserved in the stage Y since the
stage—discharge function g is of the general form Y = X@,
where a > 0. Since the stage~-damage function h is of the
general form ® — ¢/Y with ¢ > 0, it can be concluded from
Theorem 6 that the Frechet asymptotic form in stage Y is
transformed to a Weibull type asymptote in the loss Z.
Although here the forms of the two monotonic functions
are given exactly, the domain of attraction of the resulting
functions Y = g(X) and Z = h(Y) could be obtained if they
were known only by their general forms.

In two successive applications of Eqs. (21) and (22) the
characteristic largest value and inverse measure of
dispersion of the stage Y and the loss Z are obtained as

(30)

follows:

udo = sy

a0 ( 1%% 0.30

=3.36304 m (31
1 1 &m
S50  dip & ;o

= (1,500) ﬁ'ﬁ (0.30)(6,000)-0-70

= 0252228 m 32)
ufo =hdy

=(15,000,000)(1 _ %

= $10,093,666 33)
1 _ _1 duy)
S S0 Y |ul,

= (0.252) (15,000,000) ﬁ

= $367,646.77 34)

These results enable us to use Eq. (26) for Fz of the
Weibull domain of attraction to calculate the conditional
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expected value with o = 0.99 (and consequently n = 100)
as follows

E[Z1Z > F7(0.99)]

1

8:%0
[(® - ufo)dfo + 1]
10093666 + 367647

1
urfio + -
8190

367647
[(15000000- 10093666)/367647 + 1]

= $10,435,684 (35
The interpretation of this measure of extreme events is the
expected flood loss conditional on either exceedance of the
99th percentile of loss or, equivalently, exceedance of the
100-year discharge. The conditional expected value of loss
can be used in addition to the expected value of loss (and
other criteria) for selecting an optimal design (Refs. [13]
and [14]).

CONCLUSIONS

This paper has studied the characteristics of extreme
realizations of a monotonic function of an underlying
random variable with an unknown distribution. The results
make possible analyzing the extreme values of a univariate
monotonic function with limited knowledge of the
underlying distribution and of the exact form of the
function itself. Estimation of the conditional expected
value of the system outcome, a measure of the risk of
extreme events, has been demonstrated when exact
knowledge of the underlying distribution is unavailable.
The von Mises convergence criteria used as the basis for
these results are sufficient conditions for determining the
domain of attraction (Ang and Tang 1984). One future
extension of this research is to derive rules governing the
transformation and preservation of domains of attraction
using conditions that are both necessary and sufficient.
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APPENDIX. EQUIVALENCE OF TWO
CONVERGENCE CRITERIA FOR GUMBEL
DOMAIN OF ATTRACTION

Assume that X is unlimited in the direction of the

largest value and define
_1-Fx(x)
H(X) - fX(x) (36)

where Fx(x) and fx(x) are the cumulative distribution
function and the probability density function of X,
respectively.
Theorem Al: If H(x) is continuous, differentiable, and
monotone for large x, then
lim Hx) 0
X0 X

G7N



implies that
lim d _
x—s00 dx H(x)=0 (38
Proof: Note that H(x) is always nonnegative. We have
H(2x)
2x

Hw+ [HO &
X

2x
> [reye (39)
X
It follows from Eq. (39) and the mean value theorem that
there exists some y € [x,2x] such that
H(2x) 2 (2x - x) H'(y) (40)
In the limit as x approaches infinity, dividing Eq. (40) by

2x yields
lim H(2x) lim H(y)
x ox > X ) y € [x,2x} 41)

If H'(x) > O for large x, then Eq. (38) follows from Egs.
(37) and (41).

It remains to consider the case of H'(x) < 0 for large x.
Rearranging Eq. (39), we have

H(x)

2x
HEo - [HO &
ox X
[-mena

X
It follows from Eq. (42) and the mean value theorem that
there exists some y € [x,2x] such that

H(x) > -(2x -x) H'(y) 43)
In the limit as x approaches infinity, dividing Eq. (43) by
x yields

lim H(x) S lim

X0 X  X—)o

>

(42)

-H'(@y) ye [x.2x] 44)
If H'(x) < 0 for large x, then Eqgs. (37) and (44) lead to Eq.
(38). ¢

Theorem A2: If H(x) is continuous and differentiable
for large x, then

lim d _
X300 dx H(x)=0 45)
implies that
lim H(x) =0 46)
X—o X

Proof: If Eq. (45) holds, then for any € > 0, there exists
a number N such that {H'(x) | < € for x > N. We have from
the triangle inequality

H(x)

X
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X

- [HN) + IJH‘@ Al

X
< [HN) | /x+ |JH‘(§) d§ |

< HMN) | /x+¢ (x - N)/x @7
Takir.1g the limit of Eq. (47) as x approaches infinity gives
im H®) (¢ wg)

X—0 X
Since £ can be chosen arbitrarily small (N arbitrarily
large), the Eq. (46) follows immediately from Eq. (48). ¢
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Second Order Behavior Of Domains Of
Attraction And The Bias Of Generalized
Pickands’ Estimator

Pereira, T.T.
University of Lisbon, Lisbon, Portugal

The domain of attraction of the generalized extreme value distribution is studied with respect to second
order conditions using the tail quantile function. The particularly important case of the differentiable
domain of attraction is emphasized. Next the weak consistency of a generalization of Pickands' estimator
for the main parameter of an extreme value distribution is proved. Moreover, under quite general conditions
on the underlying distribution function, that include second order behaviour and being in the differentiable
domain of attraction, the asymptotic normality of the estimator is proved and the asymptotic bias that can
occur is determined. A result concerning the minimization of the asymptotic mean squared error of the
estimator is given which leads to an optimal choice of the number of intermediate upper order statistics
involved in the definition of the estimator. Several examples, including all the usual continuous
distributions, illustrate the results. Suggestions on how to choose the parameters in practical applications

are made.

1. Introduction

The classical extreme value theory is primarily concerned
with the asymptotic distribution of the maximum of
independent and identically distributed (i.i.d.) random
variables. Let Xj, i>1, be a sequence of i.i.d. random
variables with distribution function F and let
Xp:p=max(Xj,...,Xp), n=1. Gnedenko, Ref. [1], proved
that, if there exist sequences of real constants ap and by,
n>1, with ap>0 and a nondegenerate distribution function
G such that

lim P((Xpn—bp)/ap <X) = lim Fi(agx+by) = G(x) (1.1)
n—yee n—oco

for all x at which G(x) is continuous, then G(x) belongs
to one of the three types of extreme value distribution
functions. Using a parametrization of von Mises, Ref. [2],
these limiting types can be written in a unified way,
known as Generalized Extreme Value (GEV) distribution,

Gy(x) = exp{—(1+yx)7V7}, 1+yx >0, YeR.
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We say that F belongs to the domain of attraction of Gy,
notation Fe D(GY), if (1.1) holds for some sequences ap
and by, The characterization of the domains of attraction of
extreme value distributions has been dealt with by several
authors. Von Misgs, Ref. [2], found sufficient conditions
for a distribution function to be in the domain of attraction
of each of the three extreme value distributions and
Gnedenko, Ref. [1], gave necessary and sufficient
conditions. More recently, de Haan, Ref. [3], and
Pickands, Ref. [4], presented a unified characterization of
the domain of attraction of the GEV distribution. Let the
function U be defined by U(x) = (1/(1-F))< (x), x21,
where the arrow denotes the (generalized) inverse function.
Note that U(x) = Q(1/x) with Q the quantile function of
the upper tail of F. A necessary and sufficient condition
for a distribution function F to be in the domain of
attraction of Gy, for some ye R, is the existence of a

positive function a(.) such that, for x>0,



i 2EUO x¥-1

Jim == Y (read logx, if y=0)

(1.2)

(Ref. [3]). Moreover the auxiliar function a(.) is regularly
varying with index ¥, i.e., € RVy (cf. Ref. [5], th.1.9.).
Pickands, Ref. [4], considered the inverse of the hazard
cumulative function, H-1(x) = (1/(1-F)) T (e*) = U(e*), to
give a characterization of the domain of attraction which is
easily seen, through a logarithmic transformation, to be
equivalent to the one of de Haan. The necessary and
sufficient condition (1.2) for the domain of attraction of GY

can of course be written

Utx)-U®) -

x¥-1 ) _ .
a® =y T Rea® withRyx(O)=0(l), t=ee.

(1.3)
If there exists a positive function R(t) such that R(t)=0(1),

t—oo, and Ry x(t) = hy(x)R(t) + o(R(t)), we can speak of
second order behaviour of U. We then have for x>0,

Y
U(tx)—U(t)—a(t)-xY—l

a(R(t)

lim (1.4)

t—oo

= h‘y(x)

and our purpose in section 3 is to find the possible limit
functions hy(x) with hy(x) finite and not constant. Besides
we will find the function R(t) which describes the rate of
convergence of the limit (1.4) to be a regularly varying
function with index p for some p<0. We also analyse the
second order behaviour of U for a distribution function in
the differentiable domain of attraction of Gy, and we
identify the generalized Pareto distribution as the only
family of distribution functions with positive derivative in
this subdomain of attraction for which Ry x(t) is
identically zero. Related papers are Ref. [6], Ref. [7] and
Ref. [8].

Section 4 deals with the problem of estimating the
extreme value index vy from a finite sample X,X»,....Xp.
A semi-parametric approach is due to Pickands, Ref. [9];
he proposed the estimator

(n) (n)
P Zn " Zom
A
= -1jpg ———
Y, = (log2) ' log @ @ 1<m<[n/4]

2m 4m
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where z(l")zzg")z...zz;“) are the descending order

statistics of X1,X»,...,Xn and m=m(n) is an intermediate
sequence of integers, i.e., m—yeo and m/n—0 (n—eo).
Pickands proved that his estimator (based on the 4m
largest observations) is weakly consistent and Dekkers and
de Haan (1989) proved this same result and showed that if
the sequence m(n) increases suitably rapidly the estimator
is also strong consistent. Moreover, under additional
conditions on the distribution (differentiability and II-
variation of +t1-YU'(t) for real y or second order regular
variation conditions on U for y#0), they proved the
asymptotic normality of the estimator for intermediate
sequences m(n) which increase at certain rates. Note that
with a reparametrization the estimator can be written

(n) (n)
b Z[m/4] = Zimn)
A
Y, = (log2)log o )
Z[m/Z] -Zn

based on the m largest observations. We consider the
following generalization of Pickands' estimator

(n) (n)
P 2 me21 ™ 2 me)
= (- -1
Yn.0= (-log8)llog O s , 0<6<1,
[m®O] m
where we adopt the convention

, 0<x<1

1 AP AP
[x]= { largest integer<x, x>1 - Note that Y,=Yy, ;-

This estimator is weakly consistent for any 0 in the
interval ]0,1[ and for any intermediate sequence m(n).

Under quite general conditions on F (F in the differentiable
domain of attraction of Gy and second order behaviour of

U), we shall prove the asymptotic normality of ?E,g for a
certain rate of growth of the intermediate sequence. These
conditions are more general than the ones considered in
Ref. [7]; namely, they include the case of second order
regular variation behaviour for ¥=0 which was not taken
into account in Ref. [7]. Also our proofs do not use the
arguments in Ref. [7] but are based on the asymptotic
joint distribution of a fixed number of intermediate order
statistics associated to the same intermediate sequence
established by Cooil, Ref. [10] and Ref. [11]. Moreover
we shall give the asymptotic bias of the estimator that
occurs if the sequence m(n) is allowed to increase at a



faster rate, as well as a theoretical result concerning the
minimization of the asymptotic mean squared error of
generalized Pickands' estimator.

For a review of the different approaches (parametric and
semi-parametric) to the estimation of the tail of a
distribution see Ref. [12].

In section 5 we will ilustrate the results with the
continuous distribution functions that are typically used in
statistical applications.

Finally, in section 6 we make some considerations on
how to choose the parameters 6 and m in pratical
applications, and we suggest the use of the particular value
of 0 (corresponding to one of the possible generalizations
of Pickands' estimator) which minimizes the variance of
the estimator when y=0.

2. Preliminary results

The importance of regular variation theory in the

characterization of domains of attraction is shown
in the next theorem, where U() = t]_i)m U(t) and

Xoo = sup{x: F(x)<1}.

THEOREM 2.1.(Gnedenko, Ref. [1]; de Haan, Ref. [3])
(1) For y>0 are equivalent: (i) FeD(Gy), (ii) U(co)=c0
and UeRVy, (iii) Xeo=00 and 1-FeRV_y/y.

(2) For v<0 are equivalent: (i) Fe D(Gy), (ii) U(eo)<eo and
U(eo-U(x)eRVy, (iii) Xeo<oo and 1-F(Xemx"1)e RVyy.
(3) For y=0 are equivalent: (i) Fe D(Gy), (ii) there
exists a positive function f such that for real x,

tlTl)r‘n;l—:—(‘l:_%Ql =eX (ie., 1/(1-F)eI'(f)), (iii) Ue II(a).

When FeD(Gy) with y#0, we say that F has a first order
regular variation tail behaviour and that U has a first order
regular variation behaviour. When Fe D(Gp), we say that
U has a first order IT-variation behaviour; moreover, the
functions a(.) and f(.) are related by a(t) = f(U(t)).

The differentiable domains of attraction were introduced by

Pickands, Ref. {4]. We say that F belongs to the (once)
differentiable domain of attraction of Gy, notation

FeDygif(Gy), if the distribution function F is differentiable
in a left neighborhood of x.. and if there exist sequences
ap>0 and by, such that

S Pt =G0 1)

lim
N=—yco
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uniformly for all x in any finite interval. Clearly,
FeDgif(Gy) implies Fe D(Gy) for the same attraction

coefficients ap>0 and by. Condition (2.1) can also be
written

lim nagF (agx+bg) = (14+yx)~1/¥1
n—>oo

and, in particular for x=0 we have lim nanF'(bn) =1, that
n—eo

is, ap ~ ll(nF'(bn)). IfF is positive and we take b,=U(n)
this allows us to consider ap = nU'(n). The following

theorem characterizes the differentiable domain of
attraction of Gy.

THEOREM 2.2. (Pickands, Ref. [4]) A distribution
function Fe Dg;f(Gy) for some ye R if and only if H™1 (1)

is differentiable for all sufficiently large t and, for real x,

-1y
lim @—)—(."“—"Levx . (2.2)
t=e (H1) (1)

It is c':asily verified that condition (2.2) is equivalent to
(H1) (logt) being a y-regularly varying function and, as
H-1(t) = U(eY), (2.2) can be written tU'(t)e RV,. Hence,
the above theorem can be restated in terms of the tail
quantile function U.

COROLLARY 2.1. Fe Dgif(Gy) for some ye R if and

only if U(t) is differentiable for all sufficiently large t and
tI=-YU (1)e RV,

Cooil, Ref. [10] and [11], proved that if Fe Dgif(Gy) for
some ye R then for any intermediate sequence m=m(n)
and 6>0, the stochastic process

(n)
0] bn/me

z
o® @) =Vm —2) T

an/m

where bp/me = F<(1-m6/n) = U(n/m8), converges in

distribution, n—ee, to the gaussian stochastic process
@X6) characterized by

E(w(8)=0, 0>0,
Cov(e(87),0(62)) = 6;718,7F1,  0<6:<6,.
From now on we shall consider the normalizing sequence
bp = U(n).



3. Second order conditions for domains of
attraction

The next theorem identifies the generalized Pareto

distribution, Ref. [9], as the only family of distribution
functions belonging to Dqif(Gy) and having a positive
derivative for which Ry x(t) can be identically zero.

THEOREM 3.1. Let Fe Dg;s(Gy) for some ye R and
suppose F has a positive derivative F. Then are
equivalent:

(i) there exists a positive function a(t) such that, for x>0,

Ux)»-U@p _x'-1

O -7 for sufficiently large t

(i.e., R’Y,X(t) = 0)
(ii) F is the generalized Pareto distribution function

. —cr 1y —
Fx)= (1+yx—cfl) , X>Cp, l+y)ic—f2 >0, ¢1>0, cre R.

PROOF. The existence of a positive derivative U of U
allows us to say that (i) is equivalent to (i') "there exists a
positive function a(t) such that tU'(tx)/a(t) = x¥-1 for all
x>0" and taking x=1 in (i') we obtain a(t) = tU'(t).So, the
functional equation to be solved is U'(tx)/U'(t)) = x¥~! for
x>0 and t>max{1,1/x}. For x>1 we can take in particular
t=1 which leads to U'(x) = x¥~1U'(1), x=1, which is
equivatent to U(x) = ¢1(xY=1)/y+c; for some ¢1>0, cre R.
For 0<x<l we can take in particular t=1/x and get
U'(1/x) = U'(1)x177, 0<x<1, which is equivalent to
Ux) = x¥1U(), x=1. .

Note that for any other function a(t) asymptotically equal

to tU'(t) the generalized Pareto distribution verifies (1.3)
with Ry x(t)¥0. What the theorem implies is that

R,Y,x(t)$0 for any other distribution function Fe Ddif(Gy)

with positive derivative, whatever the possible function
a(t) considered. As can be seen in the proof of the theorem,
(i) is also equivalent to tI=TU'(t) = ¢y, ¢1>0.

LEMMA 3.1. Let Fe D(Gy) for some ye R. If there
exists a positive function b(t) such that, for x>0,

lim (tx)~Ya(tx) — tYa(t)
t—>oo b(t)

S WIS

*

with hy(x) finite and not constant, then

* xp_l
hy(x) =c —p— , x>0, for some c#0, p<0, (3.2)

the case p<0 being possible only if tgm t~Ya(t) = d>0.

Moreover b(t)e RV, and b(t) = o(t™a(t)).

PROOF. Remember that Fe D(Gy) implies t™a(t)e RVy.
The finite and not constant limit function of
[(tx)™Ya(tx) — t™Ya(t)]/b(t) is c(xP-1)/p for some pe R and
c20 (cf. th. 1.9, Ref.[5]). But p>0 implies t~Ya(t)e RV,
(cf. th. 1.10, Ref.[5]) which contradicts the fact of
FED(Gy). If p<0, then tll)njot“Ya(t) exists and moreover
J_r((tl_i_glot‘ya(t)) — t7Ya(t))e RV, with the plus sign if c>0
and the minus sign if c<0. Now, if tl_i)n‘}ot"fa(t) =0 we will

have t™Ya(t)e RV, with p<0 and, again, this is not
possible; if tgrg t~%a(t) = d>0, then +(d—t""a(t))e RV,

which implies that t™Ya(t)e RV, and only this last
situation is possible if p<0 and for a distribution function
F in the conditions of the theorem. ¢

Note that if (3.2) holds with p=0, £t™Ya(t) belongs to the
class IT ( £t~Ya(t)e I1(ay) with a;(t) = Iclb(t) ) and if it
holds with p<0, t™Ya(t) is a slowly varying function but
not a I1-varying one and H(d—t™Ya(t))e RV,,. A particularly
important case of the above lemma is the one of
FeDqif(Gy) with U having a positive derivative U’
and a(t) = tU'(t): if p=0 we will have +t!YU'(t)eII and
if p<0 then MmtI-YU'(t) exists and is positive and
:t((tl_i_)lgt]‘YU'(t)) —tI-YU'(t))e RV,. The following

theorem shows that U will then have a second order

behaviour and identifies the function R(t) and the possible
limiting functions hy(x).

THEOREM 3.2. Let Fe Dg;s(Gy) for some ye R and

suppose that U admits a positive derivative U'. If (3.1)
holds for a(t) = tU'(t), then for x>0,

-1
U(tO)-UO—tU'(—
lim T = hy(x)
t—>eo tYb(t)
€. .2
) log*x =0 p=0
x¥-1
with hy(x) = f[xYlogx—T] 0  p=0
c | xY* -1 xY—1:|
= |- R 0
p[ T+p y | YR <
for some c#0.



PROOF. For x>0,

x¥-1 X
Ut )-U@)—tU'— .
Y _ f (ts) 17U (ts)—t1-YU' (1) -gs,

tYb(t) b(t)
X

If p=0 this integral converges to cjs‘f‘llogsds, t—>o00
i

(th. 1.14., Ref. [5]). If p<0 we easily see that
Jm (110 (t) - d)/b(t) = c/p and as the above integral is

X
-1 }Y‘lds it

f () (ts) ~ d
1 ( =10 - d
X

converges to% I(sp-l)sv-lds, t—soo (th. 1.3., Ref. [5]). ¢
. 1

tI-YU'(t) - d
b(t)

equal to

For p=y=0 the converse statement is also true (cf. Ref.
[6D).

In a wider context a related result concerning the possible
limiting functions can be obtained if we assume a second
order behaviour for U. Again the important limit will be
the one of (3.1). A similar result was obtained in Ref. [8]
for the function logU.

THEOREM 3.3. Let Fe D(Gy) for some ye R and
suppose that (1.4) holds with hy{(x) finite and not constant.
If, in adittion, one of the following conditions holds
(tx)~Ya(tx) — t~Ya(t)

tYa(t)R(t)
limit function is not constant,
(tx)Ya(tx) — t™¥a(t)

(a) lim

exists for all x>0 and the
t—> oo

(b) lim =0, R is measurable and
t—o0 tYa(t)R(t)

lim R(X) exists and is finite for all x>0,

t—oo R(t)

then hy(x) belongs to one of the following classes

' 2
e B2 + calogx, =0, p=0, (1)
c1/xP-1 xP-1
i 5( 5 logx)+ 2 5 =0, p<0, )
Y— Y-1
%(mogx-iy—l @ 10, 90 O
cyf xP+7-1 xY—l) xP+7-1
—_——— |+ , v20, p<0, 4
\F(pw Y )T ey O PO
(3.3)

with c1#0 and c2e R or ¢1=0 and ¢2#0.
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PROQF. For x,y>0,

-1
U(U&y}-—U(t)—a(t)(ly,)Y—'
a(HR() -
U(tx }—U(tx)—a(tx)E
_ o Y a(x)R(x)
a(tx)R(tx) a(R(t)

x7-1
Utx)-U0-a077— gy 1 (x)~Ta(tx)-ta(t)

* a(DR() T 0RO
34)
(a) If the limit of W_a(_t), as t—oo, exists for all
t™Ya(t)R(t)

x>0 and the limit function is not constant, it will be of
the form c1(xP-1)/p, for some c;#0 and p<0 (p<0 only if
lim t~Ya(t) = d>0, t—o0) and t~Ya(t)R(t) is a p—regularly
varying function (Lemma 3.1). Hence R(t)eRV),. Taking
limits, as t—eo
functional equation

in (3.4) one obtains the following

By(xy) = by (y)XY#P + hy(x) + c1x7 %’—1 xP-1

o (3.5)

Assuming that hy(x) is a differentiable function, it

follows by differentiation with respect to y that
' . xP-1 .

xh, (xy) = h (y)x7*P +c1xY e y¥-! and setting y=1

yields h;(x) = h;(l)xY+P‘1 + ¢;x¥1(xP-1)/p which, noting

that hy(1)=0 and h (D€ R, leads to

-
cl_g_1022x+ cologx v=0, p=0
p—1
a4 + cg - C—l-logx, v=0, p<0
1 ) P p P
hY(X)= (c -4 xy___1+ “Livlogx, 720 p=0
27y » » gx, Y#0,
(1 11 _c1 x¥-1
\(p +C2)x7pT'y‘ o —Y ,  y#0, p<0

with ¢;#0 and coe R. Let h;(x) be the difference between

the general solution of the equation (3.5) and the
differentiable one, i.¢., b(x) = hy(x) ~ h(x). Then Ki(x)



satisfies the equation h;(xy) = h;(y)xF’*’Y + h;(x). Also by
symimetry h;(xy) = h;(x)y‘Y*P + h;(y) and subtracting we
get h’Y(y)(xY**P—l) = hf{(x)(yY"F—l) for x,y>0. Hence
hi(x)/(xY*'P—l) is constant, i.e., h;(x) = c(xP+Y=1)/(p+Y),

¢#0 for all x>0 (read clogx for p+y=0) or h;(x)so (because

h;(x) is a solution of (3.5)). Then hy(x) = c(xP*=1)/(p+7),

ceR,and Mx)sh;(x).

(tx)~Ya(tx) — t~Ya(t)

b) Suppose now that lim =0 for all
(b) Supp e YaOR()
x>0 and let fx) = lim R(X) o hich exists and is non

e R(D)

R(txy) R(xy) R(tx)
RO — R RO we have

f(xy) = f(y)f(x) for all x,y>0. As R is measurable the
function f(x) is also measurable and the only measurable
solutions of Cauchy functional equation are f(x)=xP for
some pe R and f(x)=0 for x>0. However this last solution
is not compatible with f(1)=1. Hence f(x)=xP, for x>0, for
some pe R and R(t)eRV,,. But as R(t)=0(1), t—eo, it has
to be p<0. This leads to the functional equation
hy(xy)=h7(y)x7+9+hy(x). Hence, hy(x) = cPH=1)/(p+Y),
c20 for all x>0 (read clogx for p+y=0). Note that these are
the classes of (3.3) with cj=0 and c#0. 3

negative for all x>0. Since

In both theorem 3.2 and theorem 3.3 we have for the
function R(t) describing the rate of convergence of the
limit (1.4) that R(t)e RV,, for some p<0.If U has a second
order behaviour and the limit (3.1) exists finite and not
constant with p<0 (p=0) in (3.2) we say that U has a
second order regular variation (IT-variation) behaviour.

4. Asymptotic normality and bias of
generalized Pickands' estimator

P
THEOREM 4.1. (Weak consistency of ¥n,6)
If FeDgif(Gy) for some Y€ R, m=m(n)—e> and m=o(n),

AP P
n—eo, then Yn,e = ¥, D—>ee.

( —1:> stands for convergence in probability)
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e e (n) (n)
PROOF. The asymptotic distribution of Z[me]— Z.

0<6<1 (Ref. [10]),

Z(n) __Z(n)

[m8] “m —(bn/m6—bn/m)

W N(0,1-20-Y+6-211),

IIX
4n/m

n—eo, implies that

(n)
(Z[merzfﬂ MVan/m = (bo/mb-br/m)an/m + Op(1/N m)

= (0-1)/y + op(1),

(n)

ie., (z[me]—zg‘))/an,mi OY-1)fy, nse0. (4.1)

Hence, for 0<6<1,

_ (n) , (n) (n), _
Amo = Zype21~ Zime) Zmey ~ Zm )=
- (z([;)ez] - zfl‘l‘))/(z&“)e] —zZ®)-15 e

P
and Yo = logAm o/(~log8) > logdV(-logh) =7.  +
. AP
However, the weak consistency of yp.,g for any

intermediate sequence m(n), as well as the strong

consistency for an intermediate sequence m(n) such that
m(n)/loglogn—eo, can be proved for F in D(Gy) by using

the argument in Ref.[7].

THEOREM 4.2. (Asymptotic normality of ?:,e)

Let FeDgif(Gy) for some ye R, m=m(n) be an
intermediate sequence (m=m(n)—ee and m=0(n), n—o) and
0<6<1.

(A) Suppose that for some normalizing function a(.),

Uwe) - uw _ 61
a(t) Y

. ie, Ryg-i()=0. (42)

Then \/—n_l(?::,e - ¥) has asymptotically a normal
distribution with mean value zero and variance 6%(Y,0) for
any intermediate sequence m(n).

(B) Being Ry g-1(t) not identically zero, suppose that U
has a second order behaviour, that is, there exists a
positive function R such that,



Ry g-1(t) = hY(B‘l R() + o(R(1)) and R(t)=0(1), t—re0 (4.3)

Then ‘/;(?:,e -7

(i) has asymptotically a normal distribution with mean
value zero and variance 6%(y,0) for intermediate sequences
satisfying m=o(n/g(n)),

(ii) has asymptotically a normal distribution with mean
value b.(y,0) and variance ¢2(y,8) for intermediate
sequences satisfying m ~ n/(g<(n/c?)), c>0,

where g(t)=t/R2(t) and g¢ is the asymptotic inverse
function of g,

R(6-1-1)(1+67271) 02—
2(v 0) = 2(0,8) =
OO = e (%(0.8) = |57
by O)me — YH@B) o oo H(0.8)
be(1,8)=cb(y,8)=c 61O~ 1)(1og0) (be(0,8)=c logze)

and H(7,0) = hy(672)~(67%+1)hy(671).

REMARK. In view of Corollary 2.1, Lemma 3.1 and
Theorem 3.2 the conditions of Theorem 4.2 include the
following ones (with ye R),

Utx)-U(t)

(A) 10" (HeRVy and U0

-ttt

Ty

(B) tITU'(t)eRV( and for x>0,

(tx)!U'(tx) - 0'(1)  xP-1
b ~p

for some c#0, p<0 and some positive function b(.).

lim
t—>oo

B") tIMt)eRVy and +I-TU'(t)ell or
H(d-tITU'())e RV, with d = UM e=YU'(1)>0 for some

p=<0.

PROOF. We begin by investigating in what conditions
‘[;(Am,e — 07-Y) has asymptotically a mnormal
distribution. By (4.1)

(n) (my @ _(n)
Z[mez]_z[me]_9 Y(Z[me]‘zm )

an/m(07-1)ly

Vm(Am -6 ~ Vm

in probability (n—o) 4.4)

Now we introduce for 0<8<1,
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Z(l't)

(m6] ~ ZEI!:) — (bn/mé — bn/m)

N g=Ym
m an/m

(n)
Z 1= Z gy ~ (ba/me? ~ ba/me)

Nmez =Vm
i an/m

Tm,O = E_{:T{Nm,()? - e_me,B}

and note that Ty ¢ has asymptotically a normal

distribution with mean value zero and variance
_YAHeI-1)(a+6 2 g2y
- (1-e712

(4.4) is equal to

. The right hand side of

Ty o+ Yy \/; bn/m62—bn/me—0"Y(by/me—bn/m)
m,

P 4.5)

ap/m

If the second term is zero or if we are able to make the
second term negligible by letting the sequence m(n)
increase appropriately, the asymptotic distribution of
V(A g - 7 will be the one of Ty, g. If the sequence
converges to infinity in such a way that the second term
converges to a constant different from zero, then the
asymptotic distribution will still be normal with the same
variance but with mean value different from zero.

Case (A) — If the distribution function F is such that for
some sequence of attraction coefficients a, we have

bn/m6—bn/m _U@/mé)y-Um/m) 871

, 021, then

an/m an/m

b 2—-Db b -b
\[;{ wmé? = On/m_ oy | Oo/me n/m}= 0, 121
an/m an/m

and Ym(Am, 9 — 67Y) has aymptotically a normal
distribution with mean value zero and variance V4 for any

intermediate sequence m(n). Note that for any other
sequence of attraction coefficients an*, we have
an"/ap=1+0(1) and the second term is also zero.

Case (B) - If R,Y,e-l(n/m) is not identically zero for any

possible choice of the normalizing sequence a, we obtain

bn/m62—bn/m bn/m6—bn/m _

- (@ YV4]l)————=
an/m

an/m



= Ry o-2(0/m)~(07+1)Ry,p-1(0/m)
= [hy(62)~(6"%1hy(81)IR(W/m) + o(R(n/m))
= H(y,0)R(n/m) + o(R(n/m)).

Hence the second term of (4.5) is equal to

e_“ﬁ H(y,8)Y mR(@/m) + Y mo(R(n/m)).

(4.6)
If the intermediate sequence m(n) is such that

Vm R@/m) »1, n>e, 47
which is equivalent to n ~ g(n/m), with g(t) = VR(1),
which in turn is equivalent to

m ~ n/g<(n), n—eo, 4.8)
with g< the asymptotic inverse function of g, the second
term of (4.5) converges to b(y,8) = YH(y,0)/(6~7-1) and
\/;(Am,e — §~7) has asymptotically a normal distribution
with mean ba(y,8) and variance V. Note that g(t)—>ee,
t—e0.
Let my(n) be a sequence satisfying the above condition,
that is,

mg ~ n/g<(n), n—eo 4.9
and let m(n) be any other intermediate sequence of smaller
order than myg,

m=0(mg), N—oo. (4.10)

We are going to show that for the sequence m(n)
satisfying (4.10) the second term converges to zero. In
fact, we know that for the sequence mg we have

N moR(n/mg) —1, n—e0. Now

A jm R(n/m)
GR(n/m) = ;()‘\[_HQR(n/mO) R@/mg)

Noting that m=0(myg) is equivalent to n/mg=0(n/m) and
that R(t) —0, t—eo, we conclude that R(n/m) can not be
of a greater order than R(n/mg) and hence R(n/m)/R(n/mg)

can not converge to infinity. Then \/_IER(n/m) -0, n—oo.

Hence, for any intermediate sequence
m=o(mo)=o(n/g=(n)), Vm(Am,6-6"1) % N(O,VA), e
(case (B)(1)).

Assume now that the intermediate sequence m=m(n) is
such that

GR(n/m) — ¢, n—e0, >0, (4.11)
that is, n ~ c2g(n/m), n—o, which is equivalent to
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n

m ~ D’ n
In this case ‘/_n—l(Am,e—G“Y) has asymptotically a normal
distribution with mean cbA(y,8) and varianceV 4 (case (B}
().
Now to obtain the asymptotic distribution of /*}E,e we just

have to expand it about 877 since the estimator is equal to
logAm,e/(-log8). From

—>o0 (4.12)

AP

Am,—07Y
Yn@=Y+_ -

—— 4+ 0(Apy, -0
8-Y(-log) ( m,0 -’Y)

we obtain

AP A 9—-077
Vo(ne-v=Vm —“‘"—; + o(Vm(Am g-6™)

6~Y(-logo

Apm o077
m—=Y =
0~¥(-log0)

+op(1)

P
and finally we conclude that V m("?n’e—y) has an
asymptotic distribution which is,

N(0,V A/6-210g28) = N(0,6%(Y,6))
for any sequence m=m(n)—-c and m=0(n).

in case (A),

in case (B)—(1), N(0,V 4/6~2M0g26) = N(0,62(Y,8))
for sequences m=m(n)—ee and m=o(n/g=(n)).

in case (B)—(ii), N(Cb(1,0)/6~1(~10g8),V A/62110g20) =
= N(be(Y,8),62(Y.6))
for sequences m=m(n)—eo and m ~ n/g(n/c?). ¢

The first question which naturally arises is the one of
knowing what are the distribution functions belonging to
the differentiable domain of attraction of the GEV
distribution for which the asymptotic normality of the
estimator is valid for any intermediate sequence. Corollary
4.1 gives an answer to this question showing that from
among the distribution functions belonging to the
differentiable domain of attraction of GEV distribution
which admit a positive derivative only the generalized
Pareto distribution verifies case (A) of theorem 2.2.

COROLLARY 4.1. Let Fe Dgif(Gy) for some ye R
and suppose that F admits a positive derivative F. Then

P
\/;(?n,e—y) has asymptotically a normal distribution



with mean value zero and variance 62(y,0) for any
intermediate sequence m(n) if and omly if F is the
generalized Pareto distribution function.

PROOF. Note that for a distribution function F in the

AP
conditions of the theorem \f;(yn,g—y) is asymptotically
N(0,6%(y,8)) for any intermediate sequence m(n) if and
only if
U/m8?)»-U/m)—(6~%+1)(U@/m6)-U(n/m)) = 0, (4.13)
as is easily seen from the proof of theorem 4.2. We are

going to solve the functional equation
U(e)-U(t) = xT+1)(U(x)-U(t)) for t21 and x>1. (4.14)

tx2
This equation is equivalent to  [U'(y)dy = x¥[U'(y)dy or
tx {

tx

tx tx

jU(xz)xdz = xY[U'(z)dz which in turn is equivalent to
t £

U'(xz)-x¥"1U'(z)=0. In particular for z=1, this equation
reads U'(x)=x¥'U(1) which is equivalent to U(x)
=c1(xXY-1)/y + ¢z, ¢1>0, c2€ R (= cqlogx+cy, ¥=0) which
is the tail quantile function of the generalized Pareto
distribution. Moreover equation (4.14) is equivalent to
(Ux)-U)tU'(t) = (x¥-1)/y which means that the
pormalizing sequence ap such that (4.2) holds is
ap=nU'(n). *

If we assume R(t) to be a regularly varying function
(which appears to be a natural restriction in view of
previous section results) the conditions on the sequence
m(n) stated in the above theorem admit a slight
simplification and furthermore it is possible in most cases
to minimize the mean squared error of the estimator when
the bias is different from zero.

COROLLARY 4.2. If the function R(t) of theorem 4.2
is p—regularly varying at infinity then p<0 and g is also
a regularly varying function at infinity with index
p*=(1-2p)1 (0<p*<1). Moreover condition (4.12) of
theorem 4.2 is equivalent to

*

m ~c2P , ¢>0. 4.15)

n
g ()
PROOF. Let R(t)eRV,. As UM R(1)=0 it has to be p<0

(cf. corollary 1.2.1, property 1, Ref. [13]). This is
equivalent to saying that g(t) = R(t) is regularly varying
at infinity with index 1-2p, with 1-2p=1. On the other
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hand, there exists a function V(t)e RVy_3, and strictly
monotone which is asymptotically equal to g(t) (cf.
corollary 1.2.1, property 7, Ref. [13]). It follows from
g(t)—oo, t— oo, that V(eo)=ec and hence V is a strictly
increasing function. This implies (cf. corollary 1.2.1,
property 5, Ref. [13]) that the generalized inverse of V,
V<, is regularly varying with index p*=(1-2p)~1.
Furthermore, as g~V and V¢ is regularly varying we have
g<~V<. Then g admits an asymptotic inverse g~ which
is regularly varying with index p*=(1-2p)~1 where
0<p*<1. This means that g (n/c?) ~ (1/c?) p*g‘—(n) for all
¢>0, which implies that m ~ n/g=(n/c?) is equivalent to
m ~ c2P"n/g(n), 0<p*<1, c>0. .

Note that n/g=(n)e RVy_p*, 0<1-p*<l, that is,
/g (n)eRV_3/1-2p) P<0.
Following Hall, Ref. [14], the next theorem shows that if

p<0 something can be added to the results of theorem 4.2.

THEOREM 4.3. Let Fe Dg;f(Gy) for some ye R and
assume that (4.3) holds with R(t)~t?, p<0. Then, for
intermediate sequences m=m(n) such that

(i) m = o(n 2P1-2)) n e, V;(?ﬁ,e—v) has
asymptotically a normal distribution with mean value zero
and variance 62(,6).

(ii) m ~ c2/(1=2P)y2p/0-20) p5 00, ‘/E(?g,e—v) has
asymptotically a normal distribution with mean value
b.(y,8) and variance 62(y,0).

(iii) m/m 2P-2) 5 00 1 o, (n/m)_p(?ﬁ,e—v)

E vr0).

PROOF. Noting that R(t)~tP, for some p<0, implies

-2 p/(1 -2
vg=®) ~ "4 Gy and (i) follow immediatly from

theorem 4.2. In what concerns (iii), from (4.4) and (4.5)
we obtain the following representation

n?

Tm,0+Y
12-p~ 1
ml2P

H(1.0) D,-0g (n/m) +

n,-p -
O (Ame07 = o

+ o((/m)’ R(n/m))

)

011 + op(1)

since n "/m"”?> 0 and Tm,0 3% N(0,V ), n—3e for any

intermediate sequence m(n). Hence,



o AP (A G
&G gy R D

- .
) o 1ogey OV (Amg—0)

YH(y.8)

= - + op(1).
67Y(6™-1)(-logb)
If the number of upper order statistics involved in the
estimation of y is small the variance of the estimator is
large. But if we increase the number of upper order
statistics used in order to obtain a smaller variance, the
estimator will have a bias different from zero. However in
this last situation the mean squared error of the estimator
can be minimized if p<0 giving an optimal criterion to
choose m.

THEOREM 4.4. (Minimization of mean squared error)
Let FeDgi(Gy) for some ye R and suppose U has a

second order behaviour with R(t)e RVp, p<0. Then, for
sequences m=m(n)— and m ~ ¢2P *n/g*(n), with ¢>0 and
p*=(1-2p)1, 0<p*<1, the mean squared error of the

P
estimator ?n,e is asymptotically equal to

o2(y,0)/c2P™ + c2(1-P*)p2(y 0)
/g (n) '

If O<p*<1 the mean squared error is minimum for
co=(p"o(1,0)/(1-p™)bX(y,0))1/2 and if p*=1 the mean
squared error is a decreasing function of ¢ (the bias of the
estimator remains constant but the variance decreases as m
increases).

PROOF. We have seen in theorem 4.2 and corollary 4.2
P

that if m ~ ¢2P *n/g“(n), Vm(?n,g—y) is asymptotically

normal with mean value b¢(y,8) = cb(y,0) and variance

62(7,8). Hence, the (asymptotic) mean squared error of
AP
Yn,0 18

P
MSE..(¥5 ) = [6%(1,8) + b-(1,6)l/m

~ [6%(1,8)/c?P *+c21-P"b2(y,8)]/(n/g*(n))
= f(c)/(n/g=(m)).
P
If O<p™<1 the value of ¢ that minimizes the MSEw@n,e)

is the zero of f'(c) which is easily seem to be
co=[p oX(v,8)/(1-p™)b2(1,0)] /2. 1f p*=1, we have
f(c)=62(7,8)/c2+b2(Y,8) and hence the bias remains
constant and the variance decreases as ¢ increases. *
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So if O<p®<1 we should consider the m largest
observations of the sample with m = [cy2P *n/g<(n)] to

evaluate the estimator'?g,e. The situation p*=1 is more
complicated: it corresponds to slowly varying functions
R(t) and t/g< (t) and the above theorem does not give a
definite answer to the problem of choosing m.

5. Examples

In this section we illustrate the above results with the
continuous distribution functions that are typically used in
statistical applications. In what concerns the differentiable
domain of attraction of Gumbel distribution we will see
that logistic distribution and Gumbel distribution itself
have a second order regular variation behaviour while the
Gamma(r), r#1, and Normal distribution functions have a
second order IT-variation behaviour, as well as the
distribution function F(x) = 1-exp(—x%), >0, a=1. For
the differentiable domain of attraction of GEV,y20, we
shall see that GEV(y20) and Cauchy distribution functions
have a second order regular variation behaviour.
Furthermore we consider the asymptotic normality of the
estimator and determine the asymptotic bias for each one
of the continuous distributions considered as well as the
theoretical optimal value of m for the "polynomial rate"
distributions.

EXAMPLE 1. For the logistic distribution we have
Ft) = (1+e™H7!, te R, and U(t) = log(t-1). The function
tU'(t) = t/(t-1)e RV is strictly decreasing with

tli)m tU'(t)=1 and tU'(t}-1€ RV_;. We also have, for x>0,

Ux)-U(t)

_ y-1_ -1 -1
U =logx + (1-x"'—logx)t™! + o(t71), t—eo.

Here ho(x) is a function of class (2) with cj=p=—1, c;=0
and R(t) = t~1. Hence logistic distribution has a second
order regular variation behaviour. If m=0(n?/3) the
estimator has asymptotically a normal distribution with
mean zero and variance 62(0,8)/m (theorem 4.2.(B)-(i)).
AP

If m~dn?3, d>0, \/;yn’e has a bias equal to
-d32(6-1)2/10g26 (theorem 4.2.(B)-(ii)) and the
asymptotic MSE of ?E,e is minimum for m ~ dgn2/3
with dg = [(1+6)/262(1-6)3]13 (theorem 44).



EXAMPLE 2. For the Gumbel distribution we have
U(t) = -log(-log(1-t™1)). The slowly varying function
tU'(t) = [(1-t)log(1—t~1)] is strictly decreasing with

lim tU'(t)=1 and tU'(t)-1eRV_;. Also, for x>0,
t—>oo

Ux)-U®

_ | S -1 -1 (—se0
R0) -logx+§(1 x~1-logx)t=! + o(t™!), t—>oo.

It follows that hg(x) is a function of class (2) with
c1=—1/2, p=-1, c2=0 and R(t) = ! and hence Gumbel
distribution has a second order regular variation behaviour.
If m=0(n?3) the bias of '?5,9 is zero (Theorem 4.2. (B)-
(i)) and if m~dn?3, d>0, the bias is equal to
—3372(6-1)2/(210g26\'m) (Theorem 4.2.(B)-(ii)). Moreover
MSE G 0)

is minimum for m ~den?3 with
do= 2(1+0)13/{62/3(1-0)] (Theorem 4 .4.).
EXAMPLE 3. For the distribution functions

F(x) = 1-exp(-x%), 050, a:#l, we have U(t) = (logt)!/*
and tU'(t) = (1/a)(logt)” o~lg RV is a strictly increasing
function for o<l and a strictly decreasing function for
o>1. One obtains, for x>0,

. tt)l(Jt'(tI)J S l—"*g—"(logt)"‘+o((logt)“‘) t—oe.

Hence Fe D(Gyg). Here hg(x) is a function of class (1) with
c1=(1-0)/at, c;=0 and R(t) = (logt)™!. It follows that
these distribution functions have a second order II-
variation behaviour. Note that *tU'(t)eII(a;) with
a1(t) = (1—-al/o?)(logt)/*-2. When m = o(log?n),

\/E?:e will be asymptotically normal with mean value
zero and variance 62(0,0); when m ~ dlogZn, d>0, the
distribution will have a bias equal to d1/2(1/0—1) and the
MSE('?I,:,Q) is a decreasing function of d (the bias remains
constant and the variance decreases).

EXAMPLE 4. For the Cauchy distribution we have
F(©) = £+ L arotg(0), te R
=yt g el ’

2
uo=1d-T =1‘—t[1 T+ o(ER), toee,
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and tU'(t) = {1+—{1+3t2+o(t‘2)]} t—eo. One obtains,

for x>0,

2
ﬂ%%%ﬂl =x-1+ E,j.—(z—x”l—x)t‘2 + 0o(t™2), t—oeo

and hy(x) is a function of class (4) with p=-2,
c1=—(2/3)n2, c2=0 and R(t) = t2. Moreover, U'(t) is a
strictly decreasing function with tli‘)mU'(t) =x-! and

U'(t)-m1eRV_,. It follows that Cauchy distribution
function has a second order regular variation behaviour.
For sequences m=o(n*?) the asymptotic distribution of

G(?E,e— 1) is N(0,02(1,8)) whereas for sequences
m ~dn#3 the distibution will have a bias equal to
d2x26(1-62)/310g6. The mean squared error of
the estimator is minimum for m ~don> where
do = [9(1+03)/(4m*64(1-6)3(1+8))11/5.

EXAMPLE 5. For the Generalized Extreme Value
distribution, Gy(x)=exp{—(1+yx)"V7}, 1+7x>0, ve R,
we have U(t) = {[-log(l - (1/t)}Y— 1}y, t>1, and
=10 = (1 = (1) [(—log( ~ (1)1 D). For
¥<1, tIYU'(t) is a strictly decreasing function and for v>1
there exists tg>1 such that t1=YU'(¢) is strictly increasing
for t>tg. In both cases we have tli)xggt“’ﬂ]'(t):l. For x>0,

—nx¥1-1 Y-1
*%Y(xy—l - )_1 +o,

Ux)-Um _ X'-1

tUwy oy Y
t—>o0, y£1.
Ux)-u@® L o 1y2 2 -
0] =X 1+1—2(2 x—X"1)2 + o(t™), t—eo, ¥=1.

Here hy(x) is a function of class (4) with c1=(y-1)/2,
¢2=0, p=—1 and R(t) = t™1 for y#1 and with ¢;=1/12, c,=0,
p=-2 and R(t) = t~2 for y=1. Hence GEV distribution
function has a second order regular variation behaviour for
any ye R. If y#1 the conclusion (B)-(i) of Theorem 4.2.
holds for sequences m = o(n?3) whereas for sequences m ~
dn23, d>0, holds conclusion (B)-(ii) of Theorem 4.2. with
ba(y,8) = d3/2y(8-1)0~1*1-1)/[2(67Y-1)l0g]; the

minimum mean squared error of ?l,:,e is attained for
m..den23 with dg = [2(627+1 +1)(0%(1-8)(1-8Y-1)2))13. If
¥=1 and for sequences m=o(n*3) part (B)-(i) of theorem
4.2. holds whereas for sequences m ~ dn%>, d>0, part (B)-



(ii) holds with the bias bg(1,8) = d5/26(1-62)/(1210g0).
Conclusion of Theorem 4.4. holds for sequences
m ~ dgn¥/5 with dg = [36(83+1)/6%(1-0)3(8+1)211/5.

EXAMPLE 6. For Gamma distribution,
400

1-F(t) = = |s*1e-5ds,

F()

and using the expansion

>0, r#1,

+o0
jsr'l e-Sds = e 1 [1+(—1)t"! +(r—1)(r—2)t‘2+o(t'2 ),
t

t>0, one obtains, after some calcuiations,

[l—F (t+xfo(t))
t-—-)eo

o X
1-F() *Jpo = 5

with the plus sign for r<1 and the minus sign for r>1,
fo(t) = (1-F())/F(t) and B(t) = 3 (—1)2. By theorem
A.10in Ref. [7] this is equivalent to tU'(t)eIl(a)
with a(t) = fo(U(t)).BCU) = tU'(1).p(U(t)) which is
equivalent (theorem A.5, Ref. 7D to

UOPUO | gy -1 EBU0r2 + o U0) ), 1

for x>0, and we have to find an asymptotic expression for
U(t). As 1-F(t) ~F(t) one obtains U(t) ~ Tmti-Tehe ~
~ log(uUT(r)). Hence, for x>0,
VU0 oy 1) 8% (1ogyy2 + o((log02),
tU'(®) 2
t—oo, 11,

with hg(x) a function of class (1) with ¢;=r-1, ¢c,=0 and
R(t) = (logt)2 and gamma distribution has a second order
II-variation behaviour. For sequences m=o(log*n),

P
\f;?n,e has asymptoticaily a normal distribution with

mean value zero and variance 62(0,0), and for sequences
m ~ dlog4n, d>0, the asymptotic distribution has a bias
equal to dV2(1-1); as d increases the bias of the estimator
remains constant and the variance decreases.

EXAMPLE 7. For normal distribution,
1 2
1-F(t) =— |75 72
N2r tj

and using the expansion
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oo
je‘szfzds = e P21 (1-t240(t72)), t—300,
t

one obtains

[1——F(t+xfo(t))
t—)°°

1-F(t) e~x ]/ B(t) = —(x22)e™®

with fo(t) = -1 {1-t"2+0(t"2)} and B(t) = t=2. This is
equivalent (theorem A.10, Ref. [7]) to —tU'(t)e II(a) with
a(t) = tU'(t).p(U(t)) and this statement is still equivalent
(theorem A.5, Ref. [7]) to

VOO0 _ 1ogx - £ W) 2 + o),

for x50. As 1-F(t) ~F(0)/t we have U(t) ~ (V2mtet?2)— ~
~ ‘E(logt)m. Hence for x>0,

2
% =logx — l_o;{g_x (logt)~! + o((logt)™1), t—ee,

with hg(x) a function of class (1) with c1=1/2, c=0 and
R(t) = (logt)~! and normal distribution has a second order

II-variation behaviour. For sequences m=o(log?n),

\/E?};,e has asymptotically a normal distribution with
mean zero and variance 62(0,0). For sequences m ~ dlog®n,
d>0, the distribution has a bias equal to —d1/2/2 and as d
increases the bias of the estimator remains constant
whereas the variance decreases.

6. On choosing the parameters

The variance of the generalized Pickands' estimator,
62(7,8), does not have the same behaviour, as a function
of 8, for all real y. Thus it is not possible to choose a
value of 0 in ]0,1[ that minimizes the variance for any real
y. Anyway a value of 6 can be choosen in order to
improve Pickands' estimator. We can look for the value of
0 that minimizes the variance of the estimator when y=0
because of the central role the Gumbel distribution plays
in extreme value theory. It is easily shown that when F is

in Dgif(Go), var@ﬁ,g) has a minimum for 6y the unique
zero of the function s(9) = (2+log8)/62-2 in ]0,1[, i.e,,
00=0.14. The estimator ?:,0,14 is asymptotically more
efficient than Pickands' estimator for (approximately)



¥<1.3. In what concerns the fraction of the sample to be
used in the definition of the estimator, it does not seem
possible to find an optimal criterion for choosing the
value of m independently of the underlying distribution.
However the estimator is expected to present always the
same kind of behaviour: a great variability for small
values of m, a more or less constant value for moderate
values of m and, after, a significant increase of the bias for
great values of m. In practical applications, estimates of y
for the different values of m should be calculated and then
be considered for y the value more or less constant
corresponding to the relative stability phase of the
estimates.
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Normal Sample Range: Asymptotic Distribution,
Approximations And Power Comparisons

Rukhin, A.L.
UMBC, Baltimore, MD

Abstract
The largest interpoint Euclidean distance gives a quick estimator of the

unknown variance of a two-dimensional normal sample and also provides a
short-cut test statistic for this parameter. Its asymptotic distribution and
bounds for moderate sample sizes are discussed. In particular the power
comparison of the optimal test and the test based on the sample range is

reported.

1 Asymptotic Distri-
bution of the Sam-
ple Range

This work was inspired by a quality
control problem which arises in the
manufacturer’s testing of handguns. A
handgun is placed in a vice and fired ten
times at a target with a grid on it af-

ter which the largest interprojectile dis-
tance is determined. If the distance ex-
ceeds 4 inches the gun is rejected. The
advantage of this method is that this
determination is an easy task whereas
the calculation of the sum of squares
needed for the optimal test about the
dispersion of projectiles is time consum-
ing and not always feasible.

Thus the bivariate sample range is an
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important statistic in gun quality con-
trol and it also appears rather naturally
in other accuracy related problems of
vector observations. Wilks obtained by
the Monte Carlo method the first four
moments of the bivariate normal sam-
ple range for some values of the sam-
ple size n, which are reproduced in [1]
where also a chi-approximation is sug-
gested.

In general the sample range could
be used for detecting outliers (cf. Ch.
9.3 of [2]) or to provide a quick esti-
mate of the dispersion. The monograph
of Grubbs [3] discusses further statis-
tical measures of precision which are
also summarized in Section 7.5 of ref
[4]. where this statistic is described
as “intriguing”. Despite obvious in-
terest in the distribution of the bivari-
ate normal sample range its asymp-
totic form has not been determined un-
til recently by Matthews and Rukhin
[5]. Let Xi,Xs,... be independent
k-dimensional normal random vectors
with zero mean vector and the identity
covariance matrix. The sample range R
is defined as the largest interpoint dis-
tance between the first n observations

R=R,= max |X;-Xj|
1<i<j<n

The exact and asymptotic distribu-
tion of R is well known in the special
case k = 1. Namely for any positive r
with lon = loglogn

~ Pr(w/Qlogn[R — 24/2logn

lan + log 47r] < r)

V2logn
— e’ /00 exp(—e'™" —e ") dt, (1)

i.e. the asymptotic distribution of the
range is the convolution of the limit-
ing distributions for the extreme order
statistics.

A related result on the asymptotic
behavior of random points with speci-
fied nearest neighbour relations was ob-
tained in [6].

Theorem 1 For k > 2 and positive v

lim Pr(R < 2[2logn + %(k — 3)lan

n—oc

+ln+a+ r]l/g)

= JLngOPr(\/Qlogn[R—Q\/Zlogn
0.5(k — 3)len + l3n +
B \/Qizlgn = a] = r)

= exp(—e ).
Here
lsn = log lan
and
(k—1)2%
= k = T T T T .
@ =alk) = log Ty

Let C, denote the cardinality of the set
{(7,7): 1 < i< j <n, | Xi=X;] > 2m},

Pr (R < 2[2logn — lon — logdm + 7”]1/2) i.e. the number of exceedances by the
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interpoint distances of the given level
2r; where

[210gn+2(k 3)lgn+13n+a+r]l/2.

(@)

The equivalence of the events C, > 0

and R > 2r;, and the following more
general result imply Theorem 1.

Theorem 2 As n tends to infinity, C,
converges in distribution to a Poisson
random variable with parameter ™"

The proof of Theorem 2 is based on
the relationship of exceedance count C,
to the Poisson clumping heuristic ar-
gument. It turns out that the sample
size n can be replaced by a Poisson
number of points with mean n with-
out affecting the asymptotic distribu-
tion. This fact allows to transform
the problem into the one about a Pois-
son process on the k-dimensional Eu-
clidean space possessing intensity func-
tion n(27) % ?exp(—|z|?/2) with inde-
pendent number of points in disjoint re-
gions of space. A coupling argument
establishes the asymptotic equivalence.

If r, is given by (2),

L)

kizn

[210gn+ (k— 3)12n+—2—+2( a+r)]t/?

ra = [2logn + (k —2)lan + 2l3n)'/?

and
To = 27‘1 — T

then one can show that radii ry, 72,73, 74
and the points leading to exceedances
are in a narrow annulus at (2logn)*/?+
O(ln(logn)™"/?).  (These values are
slightly different from the ones given in
[6] where a superfluous factor 2 appears
in the denominator on the third line
on p. 456. The author is grateful to
H. Henze who noticed that the original
radii were incorrectly specified.) There
are no points with |X;| > r3 with prob-
ability tending to one and that there are
no pairs of points, whose lengths are be-
tween 7, and r3, with distance between
them exceeding 2r;. Intuitively, points
in this range are sparse enough so that
their angular separations are not likely
to be close enough to 7 (which would
lead to a sufficiently large interpoint
distance). It can be proven that large
interpoint distances with both points
within the radius r, and between rq and
o are also nonexistent with probability
tending to one. Finally a coupling ar-
gument shows that the number of inter-
point distances exceeding 2r;, asymp-
totically has a Poisson distribution.

Intuitively, a vector X; with an ex-
ceptionally large norm could lead to a
clump of exceedances of 2r; when com-
sbined with vectors of large length and
nearly opposite direction. Indeed it
looks that this possibility prevents the
moments of C, from converging to the
moments of the limiting Poisson distri-
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bution. For example when k = 2

lim EC,, = oo.

2 Lower and Upper
Bounds

In this section we discuss some ap-
proximations to the distribution func-
tion F,(r) = P(R, < r) of the
bivariate normal sample range R,
based on the random sample X; =
(Z1,Y1)s -, Xn = (Zn, Ya)

Notice first of all that

[(ZZ - ZJ) COS 9

R, = max max
0<8<2r 1<t,5<n

+(Y; = Y;) sin 0]

= max max
0<8<2r 1<2,38n

~(Z;cosf + Y;sin 9)] .
Therefore

[(Zi cosf + Y;sin )

(3)

m,in Ui,

R, > rnax{ max U; —
1<ikn 1<ikn

max V; — min V;
1<i<n 1<i<n

where U, V;, ¢+ = 1,...
pendent standard normal random vari-
ables.

As was mentioned in Section 1 the
distribution of the scalar normal sample
range is well known. Its distribution
function G, has the form

,n are inde-

Gn(w)=P (maxU — min U; <w>

1<i<n 1<i<n

-~
< [T e+ w) - 0@ de
@)

with the limiting distribution specified
in (1).
Thus

and better upper estimates can be de-
rived from (3) by considering a larger
nuber of angle # values.

Let p, denote the radius of the
smallest circle containing the two-
dimensional normal sample. Then

R, < 2p,. (5)

The distribuion of p, is known (see refs

[8,9]). Namely

H,(z)
e

(n=1)(1=e*"  (6)

In other terms p, has the distribution of
the (n — 1)-th order statistic in a sam-
ple of n independent x(2) distributed
random variables. Thus (5) provides a
sharper bound than the maximum of
such a sample which corresponds to in-
equality R, < 2max; ||Xi||.

By combining the inequalities above
one can formulate the folllowing result.

= P(2p, < 2)
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Theorem 3 With H, and G, defined
by (6) and (4) one has for all positive r

Ha(r) < Fa(r) < GR(r)-

Bounds of Theorem 3 also lead to
bounds on the moments of R,. For in-
stance

ER? < 4Ep% =8[¥(n+1) — ¥(2)]

<8[log(n+1)_1+c—2(nl+1)]

and for sufficiently large n

ER, < +/8logn — \/Ql_oé_ﬁ

Here U denotes the log-derivative of
gamma-function so that ¥(2) = 1 -
C = 1—0.5772... These bounds turn
out to be reasonably tight for moder-
ate values of n.

However the question about the con-
vergence of the moments of R, to these
of the extreme value distribution re-
main open. For instance it is not known
if ,

lim ER? —8logn Y

n—00 l2n
The approximations of Theorem 3 show
that this limit is between —4 and 0.

Figure 1. The distribution
functions of F, (solid line), H.
(dashdotted line) and G2 (dotted
line) for n = 10.

0.9r
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0.6+

0.5F

0.4r
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o1r

Figure 2. The distribution
functions F, (dotted line) and E,
(solid line) for n = 10.
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Figure 3. The distribution
function of R? (dotted line) and
E, (solid line) for n = 10.
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3 Power comparisons

oo}
08|
07}
06}
05t
04}
03}
02f

0.1

{Let Xy = (Z1,Y1),..., X = (2,,Y,)
{be a random sample of two-dimensional
{random normal vectors with indepen-
ident coordinates (Z;,Y;) with zero
1means and the same unknown variance
10%. As indicated in Section 1 the qual-
]ity control problem for handguns leads
1to the hypothesis testing Hy : ¢ < oy

20

Figure 1 show for n = 10 the distri-
bution functions of the lower and up-
per bounds H, and G? along with the
Monte-Carlo simulated empirical distri-
bution function F, for 10000 repeti-
tions. Figure 2 shows F,, and the dis-
tribution function F, of the best fitted
extreme value distribution,i.e.

E,(r) = exp{—elf-7)/}

for o and B chosen so as to match the
first two moments. Figure 3 provides
the same graphs for the distribution of
R2. Our simulations suggest that the
distribution of the squared range R? al-
lows a better approximaton by an ex-
treme value distribution.

The fact that extreme value distri-
bution approximations are often more
accurate for squares of extreme order
statistics is actually well known in the
classical asymptotic theory of normal
order statistics (see [10,11]).

“versus the alternative Hy : ¢ > o,.
The optimal (uniformly most powerful)
test has the critical region of the form
{S2 > x%(2n — 2)} where

n

2

1

(z:-2) +(vi-7p
(2n — 2)02 '

Here Z,Y are the coordinatewise sam-
ple means and x2(m) denotes the criti-
cal point of x? distribution with m de-
grees of freedom.

In the situation mentioned in Section
1 a handgun is rejected if in consequtive
10 shots the largest inertprojectile dis-
tance exceeds 4 inches. This procedure
corresponds to a test of level 0.05 for
oo = .79. Indeed the Monte-Carlo sim-
ulation for n = 10 gives 95-th percentile
of the distribution of thwe sample range
to be about 5.14.

The results of numerical comparison
of powers of tests based on S, and R,
are given in Figures 4-6 for n = 5,10
and 15. The power function of the test
based on the sample range never falls
below 65% of the power of the optimal
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test. Figure 6. Power function of the
optimal test (dashed line) and
the test based on the sample
range (dotted line) for n = 15.

Figure 4. Power function of the
optimal test (dashed line) and
the test based on the sample
range (dotted line) for n = 5.
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Estimation

Of Extreme Sea Levels At Ma jor

Ports In Korea

Shim, J.S., Oh, B.C. and Jun, K.C.,

Korea Ocean Research & Development Institute, Seoul, Korea

The design of coastal structures requires knowledge of the probability of extreme sea
levels, as well as of extreme wave heights
extreme sea levels, the annual maxima method and the joint probability method, are

examined for major ports (Incheon, Cheju, Y
maxima method estimates the extreme sea

eosu, Pusan, Mukho) in Korea.

for safety. Two methods for computing

The annual
levels from three different probability

distributions of Gumbel, Weibull and generalized extreme value(GEV) using the least

square method(LSM), the conventional moment method(CMM)

weighted moment(PWM) method, respectively.
The results show that the extreme sea levels estimated by the Gumbel distribution or

the least square method appear, in general, higher
The extreme values estimated by the extreme probability

distributions or methods.

and the probability

than those calculated by other

method are approximately 5-10cm lower than the values estimated by the joint probability

method.

1. Introduction

The rise and fall of sea level is caused by
the repetitive combination of astronomical tide
and storm surge. The Office of Hydrographic
Affairs in Korea has observations of the sea
level since 1960 at the major ports of the

country.
The extreme sea levels obtained from
relative long-term tidal data play a very

important role not only in planning the overall
layout of coastal structures, but also for fixing
the positions of the intake pipes of nuclear
power plants. The information about the
extreme sea levels is especially important in
Korea where there are large tidal ranges in the
southern and western coasts of the country.

The best way to design a structure must be
based upon the proper analysis of field data
obtained at the possible construction site,
together with the appropriate consideration of the
functional and financial constraints and the life
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time of the structure. In general, we often
perform the preliminary design of the structure
through the extreme statistical analysis of
hindcast data since we may not frequently
accumulate enough observated data.

There are two kinds of estimation methods
of the extreme sea level, that is, the annual
maxima method and the joint probability method.
The first method makes use of the distribution
function of maximum sea level W B BL (41, 151, 161, {7
Therefore for a place of interest, the annual
maximum for each year is extracted from hourly
observed sea level and is used to estimate the
parameters of the probability distributions. The
latter method calculates the extreme sea levels
by convoluting probability density functions of

the tide and surge components on the
assumption that the two components are
(7), (8], (9], (10]

independent of each other.

In this study, the extreme sea levels are
computed by the two methods at major ports
(Incheon, Cheju, Yeosu, Pusan, Mukho) of the



country with relatively long-terrn observation
data. The annual maxima method estimates
extreme sea levels from the three different
probability papers of Gumbel[m, Weibull™® and
generalized extreme value(GEV)"™ each of
which is prepared by applying three different
methods for estimating parameters;, the least
square method (LSM), the conventional moment
method(CMM) and the probability weighted
moment(PWM) method. The joint probability
method, compared with the annual maxima
method, is more useful when only few years
observations of sea level are available. In the
annual maxima method, however, long-term data
is needed. In this study, the long-term data is
used in both the joint probability method and the
annual maxima method in order to compare their
results under the same condition. Considering
the data requirements of each method likewise,
we analyze and compare all the results estimated
by the above methods.

2. Annual Maxima Method

The annual maxima method has been a
classical method for analyzing extreme values,
applied to sea level estimation since Ref. [1], [2].
In particular, this was the method used in the
comprehensive study by Ref. [5].

The assumptions made in using this method
are namely that hourly sea level heights are (1)
independent, (2) identically distributed and (3)

that the number of hours in a year is large
enough for the asymptotic approximation to hold.

Table 1 gives the expressions for F(x)
defining the different distributions considered
here, and also includes expressions for their
means and variances. We estimated the
parameters of the distributions by means of
1LSM, CMM and PWM.

2.1. Least Square Method (LSM)

This method is to provide a straight line fit
to the data when it is plotted on a pertinent
probability paper. This gives a slope(a) and an
intercept(b) of the best-fit line y=ax+b in
terms of the coordinates(x; y;) of all data points.
The corresponding estimated values of the
distribution parameters, if required, may then be
obtained from the slope and the intercept by the
expressions given in Table 2.

In estimating the parameters by LSM,
plotting position is necessary. In this paper, the
Gumbel plotting position is used as follow:

F(x)=—5 @)
where i denotes the rank of data, with i=1 for
the smallest value and n for the largest value,
and n is the number of data.

22. Conventional Moment Method (CMM)

In this method, parameters are estimated

Table 1. Asymtotic probability distributions function

Distribution Range Cumulative probability Mean Variance
—m<x<m ‘8 nz 82
Gumbel —o<<g< o exp -expi- —x—-E_. E+Y T
0 =~
0<8< @ et Il (~£+0.589) (~1648%)
E<x< ™ 2 2
a B4T(1+—=
Weibull 0<B< @ l—exp{—(iéi)} e+8r(1+%) { (2 al)
0<a< @ ~-T 1+T)}
E<x< ™
GEV™ 0<8< a = | erb-rasane | Q20
e"p['{l'T‘x"s)} ] -T%(1+a)}/a?
—o<g< @

* Y is Euler's constant equal to 0.5772
** ! if =0, GEV equals Gumbel
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Table 2. Scale relationships for probability distributions

Distribution |Abscissa scale(x) Ordinate scale(y) Slope(a) Intercept(b)
Gumbel x -In[-In{F(x}] 1/8 -¢/8
Weibull In(x-¢) In[-In{1-F(x)}] a -alnB

x [-ln{l-F(x)}]% 1/8 -¢£/8
GEV x [1-{- InF(x)}Va 1/8 ~£/8

from the moment of the probability density
function for the distribution. The moments
which are the first, second or third ones, are
estimated from the sample. This method often
leads to an acceptable model, since the lower
moments have the stronger influence on the
shape of the distribution.™” The estimated
values of the parameters are expressed in terms

of x, x* and ? as indicated in Table 3. Here
% = and x° are obtained directly from the

data and are defined as follows;

= =

Because the Gumbel distribution has two
parameters, these can be easily obtained as
given in Table 3. The Weibull and the GEV
distributions involve three parameters, and of

these, a is first estimated by equating the

skewness( VB) of the sample to those of the

model. The remaining parameters can then be
estimated from the first and second moments.

VB can be expressed as follows;

3 B_aT 2 \3
VB=ps/ug 2 = —= 3xx +2(xi)
- 2
{?— (%)%}
in which y2 and 3 are the second and third
central moments of the distribution. Eq. (3) is

replaced by the function of R

3

VB= (1) -araspras e g

3
2r3<1+—%)}/{r(u—%—)—r?(u—%‘l—)} i

23. Probability Weighted Moment (PWM) Method

A new class of moment, called probability
weighted moment, was introduced by Ref. [15).
It was indicated to be of potential interest for
distributions that may be written in inverse
form, that is, if X is a random variable and F is
the cumulative distribution function for X, the
value of X may be written as a function of F :
x = x(F). Reference [15] defined a probability
weighted moment as;

Table 3. Parameters of distributions as estimated by conventional moment method

Estimated parameters
Distribution — ~ ~
a 8 €
L -
Gumbel - Yo z.mh x-
a
~ _—2__ Y 2 J— ~
Webul | VB =@ || TRyl x-Br(1+1/
GEV 1 - (%) H
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Miyx = EIX'F(1-PX 5)
1 .
= [Py Fa-pkar
where I, j, k are real numbers.

If an interesting probability distribution
function is substituted for F, it is possible to
make an integral of Eq. (5) about the fixed set
(I, j k), and the result of the integral is
expressed as the function of F's parameters.
Therefore as we calculate PWM about as many
sets (I, j, k) as the unknown parameters, we can
get simultaneous equations for these unknown
parameters.

To practice the above method, we have to
decide the set (I, j k) first of all. In the case
of PWM method, since either /=1, j=0 or /=1,
k=0 uses, x certainly has the first power and
either FF or 1 - F is excluded. That is, the
following conventional equations are adopted;

1 k
Mo = Mok = fo x(1-F)XdF ©6)

1 .
M= M= fo xF/dF %)
There are a lot of differences between the
above equations and the conventional moment
below.

M= [ _x"fx)dx ®)
One of the differences is that the Eg. (8 has
the operation of the rth power about x so that
the observation error or abnormal values are
amplified as the power gets higher, but since
PWM of Eq. (6) and (7) places its operation in
cumulative distribution function F, the sampling
errors or abnormal values become smaller. This
effect is, however, estimated from the definition
of the moment merely, and there has been no
definitive evaluation of this approach.!®
If j and k are nonnegative integers, then

,Zké (Ij) (-1)) M0

= () 0t b

In the special case where [, j and k are
nonnegative integers, M;jx is proportional to
E(X %1x-jo1), the Ith moment about the origin

of the (j+ 1)th order
size k+ j+ 197 More

Mok

Mo

statistic for a sample of
specifically,
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Mk =B(j+1,k+1) E [ X1 kejor ] (10)
where B(+,-+) denotes the beta function. For
j=0 and /=1 the convention

M o = Mok = B(1L,k+1) E{X1x+1] (11)

is adopted. M (1, unbiased estimate of M (k)

from a sample size of n and where k is a
nonnegative integer, is obtained as follows;

Mau = k+11 gx; (n];i)/(k’:l)
= 2 () /(%)

also, for k=0 and /=1, the Eq. (10)

(12)

n ;=

And
becomes
Mj= M= B(j+1,1) E[ Xj.1 j-1] (13)

To get the unbiased estimate 1\/4\, of M,, we

need the E(Xji;71), the first moment about the
origin of the (j+ 1)th order statistic for a sample
of size j+1. In drawing randomly j+ 1(n> f+1)
of the sample x1, X2, -, xs, the probability of
which the maximum value is x is (i1)/(%).
Therefore E(Xj.1j1) is

i-1
J

E(Xjo1 )= lim 35 xi 14

) /(%)

M can be estimated from the Eq. (13) and
(14) as follows;

]

M;

o = 1)(i=2) (=)
2% (n-1)Xn-2)-(n-j)

i=1

(jz1)

(15)
(j=0)

:Ir—- dlb—‘

INg&

Xi
=1

When the sample of size n is arranged from
x1 o x, in ascending order, either an estimate

M @ from the Eq. (12) or M\j from the Eq.

(15) can be made. And then the solutions of
PWM are obtained by substituting them into the
simultaneous equations of the parameters.

The probability weighted moments, Mjox or
Mo of three distributions are given in Table 4,
and the parameters of each distribution are
shown as M; and My in Table 5. From Table
3 and Table 5 Gumbel's parameters are defined
explicitly as the functions of both conventional
moment and PWM. On the other hand, those of
Weibull and GEV can be explicitly expressed as



the function of PWM only, not as conventional
moment.

Table 4. Expressions of probability weighted moment

Distribution PWM Mk (real jk 20)
Gumbel | Mo = Mi= 18+ =+ 0{ln(11++ji)+7)
Weibull | Mok =M w = li x ?I; SC; }./1‘/1}

DEV Myj0=M;= e+0{1- (j+]}31'“r(1 +a)}/a

Table 5. Parameters expressions of probability
weighted moment

Distribution | Parameter PMW M ), M ;
Gumbel t Mo~ 78
;) (2M1-Mo) / In(2)
£=0 0
8 IMwo/Tln{Mw/Mw}/In(2)]
a In(2)/ In{M @ /2M )}
50 4(M M o-Min)
Weibull 4AM 3+ M (»-4M
B M@~—E
M@o-2M )
I‘[ ln( M 1-2M 3) )/ln.‘Z}
~ M 0 -2M (1
a In{ (Mo-2M1)/2(M1-2M3)}
In2
DEV | § |a(2M:1-Mo)/{T(1+a)(1-27)}
£ Mo-8{1-T(1+a)}/a

3. Joint Probability Method

In this method, the hourly observed data is
separated into mean sea level, tide and surge
components. Then the probability density
functions of the tide and surge components are
convoluted to obtain the probability of a
particular sea level, incorporating return period
levels. This method has advantages over the
annual maxima method in that the method can
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estimate the extreme sea levels even with
short-term observed sea level data and can get
the low extreme sea level as well. In addition,
this method can evade difficulties for
establishing a suitable distribution function and
for estimating unbiased parameters in the annual
maxima method.

Any instantaneous value of sea level ((2)
measured from a defined datum may be
considered to be a sum of three independent
components; mean sea level Zo(f), tidal level
X(¢t) and residual or surge level Y(¢).

8e) = Zo(t) + X(8) + Y(1) (16)

Annual mean sea level for a particular year can
be determined from hourly observed data, and is
removed from the data. However, annual mean
sea levels are not constant.

The tidal component of the sea level data is
directly or indirectly affected by astronomical
forcing. It is also removed from the observed
sea level data expressed as the finite sum of
harmonic constants which have the following
form;

X(p) = ganncos[Unt** (Vn+im+ga A7)

where H, is the amplitude of the nth
constituent, 0, is its angular speed defined
astronomically, V. is its equilibrium tidal phase
at t=0, g» is the phase lag of the constituent on
the equilibrium tide, and f» and WU, are the nodal
corrections. Removal of the tidal component as
above does not require an excessive length of
record as a satisfactory tidal analysis can be
obtained from even one year observation.

Once both the tide and the mean sea level
are removed from the observed data, only the
surge or non-tidal component remains. Over a
sufficiently long period the surge is a random
variable. Obviously over a short period like a
month, however, very few surges are likely to
occur and produce random phases.

If the tide and surge components are then
independent each other at any time ¢, the sea
level relative to the mean sca level, Le.
w = {(t) - Zo(t), may be regarded as the sum

of two independent components x = X(¢) and
y = Y(8). Thus if the probability density
functions of the tidal and surge components are
fi(x) and fs(y) respectively, then the probability



density function f(w) of w is
fw) = [ 50 £ dy
= [ #w=3) 3 dy

The omission of dependence on time, ¢, when
replacing X(t) by x etc. implies an assumption
of stationarity for the series X(¢) involved. The
hourly predicted tide series is generally
considered to be stationary, but the hourly
residual series is, to some degree, nonstationary
since seasonal and meteorological effects like
storm surge will give rise to series of residual
not randomly distributed in time."”!

The probability of exceedance of a particular
sea level M may be evaluated from the
corresponding cumulative distribution function
Fi(m) = Prob({ £1) defined as follows:

(18)

1-Fy(n) = Lwﬂw)dw

(19)
=fn f_mF:(w-y)fs(y)dydw
The alternative form;
1-Fum=1- [ F-yf»dy Q)

where Fy -)
function of tide.
Reference [8] suggested that the return

is the cumulative distribution

period in year of a particular sea level 7 is
expressed as;
Ro=1/[{ 1-Fy(m)}r] (21)

where A is the number of data used per unit
time, and has 1.0(annual maximum value in a
year), 8766(average number of hourly values in a
year) for the annual maxima method and the
joint probability method, respectively.

4. Evaluation of Extreme Sea Levels

The Korean Peninsula is enclosed by the
Yellow(West) Sea, the South Sea and the Sea of
Japan(East Sea). In the Yellow Sea, the bottom
topography is very flat and the average water
depth is about 40m. Its tidal range is very
large and increases to the north, reaching about
8.0m at Incheon. In the South Sea, the average
water depth is about 100m and the bottom is
fairly flatt The tidal range increases to the
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west recording about 3.0m at Yeosu. The Sea
of Japan whose average depth is about 1500m
has monotonous shorelines and very steep
shelves. The tidal range is about 0.3m only and
increases to the south, reaching about 1.2m at
Pusan,

The lengths of records are 29 years at
Incheon, 27 years at Cheju, 25 years at Yeosu,
30 years at Pusan and 22 years at Mukho,
respectively. Their locations are shown in Fig.
1. Editing tidal data is necessary to eliminate
erroneously recorded data prior to evaluating the
extreme sea levels. The editing method chosen
to examine the sea level records fundamentally
consist of plotting the observed sea level and
the surge as a function of time and of
examining the plotted values by eye for
detecting errors marked as irregularities and
spikes. The errors are then corrected by
referring to the original tide gauge chart.

400

380

A H ¥~
CHEJ out &
ol 5T
1;20 1;40 1zls° 1;80 .,3100 1:;20

Fig. 1 Location map

The extreme sea levels are evaluated by the
above-mentioned various methods, and are
expressed in Table 6. The result of the annual
maxima method at Incheon is shown in Fig. 2.
In this figure, the lines representing CMM and
PWM are plotted in the probability paper after
estimating unbiased parameters and have no
connection with plotting position.

As given in Table 6, the extreme sea levels
calculated by the joint probability method are



Table 6. Extreme sea levels with return periods estimated with various methods
(a)Incheon, (b)Cheju, (c)Yeosu, (d)Pusan, (e)Mukho

{a) Incheon (Sea level relative to defined datum, Unit : cm)
. Joint probability
Return Annual maxima method ethod Remark
period Gumbel Weibull GEV High | Low 0+ (min)
(yr) extreme | extreme ’ ;
LSM|CMM |PWM | LSM |CMM | PWM | LSM | CMM | PWM |geq jevel|sea level observed
59 | 986.0| 982.1| 984.0] 980.3] 9789| 9789] 980.9| 9783 9796| 9826 | -1285
50 | 99L8| 9872 989.5| 983.3] 981.9| 98L7| 9840| 9823| 9826 O87.6 | -1353 | .o/,
100 | 999.2] 9938] 996.6] 986.8] 985.3| 985.0] 987.3| 985.7| 9859| 9939 | -1436 | _ )
500 11006.211000.3]10035] 989.9| 9884 987.9| 990.2| 988.6| 988.7| 1000.2 | -1514 :
300 110109110041 ]1007.6] 991.6] 990.1] 989.5] 991.7] 990.1| 990.1] 10038 | -155.8
(b) Cheju
B . Joint Probability
Return Annual maxima method method Remark
period Gumbel Weibull | GEV High | Low |\ (oo
(y1) extreme | extreme | :
LSM |CMM | PWM | LSM |CMM |PWM | LSM |CMM |PWM |sea level|sea level observed
57 13203 | 3182 | 3186 | 319.9 | 317.9 | 3174 | 319.9 | 3179 | 3183 | 3305 | -524
50 | 3238 | 321.3 | 321.7 | 322.8 | 320.3 [ 3195 | 3231 | 3206 [ 321.1 | 3343 | -S5.7 3240
100 13276 | 3246 | 3252 | 325.8 | 322.8 | 321.6 | 3266 | 3234 [ 3242 | 3387 | -596 | o
500 | 3315 | 3280 | 3287 | 3288 | 325.1 | 3236 | 330.0 | 327.6 | 3289 | 3429 | -635 '
300 | 3337 | 330.0 | 330.7 | 3304 | 326.4 | 324.7 [ 332.0 [ 3286 [ 3301 | 3453 | 657 |
(¢c) Yeosu
| . Joint probability
Return Annual maxima method method Remark
period Gumbel Weibull GEV High | Low \\r o (min)
(yr) extreme | extreme ’ :
LSM | CMM | PWM | LSM |CMM | PWM | LSM | CMM | PWM |geq jevel|sea level observed
55 | 419.3 | 4165 | 417.6 | 4185 | 4155 | 417.6 | 419.2 | 4158 | 417.5 | 4235 | -549
50 | 4245 | 421.0 | 422.4 | 422.7 | 4186 | 4217 | 424.3 | 4190 | 4223 | 4285 | -584 A160
100 | 4296 | 4254 | 4272 | 4266 | 4214 | 4256 | 4294 | 4220 | 427.0 | 4342 | 619 = .
500 | 4347 | 4209 | 431.9 | 430.2 | 4240 [ 4293 | 4344 | 4247 | 431.0 | 4411 | -654 :
300 | 437.7 | 4325 | 4347 | 432.3 | 4255 | 4314 | 437.3 | 4262 | 4343 | 4456 | 675
(d) Pusan
Annual maxima method Joint probability | p o
Return method
period Gumbel Weibull GEV High | Low |\¢ o (min)
(yr) extreme | extreme :
LSM |CMM | PWM | LSM {CMM |PWM | LSM | CMM | PWM |sep jevel|sea level observed
30 | 1600 | 1682 | 1684 | 169.9 | 1685 | 167.9 [ 169.5 | 1682 | 1685 | 1765 | -439
50 | 172.4 | 1704 | 1707 | 172.3 | 1705 [ 169.7 | 172.0 | 1703 | 1708 | 1792 | -454 1740
100 | 1757 | 1734 | 173.7 | 1753 | 1731 | 172.0 | 1754 [ 1732 | 1738 | 1833 | -47.2 | _, '
200 | 179.1 | 1763 | 1767 | 1782 | 1756 | 174.1 [ 1786 | 1760 | 1769 | 187.7 | -489 :
300 | 18L0 | 1781 | 1784 | 179.9 | 1770 [ 1753 | 1795 [ 177.7 | 1787 | 1905 | -498
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(e) Mukho

Annual maxima method Joint probability Remark
Return method
period | Gumbel Weibull GEV High | Low \\o @ (min)
(yr) extreme | extreme
LSM |CMM | PWM | LSM |CMM | PWM | LSM | CMM | PWM |qeq level |sea level| °PS€TVed
22 778 | 750 | 762 | 768 | 743 | 755 | 769 | 744 | 755 87.2 -33.8
50 833 | 798 | 813 | 8.0 | 775 | 794 | 816 | 77.8 | 797 91.1 -355 770
100 80 | 837 | 8.7 | 842 | 799 | 824 | 8.2 | 804 | 80 93.9 -36.8 (_29'0)
200 27 | 87 190 | 82| 82| 82| 87 |88 | 8.2 96.7 -37.8 ’
300 954 | 900 | 925 | 889 | 834 | 8.7 | 906 | 841 | 80 98.1 -384
LSM : Least square method, CMM : Conventional moment method, PWM : Probability weighted moment method

approximately 5-10cm higher than those by the
annual maxima method at every port. This is
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Fig. 2 Probability distributions of extreme sea levels
at Incheon (a) Gumbel, (b) Weibull, (c) GEV
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clear from the fact that the surges are auto-
correlated, i.e., successive hourly samples of the
time series are not mutually independent.[sl‘ Qo
Surges persist for more than one hour. Another
reason is that large surges tend to not occur
with extreme tide levels and so the probability
of an extreme total level due to a combination
of extreme tide and extreme surge is lower than
in that the case of their independence.

When using the same method for estimating
the parameters as in the annual maxima method,
the estimated extreme sea levels in Gumbel
distribution tend to be higher than those of other
distributions, and the estimated extreme sea
levels by the least square method tend to be
higher than those of the other methods of
estimating parameters. In the case of annual
maxima method, the extreme sea levels
computed by the least square method in the
Gumbel distribution are the highest of all, and
the CMM and PWM methods of the Weibull
distribution tend to get lower values. In
evaluating of the extreme sea levels these
relative deviations shown in Table 6 vary
depending on not only what kinds of
distributions are taken but also how the
parameters are estimated.

The smallest extreme sea level for a certain
return period is less than that from the method
giving the highest value corresponding to
one-third of the returm period. For instance, the
smallest value(989.5) for 300 years return period
at Incheon is comparable to the value
corresponding to 100 years or less of return
period. Therefore to obtain the extreme sea
levels which are essential for planning or



designing a coastal structure, it seems desirable
to get the extreme sea levels, by several
methods. One of the three statistical values
(maximum, minimum and mean) of the estimated
extreme sea levels can be taken as a design sea
level for a return period considering the
functional and economical aspects of the coastal
structures.

5. Conclusions

Estimation methods of extreme sea level
with data of relatively short term compared to
structural life time were presented here to
provide a design criteria needed in planning or
designing coastal structures. The methods were
applied to the tidal data recorded at several
major ports in Korea, and results from each
method were analyzed and compared. The
major conclusions are summarized as follows;

1) The extreme sea levels by the joint
probability method are approximately 5-10cm
higher than those by the annual maxima method.

92) In the case of annual maxima method,
the extreme sea levels are higher in the Gumbel
distribution than those in any other distributions
when the same method for estimating
parameters is employed.

3) For the same distribution, the extreme
sea levels evaluated by the least square method
tend to be higher than those by any other
methods.

4) The estimated smallest extreme sea level
for a certain return period is less than the
estimate based on the method giving the highest
value corresponding to one-third of the return
period.

The extreme sea levels are necessary for
planing or designing the large scale coastal
developments such as new airport construction,
artificial island construction, and reclamation in
the coastal zome. It is often the case that
long-term sea level record may not be available
for a specific site of possible coastal
development. Even with short-term data the
joint probability method can give a statistically
acceptable extreme sea levels. Even if the
method is generally found to give a slightly
overestimated value, it is acceptable in a
conservative sense from the engineering point of
view.
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Limit Properties Of Maxima Of Weighted L.L.D.
Random Variables

Tomkins, R.J.

University of Regina, Regina, Saskatchewan, Canada

Let Z, = max{a1 X1, -+,anXn},7 > 1, where {a,} is a positive real sequence and

X1, X3, -- form a sequence of independent, identically-distributed random variables. De-
fine Z = lim Z,. It will be shown that P[Z < +oc] = 0 or 1. Necessary and sufficient

n—oc

conditions will be given for Z to be finite almost surely, or to be almost surely constant.

This work is a preliminary step in the study of the stability of the sequence {Z,}.

1. Introduction

Throughout this paper, X1, X3, -+, will be a
sequence of independent, identically-distributed
(ii.d.) random variables (r.v.) with common
distribution function (d.f.) F(z). Define

zo = sup{z : F(z) < 1}; (1.1)

note that zg is well-defined, and zo < +00.
During the past half-century, a good deal of

attention has been paid to the limiting behaviour

of the sequence of maxima {My,n > 1}, where

M, = max{Xy,- -, Xn}. (1.2)

The sequence {M,,} is said to be relatively stable
(respectively, almost surely (a.s.) stable) if a real
sequence {b,} exists such that

Mo

in probability (resp., a.s.) as n — oo. Neces-
sary and sufficient conditions for relative stabil-
ity and for a.s. stability are well-known; see Gne-
denko (Ref. [1]), Barndorff-Nielsen (Ref. [2]),
and Resnick and Tomkins (Ref. [3]).
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It is natural to wonder if analogous results ex-
ist for the case where the X, ’s are independent,
but not necessarily identically distributed. As
a first step in achieving such a generalization of
the i.i.d. results, it seems reasonable to focus on

the maximum sequence {Z,,n > 1}, where

Zn, = max{a; X1, -, 0, Xn} (1.3)

for some positive real sequence {an,n > 1}. Ob-
viously, M, and Z, are one and the same if
a, = 1 for all n.

in n, it makes sense to define

Since Z, is non-decreasing

Z = lim Z,. (1.4)
N0

The limiting behaviour of M, is straightfor-
ward; it is easy to see that

lim M, = zo a.s.
n—+ro0

(1.5)

In other words, the a.s. limit of the Mp,-sequence
is the right-hand end-point of the support of
F(z); thus the stability problem for {My,} is triv-

ial and of little interest in the case where zg is



finite. But, not surprisingly, the behaviour of Z,,
is somewhat more complex.

For example, if the X,,-sequence is uniformly-
distributed on (0,1), and if a, = n,n > 1, then
it follows from the Borel Zero-One Law that, for
every M > 0,

P[nX, > M infinitely often (i.0.)] = 1,

and hence it follows that Z = 400 a.s. in this
case, even though zgy is finite (zg = 1). On
the other hand, if each X, is exponentially dis-
tributed with mean one and a, = 1/log (n +1),
then

Pla, X, >2i0]=0

by the Borel-Cantelli Lemma, from which it is
clear that Z is a.s. finite in this case, even though
Tg = +0.

The goal of this paper is to determine com-
pletely the properties of Z. It will be shown
that P[|Z] < +oc] = 0 or 1, whatever the value
of zo may be. Section 2 will deal with the case
where z¢ = +oc¢; a criterion for Z to be a.s.
finite in this case will be given, and it will be
shown and that Z cannot be a.s. constant in
this case. Section 3 will present necessary and
sufficient conditions for Z to be a.s. finite, and
for Z to be a.s. constant, in the case where z; is
finite. The paper will conclude with some results
and remarks on stability questions in Section 4.
2. Properties of Z when 2o = +o¢

Throughout this section, it will be assumed

that zo = +oo; that is, F(z) < 1 for all real z.
Some fundamental properties of Z will now be
presented.
Theorem 2.1. Let X;,X5, - be iid. r.v.
with d.f. F(z) such that F(z) < 1 for all z. Let
{a~} be a positive real sequence, and define Z
by (1.4). Then

(1) Z > v a.s. for some real 7 if
S {1-Flyas)} = 4o0;  (2)
n=1

(ii) Z = 400 a.s. if (2.1) holds for every real
Y5
(i) if
oo
S {1-Flrash)} < oo (2.2)
n=1
for some v, then Z is a.s. finite, Z is non-

degenerate and P[Z < 7] > 0; and

(iv) If Z is a.s. finite then a, — 0 as n — oc.

Proof. If (2.1) holds for some %, then
Pla,X, > v i.0.] = 1 by the Borel Zero-One
Law. It follows that
P[Z > ~v]= P[Z, > ~vi0]
> PlanXn >7vio0]=1;
i.e., Z > v as., establishing (i). Part (ii) follows

easily from (i).

Now suppose that (2.2) holds for some y. Re-
calling that, for0 < ¢, < 1,n 2> 1, ﬁ ¢, con-
verges (to a positive number) if andno=nlly if (iff)
i (1=¢p) < 0, it follows that ﬁ F(ya;) >

n=1 n=1

0, and Pla,X, > 7 i.0.] = 0 by the Borel-
Cantelli Lemma. Hence, it makes sense to define
the r.v. N = N, as follows:

max{n : a, X, > 7}
N, = ifap,X, >~ for somen . (2.3)
0ifa, X, <vyforalln>1

Consequently,
P[Z <4]=P[N =(]
= Pla, X, <7 foralln>1]

ﬁ F(ya;') > 0.

n=1
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On the other hand,

P[Z > 4] =P[N >1] > Pla1 X1 > 7]
=1- F('yal—l) >0,

so Z is not degenerate. Moreover, Z = Z; on
the event [N = k],k > 1,and Z < 7y on [N = 0},
so Z is a.s. finite. This proves (iii).

Finally, if Z is a.s. finite, it follows from (ii)
that (2.2) holds for some real 7. But then, of ne-
cessity, F(ya;') — 1 asn — oo. Since zg = +00
by hypothesis, it follows that a, — 0, proving
part (iv). O
Remarks. 1.
of Theorem 2.1 that P[Z = +oc] is zero or
one. This is no surprise, since [Z = 4] =

It is an easy consequence

[Ji_,ngomax(aNXN,---,aan) = +o0] for every
N > 1, so that [Z = +4oo] is a tail event
and, hence, has probability zero or one by Kol-
mogorov’s Zero-One Law.

2. It is evident from Theorem 2.1 that Z is
a.s. finite iff (2.2) holds for some v > 0.

3. The converse to part (iv) is not generally
true. For instance, if F(z) =1—e7%,2 > 0, and
a, = (loglog(n +2))~! for n > 1, then a, — 0

and zo = +oc. But the series in (2.2) equals
o0

Z(log n)~", which diverges for all v. Hence

n=3

Z = +00 a.s. by Theorem 2.1 (ii).

4. In the special case where {a, } is a mono-
tone sequence, parts (i) and (ii) of Theorem 2.1
can be derived with the aid of a theorem of Mucci
(Ref. [4], or see Theorem 4.4.1 of Galambos’s
book (Ref. [3])).
Corollary 2.2. Let an,X,, Z and F be as
given in Theorem 2.1. Define v¢ to be the infi-
mum of all v, if any, such that (2.2) holds and let
Yo = 400 if (2.1) holds for all . Then Z > 7o
a.s. and P[Z < 7o +¢] > 0 for every ¢ > 0.
Proof. If v = +oc0 then Z = 400 = 7y by
Theorem 2.1 (ii); the second part is trivial in

this case. If 79 < oo then Z > 49 — ¢ a.s. for
every € > 0 by Theorem 2.1 (i); hence Z > 7o a.s.
An application of part (iii) of the same theorem
concludes the proof. O

Remark. 5. If 9 < oo, it follows from Corol-
lary 2.2 and the proof of Theorem 2.1 (iii) that,
for any € > 0,

W< Z<(v+e)(N=0)+ZyI(N >1),

where N = N, 4. is defined by (2.3).
3. Properties of Z when z4 is finite
Throughout this section, it will be assumed
that zg < +o0o; that is, that X; is a.s. bounded
above. A simple criterion for Z to be a bona
fide r.v. when zo > 0 will now be presented
in Theorem 3.1, which also provides a necessary
and sufficient condition for Z to be a.s. constant.
Theorem 3.1. Let X;,X5,--- be a sequence
of iid. r.v. with df. F, and let {a,} be a
positive sequence. Define zo and Z by (1.1) and
(1.4) respectively, and assume 0 < zp < +o0.
Then

(i) Z = +oc as. iff imsup a, = +oc;
n—o0

(i) Z < 400 a.s. iff imsup a, < oo; in which
n—+00
case Z < zgsupa,; and
n>1

(iii) Z is as. constant iff sup a, < oo

n>1
and either X is degenerate or limsupa, =
. n—oo
sup a,. In either case, Z = zgsup ay.
n>1 n>1

Proof.  Since z¢o > 0 by hypothesis, P[X; >
0] > 0. Therefore, P[X,, > 0 io] =1
by the Borel Zero-One Law, for every subse-
quence {ny}. Put another way, this says that
P[X,, = X} io0]=1, where X* = max(X,0),
as usual.

Suppose limsupa, = +oo. Then, for any
=00

given M > 0, a subsequence {n;} exists such
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that a,, > M for k£ > 1. Hence

Z> hm m<a,kx(an¢X = hm max(aann')

-—'00 1 — 00 l
> lim Mmax(an,u-, Xr,)
k—o0
= Mzg a.s.,

in view of (1.5). Clearly, then, Z = +00 a.s. in
this case.
Now suppose hm sup an < oo and define 3 =

supa,. Then 3 < o0 and
n>1

Zn < 2§ = max(a:X]")

< zomax(ay,- -, a,) < Bzo ass.

for each n > 1. Therefore, Z < Bzg a.s. Thus,
(i) and (ii) are established.

Now, suppose Z = A a.s. for some constant
A. Then, from (ii), 8 < co and, as shown above,
A < Bzo. Moreover, A > 0 since P[Z > 0] >
P[X; > 0] > 0, in view of the assumption z¢ >
0. But if A < Bzg, then a,, > A/zo for some
m > 1. Hence, if v satisfies A < v < anz0,

P[Z >]> PlanXm >7) = 1- F(ya,;') > 0

< zo. This contradicts the
assumption that Z = X a.s., so A = Szo.

by (1.1), since va;;!

Now assume that X; is not degenerate and

limsupa, < supa,. Then b = supa, < §
n—oo n>1 n>N
for some N; clearly N > 2. Define Zn, =

Nrr<13.x (a;X;) for n > N. Since P[X, > 0i.0]

1,

Yy = hm INn = nhrgo Nné?.i{n(a X1

< b lim M7 < bzo < Bzo as.

where {M,} is defined by (1.2). But Z, =
max(Zn-1,ZNz) for n > N, so taking n — o
yields Z = max(Zn-1,Yn) a.s. But Yy < Bzo
and Z = fBzg, so Zn_1 = Z = [z a.s. Thus
ZN-1>0as., so

Brog = Zn-1 < BMn_1 < Bzo

in view of (1.1) and (1.2). Hence My_; = 2o
a.s. Consequently,

1=P[My_; =z0]=1-(P[X; < zo])V L.

It follows that P[X; < zo] = 0 and therefore, by
(1.1), P[Xy = zo] = 1; that is, X is degenerate,
a contradiction. Hence, either limsupa, = § or
X1 is degenerate if Z = A a.s. A

Finally, turn to the converse. Assume 3 < oc.
If X, is degenerate, then P[X; = zo] = 1. Then
Z, = zomax(ay,---,a,), so that Z = fBzo; i.e.,
Z is a.s. constant.

Now suppose sup a, = 8 forall N > 1. Then,
n>N

for every ¢ > 0, a sequence {n;} exists such that
an, > 8 —¢,k > 1. Note that Z, < BM, if
Zn, > 0. But P[X,, >0i0]=1,s0Z >0 and,
by (1.4) and (1.5),

— . . -+
Pro = iz BMy 2 22 Jimg mgx(an Xa)

> (B-¢) kli_}r{.lo Iflsagc Xt =(8-¢)z0as.
It follows that Z = fBzp a.s. O

It remains to consider the behaviour of the
Z,-sequence when zo < 0.
Theorem 3.2.  Let {a,} be a positive real
sequence, and let X7, X5, - beii.d. r.v. Define
zo and Z by (1.1) and (1.4) respectively, and
assume g < 0. Then —o00 < Z < 0 a.s. In fact,

(1) Z is not degenerate iff either (a) zo = 0 and

>q1-

F(—van)} < (3.1)

for some ¥ > 0; or (b) zo < 0 and
liminf a, > mf an.

n—o0

(i1) if neither (a) nor (b) holds, then

Z =z 711%1; an a.s. (3.2)
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Proof. The proof will be accomplished by con-
sidering three cases.
Case 1: zo = 0 and P[X; = 0] > 0. By the
Borel Zero-One Law, P[X, = 0i.0] = 1. But
Z. < 0 since zg = 0, so P[Z, = 0i0] =1
inasmuch as Z, = 0 if X, = 0 in this case. It
follows that Z = 0 a.s. and (3.2) holds.

For the remainder of the proof, it can now
be assumed that P[X; < 0] = 1, so that X =
—X;!isabona fide, positive r.v. for n > 1. De-

fine aX = a;! and Z; = max(a; X7, -+, a5 XR)-
It is easy to use (1.3) to check that
Zn=-1/2, (3.3)
and
Z=-1/Z"if{Z" < o0 as., (3.4)

where Z” = lim Z:.

Case 2. zon= 0,P[X; = 0] = 0. Note that X
is unbounded on the right since zo = 0, so that
{az} and {X} obey the conditions of Theorem
2.1. It is readily seen that (3.1) is equivalent to

o0

3" P[XT > aagt] < oo, (3.5)

n=1
where o = v~1. By Theorem 2.1 (iii), if (3.1)
holds, then Z* is a.s. positive, non-degenerate
and finite. In view of (3.4), Z is a.s. negative,
non-degenerate and finite.

If (3.1) does not hold for any 7, then the series
in (3.5) diverges for all a and, hence, 2" = 400
a.s. by Theorem 2.1 (ii). It follows from (3.3)
that Z = 0 a.s. in this case, and hence (3.2)
holds.

Case 3: 7o < 0. In this case, the a.s. least
upper bound on X is —z5", so Theorem 3.1 is
pertinent. Suppose

hnn_x’lor.}f an = i%fl . (3.6)
This is true if h,fniol.}f a, = 0, in which case

limsupa: = +oo so that Z* = +o0o0 as. by
n—00Q

Theorem 3.2 (i). Hence Z = 0 a.s. by (3.3), and

(3.2) clearly holds.
If liminfa, > O then limsupa; < oo, and
n—00 n—co
hence Z* — and, by (3.4), Z - is a.s. finite and
non-zero, in view of Theorem 3.1(ii). If (3.6)

also holds, then limsup @], = sup aj};, so that Z*
n>1

n—0C

is degenerate by Theorem 3.1 (iii). In fact, Z* =
—z5 sup @} a.s., so (3.2) holds, in view of (3.4).
It rerr:az.i:ls only to note that, by Theorem 3.1,
Z* is a.s. finite, non-zero and non-degenerate if
lim) infa, >0 and (3.6) is false; consequently Z
has the same properties, by (3.4). O
4. Connections with stability

The first result of this section links the limiting
behaviour of Z, and M,.
Theorem 4.1. Let X;,X,,- - be anii.d. se-
quence with d.f. F(z) with F(z) < 1 for all z.
Let {a,} be a non-increasing sequence such that
a, — 0. Define M, and Z as in (1.2) and (1.4)
respectively, and 7o as in Corollary 2.2. Then

lim sup an My, = A a.s. (4.1

n—0o0

for some real A iff
P[Z > A =1and

(4.2)
P[Z < A+¢€] > 0for everye >0

and for some A. Moreover, A = 7o in either case.
Proof. It is well-known that

P[M,, > b, i.0.] = P[X, > by i.0]

if {b,} is non-decreasing and b, — oo. By the
Borel Zero-One Law, then, (4.1) holds iff

S {1 Fra7h)) (4.3)
n=1

converges or diverges according as ¥ > A or v <
X. Hence A = 7o by definition of the latter, and
(4.2) holds with A = 4o by Corollary 2.2.
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Now assume (4.2) holds. Since P[Z < A+1] >
0,Z < +00 a.s. by Theorem 2.1. Therefore, the
series in (4.3) converges for some 7, so that 7o
is finite. It follows that (4.3) converges if v > 7o
and diverges if ¥ < 9. As noted above, this is

tantamount to limsup a, M, = 7o a.s. O
n—+0Q

By considering some special values for {a,},
a new necessary and sufficient condition for the
a.s. stability of {M,} arises.

Corollary 4.2. Let {X,},{M,} and F be as
in Theorem 4.1. Define,forn > 1, u, = F~}(1—
n~!) and Z' = nlLIEOmM{Xl/ul, o X St
where F~(z) = inf{y : F(y) > z}. Then {M,}
is a.s. stableiff P[Z' < 14¢] > 0 for every ¢ > 0.

Proof. By Theorem 1 of Resnick and Tomkins
(Ref. [3]), the a.s. stability of {M,} is equivalent
to imsup M,,/u, = 1 as. Since it is readily
app;r_e’rﬁ that g, < ppyy forn > 1and p, — oc,
taking a, = p7!,n > 1, in Theorem 4.1 reveals
that {M,} is a.s. stable iff P[Z' > 1] = 1 and
P[Z' < 1+¢] > 0 for every € > 0. But, by
definition of pn, 1 — F(yu,) > n "t foralln>1
andy < 1,s09% >1. If P[Z' < 1+4¢] >0 for
every € > 0 then, by Theorem 2.1 and Corollary
2.2, o is finite and Z’' > vp a.s. If 40 > 1 then
the contradiction P[Z' < 1+ ¢] = 0 arises for
€ <v—1. Hencey =1and P[Z' > 1] =1
when P[Z' < 1+ ¢] > 0 for every ¢ > 0. The
result is now apparent. O

An obvious open question relates to the stabil-
ity of the sequence {Z,}. Some work in this vein
has been done by Mucci (Ref. [4], or see The-
orems 4.4.1 and 4.4.2 of Ref. [5]). The author

plans to explore this topic in a future paper.
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Large Deviations For Order Statistics

Vinogradov, V.

Concordia University, Montreal, Quebec, Canada

The presence of two polar types of the formation of large deviations (rare events) is
reviewed from the point of view of the extreme value theory. Special consideration is given to
the study of the asymptotic behavior of maxima for typical representatives of both polar types:
normal samples and samples with regularly varying tails. The tail approximation/extreme value
approximation alternative is suggested for the case of the normal sample. The results are compared
with those obtained by P. Hall, R.L. Smith and J.P. Cohen. We also derive limit theorems on
large deviations for trimmed sums and pose a number of open problems.

Let {X,, n = 1} be ii.d. random variables with
common distribution function F(+); denote the
corresponding order statistics by X, (n) <...< X, (n),
and X, + ..+ X, by S, ; S, :=0. Set ab := min(a,b).

In this work, we study probabilities of large
deviations for order statistics and their sums, i.e., the
asymptotics of the probabilities such as

P{X, (n) >y}, P{X; (n) >y},

P{S, -X, (n) -...- X, (n) >y}, etc., where n, y and k
vary such that these probabilities tend to zero. Note
that our definition of large deviations (rare events)
provides a more general approach than the large
deviation principle, as well as the approach to large
deviations as some refinements of theorems on weak
convergence or laws of large numbers.

Let us first consider the case when the random
sample {X, , n > 1} has the standard normal
distribution. It is well known that in this case the
distribution of the properly centered and normalized
maximum X,(n) converges weakly to the Gumbel
(double exponential) distribution
A(x) :=exp{ -€* }:

Q)

P{X, (n) £ A, +B,x} = AX)

as n — o, where

A,:=(21og n)"*-1/2(log log n+log(4n)){21og n)"?,
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and B, := (2-log n)'"?. Note that (1) remains true if A,
and B, are replaced by a, and b, respectively, such that
b/B, > 1 and (a, - A, /B, = 0 as n — o (see, e.g.,
Ref. [1] Lemma 2.2.2). It was known since the works
Ref. [2] and Ref. [3] (cf. also Ref [4]) that the rate of
convergence in (1) is very slow and worst on the tails.
Let us now quote the rigorous result. It was obtained
in Ref. [5] that the exact bounds in (1) are as follows:

There exists a positive constant C such that for any
integer n > 2,

c sup | P{X, (n) < A’, +B’, - A(X) |

7 <
ogn

e R
(1)
< 3
- logn
where

B’, = (A’)"; A= (2-log n)"* - (log log n +
log(47)) {8-log n)*? - [(log log n + log(4n))y* -

4<log log n + log(4m)] - (842 log n)*? ).
The following representation for the distribution of
the maximum from the normal sample containing the

leading error term for (1°) can be derived from formula
(10) of Ref. [5] and Theorem 2 of Ref. [6]:



P{X,(n) <A’, + B’ x} - A(X)
@

2
x/2+x+1+o( 1 )

= catX .
Alx)-e 2-log n log n

as n — o uniformly in x € R".

Note that formula (10) of Ref. [5] is in fact an
auxiliary result of that work used for the derivation
of (1°), whereas slightly different centering and
normalizing sequences were chosen in Ref. [6]. Let
us also point out that Theorem 2 of Ref. [6] covers
a wide class of distributions (which contains the
normal distribution) known as class N.

In addition, in order to emphasize the fact that
the rate of convergence in (1) is very slow and worst
on the tails, we now quote the following remark
given on p. 492 of Ref. [7]: "... an approximation
by an extreme value distribution is of little use in
determining a critical point for the rejection of
outliers. What is needed is a non-uniform estimate
Q, (x) of P{X,(n) <x}. Ideally such an estimate
should be simple to calculate, and the relative error

1Q,(x)-P{X () <x}}/ (I-P{X,(n) <x})
should tend to zero as x and n tend to infinity.” In
this respect, the following result was derived in Ref.
[7] Theorem 3, which can be viewed as a non-
uniform estimate in (1) taking into account right-
hand large deviations.

Let a, > 0 be defined from the equation

2n-a, exp{-a,’} =1,

and let

z,(x) == 2u)" - n - x' - exp{-x’/2}.
Then for x > a,,

exp{-z,(x) [1-x*+3x™* + z,(x)/2(n-1)]}
(3)
< P{X\(n) < x} < exp{-z,() {1-x"1}.

Now, let us point out that Theorem 3 of Ref. [8]
(see also Remark on p. 1195 therein) implies that the
asymptotics of the probabilities of right-hand large
deviations for the centered and normalized maximum
from the normal sample is given by the tail of
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function A only in every narrow range of large
deviations, namely as
n — o and x = «, x = o((log n)'?)
(4) P{X,(n) > A, + B, x} ~ 1- A(x).
In addition, it is easily shown that (3) implies the
following more general result describing the exact
asymptotics of the probabilities of right-hand large
deviations in the full range:

P{X,(@) > a, + b, X}
)

expl-x2/2ak}

~(1-Ax) - =
1+x/a,

as n —> o, X = x(n) - o, where b, :=a,"', and a, is

the same as in (3); a~ (2log n )*? as n — .
Remark. It is obvious that in the range of deviations
x = o((log n)"?), the asymptotics of P{X,(n) > a,+ b,"
x} is completely determined by the first factor
(compare to (4)). On the other hand, for

x > Const - (log n)?, x = o(log n),

the asymptotics of P{X,(n) > a + b,- x} is completely
determined by the product

(1- A(x)) - exp{-x’/2a,},

whereas for x = Const - log n, all the three factors on
the right-hand side of (4’) should be taken into
account.

In this work, we develop an alternative method
(hereinafter referred to as the tail approximation),
which provides asymptotic expansions for the
probabilities of the right-hand large deviations along
with accurate estimates of remainders. The just
mentioned method is based on the following apparent
representation, which is equally applicable when the
distribution function F of i.i.d. random variables
{X,, n > 1} is arbitrary (We do not even require the
distribution function of properly centered and
normalized maximum X, (n) to belong to the domain of
attraction of anyone limiting distribution):

P{X,(n) >y}
)

n

=Y (1)K
k=1

- P34, ,

PEE TS /B 15 PR xik>yJ



12,.‘; (—1)*’1-(2) -Pixp vk .

It is obvious that (5) easily follows from the apparent
representation

pix,(m>yt=p(0ix > 5)
i=1

and the fact that the latter probability can be easily
rewritten by means of the well known formula for
the probability of a union of non-disjoint events.

In particular, (5) implies that
P{X,(n) >y}

(57
=n-(1 - F(y)) + O(@ - (I- FO)))
as n — o, y — o, such that n - (1- F(y)) - 0.

An application of Representation (5) to the
normal sample yields the following result:
Theorem 1. Let us assume that the i.i.d. sequence
{X,, n > 1} is the standard normal, and denote their
common Laplace distribution function by ®. Let a,
be defined as in (3), and b, := a,". Then for any
positive X,

P{X,(n) > a, + b, X}

(6)

-_-kz:'; (-1) k= ( Z) n-k

fo-x- expl-x2/2a2} 1

a2 (1+x/at)?

+

1+x/aZ

13-...(21-1)
atl-(1+x/aZ2)?

L+ (-1) 1 LR,

Proof of Theorem 1 is straightforward. It involves
an application of (5) with y = a+ b, x, an
expansion of 1-®(x) over powers of x as X = ©
(see, e.g., Ref. [9] (vol. I, Chapter 7, Section 7,
Problem 1) and the fact that

n-expl-(a,+b,x)2/2} _ o-x- expl-x?/2al} 0
(2%) Y2 (a,+ b, X) 1+x/a2 ’

Remarks. (i) Note that both alternating sums on the
right-hand side of (6) can be dropped at any term;
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the absolute value of the emerged error will be
bounded by the absolute value of the first omitted
term.

In particular, Theorem 1 implies that
P{X,(n) > a, + b, - X} =
()

expl-x2/2a3) | . _ 1

(1-A(x)) - = 5 3
1+x/az aZ-(1+x/ap)?

expl-x2/2af} )

+0 ( (1-A(x))?-
1+x/at

e e - SLC2a8)
aj-(1+x/af)s
asn —» o0, X —> 0.
(ii) Note that our representations (6) and (6°) are
similar to Theorem 3 of Ref. [7]. However, our results
seem to be more convenient for computations. In
addition, the proposed tail approximation method is
equally applicable to an arbitrary distribution function,
whereas the range of applications of Theorem 3 of Ref.
[7] is confined to the normal samples. In this respect,
let us quote the following remark from Ref. [10] (see
p- 329 therein): "Hall (1980) suggested
approximations to ®"(x) using some refined inequalities
for the normal tail function. These approximations are
much closer to ®'(x) than the penultimate
approximations. ~ Thus, if the X,’s are indeed
independent and identically normally distributed and if
n is known, then Hall (1980) gives better estimates of
the distribution of
Y, = max{X,} than approximations based on extreme
value theory. However, in practice we are often
uncertain of the normality, the independence and
perhaps the value of n. Since the three limit laws
apply to a large class of initial distributions, and often
in the dependent case (cf. Galambos (1978)), extreme
value theory approximations are more robust than the
alternatives suggested by Hall (1980)."

Now, in view of the above remark, let us suggest
the following approach, which in our opinion provides
a more appropriate approximation for distributions of



maxima. Hereinafter, we refer to this approach as
the tail approximation / extreme value
approximation alternative. Note that in this work,
we apply this approach only to the standard normal
sample, the classical test sample of the extreme value
theory. Of course, the range of applications of this
alternative is not confined by the normal sample.

It is natural to require the relative error (n,x) of
the tail approximation be less than & (given a priori).
Then by Bonferroni’s inequalities (cf., e.g., Ref. [9]
(Vol. I, Chapter IV, (5.7)) if
P, :=P{X, >a, +b, -x} < 1/nthen

n P-n’ P2 <P{X/(n)>a+bx}<nP,.
Hence,

n-P,

MR < yrE, 7y

(<e).

Obviously, the product n - P, is assumed to be small
enough. Making simple computations we get that for
fixed a and n, the above inequality is fulfilled (i.e.
the relative error of the approximation of P{X (n) >
a, +b,x} by the leftmost term on the right-hand side
of (6°) is less than o) if

2
_ 4 6 a+ly1/2

X, (n, iz 2B {(1e-2 o« -1},
x 2z X, (n,a) 3 {«( 3 log 2a) 1}

ap

On the other hand, it is obvious in view of (4)
and (4°) that the extreme value approximation is
accurate at least for the values of x being sufficiently
small compared to (log n)“% Moreover,
representation (6°) implies that

| Pix,(n)>a,+byx} - (1 - A(x)) |
1-AWx)
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1. expi-x2?/2al}

{1 - A{x)
2

+ 1} (<e).

1+x/a?

Making simple transformations and neglecting the
second order terms we get that the above inequalities
are fulfilled for

e > x¥(2a7) + x/(a,)).

Hence, we obtain the result that for fixed o and, n the
relative error of the extreme value approximation of
P{X,(n) > a, + b, - x} is less than ¢ if

x < X,(n, &) = (142 - a2+ &)"* 1.

It is not surprising that for any positive
(sufficiently small) ¢, and for any integer
n> N(e):=[(log(e+1)/e))* /8€] + 1,
there is an overlap between a lower bound X,(n, &) and
an upper bound X,(n, ¢). In other words, for
n > N(¢) we can always provide an approximation for
the distribution of the maximum from the normal
sample whose relative error is less than ( a given a
priori) &. Moreover, there exists a certain range of
deviations in which both the tail approximation and the
extreme value approximation give comparable results.

Let us summarize the above discussion in the
following algorithm: assume that we should find an
approximation of P{X,(n)>a,+b,x} for given n and x,
whose relative error would be less than &. Than we
can choose the tail approximation if
x > X,(n, ¢ or the extreme value approximation if x <
X,(n, ¢). This is possible at least for n > N(g).

Open Problems. (i) To extend the suggested
alternative to a wider class of distributions (for
example, class N introduced in Ref. {6]).

(i) To derive sharper estimates for ranges of
applications of both approximations. In particular, it
would be interesting to find the border function X (n,e)
such that for x < X (n¢) the extreme value
approximation should be chosen, whereas for

X > X (n,¢) the tail approximation should be chosen.
(iii) To derive the asymptotics of the left-hand large
deviations.

Now, let us proceed with the consideration of the
asymptotics of the distribution of the maximum X,(n)
from the sample of i.i.d. random variables whose
common distribution function F(+) has the right-hand
tail of power type:

Q)

1-F(x) =c,*x™ +o(x™™)

as x — o, where ¢, > 0 and o, > 0. Note that it was
proved in Ref. [11] Theorem 4 that under fulfilment of



(7), the properly normalized distribution function of
the maximum X,(n),

F,(x) = P{X,(m) < (¢, m) "/ *"x},

converges weakly as n — oo to the limiting
distribution ¥, () defined as ¥ (x) = exp{-x *} if
x > 0, and

Y, = 0 otherwise. It is also well known (cf., e.g.,
Ref. [12]) that under fulfilment of (7) and certain
supplementary conditions the following results on the
asymptotic behavior of the probabilities of large
deviations are valid:

P(S,>y} ~n c, y® ~ P{X,@) > y}

¥

~ 1%, ((y/ (V™) )

as n — oo where > Y(n) is a positive monotone
sequence that depends on certain parameters and
increases to infinity as n — o. Note that the
rightmost relationship in (8) remains true even as n
— oo,

y/n"*— oo, and just under fulfilment of (7), without
any supplementary restriction (cf., e.g., Section 2.3
of Ref. [13]).

Thus, it is clear in view of (8) and the above
mentioned result on weak convergence to ‘¥, () that
the tail approximation and the extreme value
approximation actually coincide in this case, and we
do not have any alternative but the extreme value
approximation.

Now, let us proceed with the derivation of
refinements to (8). It seems reasonable to assume,
that if more precise information on the tail behavior
of function F is available (compare to (7)), then
more precise representations for P{S, > y} and
P{X,(n) > y} as n — o than those, valid up to
equivalence can be derived. Various expansions for
P{S, > y} refining the first of relationships (8) have
been constructed in a number of works by the author
(cf., e.g., Ref. [14,15]) in the case, where the right
hand tail of F admits the following expansion over
negative powers of x:

1- F(x)
®

t
=Y ¢ X+ o(x7T)
=

as X — oo, where c_, >0, and
0< o, <o, <..<q,<r

On the other hand, the following result, Theorem
2, provides the asymptotic expansions for the
distribution of X, (n) refining both the above mentioned
result on weak convergence of F, towards @, obtained
in Ref. [11] and the rightmost relationship in (8) in the
case in which condition (9) is valid. The remainder
term of the expansion of this theorem may be viewed
as the unremovable error generated by the lack of the
perfect information on the tail behavior of F.
Theorem 2 (cf. Ref. [16] Theorem 1). Let Condition
(9) be fulfilled. Then ‘
F,(x) = P{X,(n) < (c,,- n) "+ x}

= (1-p7t x™)=2

[/ V[ (2=} / (=3==)]

(1 + CL=DF
F=1 m!
[x/a,] ¢ )
(n . % . (E ::/a B n"z/“x. x'“:)s
1

s=1 i=2 C.‘i

[(z/m~-3g-=;) /%,1V0
. < (- l)k‘( S) - pke xR ym o)
k=0 k

- (1 +8(x,n) -p ‘TE e i/

where 3(x,n)—>0 as n—>oo uniformly on the rays [C,
+00);

(‘05)==1,and ( -ks):=(—1)k-s~(s+1) v (s+k-1) /k!



for integer k > 1 (here C > 0 being fixed).
Remarks. (i) Note that a uniform version of our
Theorem 2 for a special case £ =2, a, <2 * o,

r = a, was obtained in Ref. [17] (see Example 1 in
Section 6 therein).

(ii) Note that one can easily obtain the asymptotic
expansions for distributions of the maximum X, (n) in
the case, where

€
1-Plx) = Y c. (a-x)™+ ol(a-x)7)

=1

asx —>a wherea<ow,c,;>0,and 0 <, <a, <
... <, < r by reformulating the result of Theorem
2. Note that distributions of such type often arise in
various statistical estimation problems (cf., e.g., Ref.
[18] for details).

Now, let us emphasize that the comparison of the
above results related to maxima from normal samples
with those related to maxima from samples of
distributions having right-hand tails of the power
type reveals the presence of two polar types of the
limiting behavior of the probabilities of large
deviations. Note that the presence of these two polar
types has been first established within the framework
of the classical scheme of summation of independent
identically distributed random variables. Thereupon,
it also became apparent during the study of the
limiting behavior of the probabilities of large
deviations of certain families of stochastic processes
(cf.,, e.g., Ref. [19] Introduction). Following Ref.
[19], we regard the first type of the limiting
behavior of the probabilities of large deviations as
one, being associated with the case of fulfilment of
Cramér’s condition of the finiteness of the
exponential moment:

E{zX,} <o for any z € R'. In this case, the
probability of a large deviation is generated mainly
by approximately equal individual summands X;. In
contrast to that, the second polar type is
characterized with the case in which the main part of
the probability of a large deviation is generated by
one large summand comparable with the whole sum
S,. The typical example is the case of power tails
with index o, <2 (cf. condition (7) and relationships
(8) above). Let us point out that only the polar types
of the limiting behavior of the probabilities of large
deviations do not cover all possible cases. Thus, few
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subtle results intermediate between the polar types are
also known (see, e.g., Ref. [20-22] ). The latter two
papers contain a number of subtle results on the exact
asymptotics of (conditional and unconditional)
probablilites of large deviations for trimmed sums
under fulfilment of condition (7) and its left-hand
analog, obtained by transferring the problem to the
cadlag space D[0,1]. Those results on the asymptotic
behavior of the probabilities of large deviations of
trimmed sums can be interesting from the point of
view of possible applications. On the other hand, they
also provide a better understanding of the nature of
large deviations. To explain this, we introduce the
random step-function

S,y ® =8,/ yift € [0,1].

We consider the realizations of S, (9 in D[0,1]
equipped with the uniform metric p. The question
arises is what are the typical paths of S, like if an
event of small probability (a large deviation) has
occurred. It is well known that if the random step-
function (r.s.f) S,, is constructed starting from
random variables with finite exponential moments, then
a large deviation is mainly contributed by close-to-
continuous (or even close-to-smooth) paths (cf. Ref.
[19] Introduction) - the result of the first polar type.
On the other hand, under fulfilment of condition (7)
and its left-hand analog with index

a, < 2, large deviations of S, occur mainly via
almost piecewise constant paths, which perform one or
several big jumps - the result of the second polar type.
For the case of fulfilment of condition (7) and its left-
hand analog with index a, > 2 (note that in this case
the weak convergence of S .. () to the Wiener
process w(+) holds) the paths of both types can give
comparable contributions to the probability of a large
deviation - the result which is intermediate between the
both polar types). Let us emphasize that this is
possible for the case o, > 2 and in a very narrow range
of large deviations only. Outside this range of
deviations, if y > n'?", events of small probability
occur mainly due to the almost piecewise constant
paths (here x > 0 being any real). Moreover, for
several sets of D[0,1] large deviations occur via the
paths which perform one or several big jumps and
close-to-continuous  functions between them.
Surprisingly, all the discovered sets with such
properties are related to trimmed sums.

Now, let us state the following theorem (refining
Theorem 2 of Ref. [21] for a special case), which
contains the asymptotic expansion for the probabilities
of the right-hand large deviations of



S .- X,(n):

Theorem 3. Let condition (9) and the left-hand
analog of condition (7) be fulfilled with

a, € (0,1) U (1,2).

Let EX, = 0 if o, € (1,2). Then

P{S, - X\(n) >y}

- n) . . ]
= C, Cy' Y
( 2 1sJ§;s!: 1 1

@ +a;<3e, Ar

+0(n% y3%) + o(n* y™)

asn — o, y/n’ — .

Proof of Theorem 3 is straightforward and purely
probabilistic. It follows along the same lines as that
of Ref. [21] Theorem 2 and Ref. [22], Theorem 1, in
which the results on the asymptotic behavior (up to
equivalence) of the probabilities of large deviations
of trimmed sums have been obtained. Applying
slight modifications of auxiliary results of those
works, we get that there exists k € (0, 1/2) such that

P{S,- X,(m) > v}

= ¥ Hs,- x>y X0y, |X41> vy}

1gi<jsn

+ 0(n3 y‘3¢1)

asn— o, y/n’ — .

On the other hand, it is not difficult to show that
the sum over i and j on the right-hand side of this
representation is equal to

(1-2%)y
n\ . -
( 2) plx, AXp y-z} dFs _(2)
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(10)

+ 0(n3 y‘3'1) .

It is obvious, in view of (9), that the right-hand tail of
the distribution of X, A X , has the following
asymptotics as v — oo:

P{Xn-l A Xn > V}

an

= . . B

) 1s 'E's! C“ ’
isjse:

a;+a;<3a Ar

C'u’ *

v

+ 0(v9) + o(vY).

Splitting the integral in (10) into three parts by analogy
to the proof of Theorem 1 of Ref. [23] (see N -(Q11)
therein) and replacing P{X,, A X, > y-z} by the sum
over i and j on the right-hand side of (11) imply the
result of Theorem 3. O

Remark. Note that from our perspective, the study of
the asymptotic behavior of trimmed sums in the case
in which the distributions of maxima belong to the
domain of attraction of the Gumbel distribution is not
of the same interest. Indeed, it is essentially similar to
the study of the asymptotic behavior of S, (cf., e.g.,
Ref. [24] for the results on weak convergence, and also
the discussion below Theorem 2 of the present work
given from the point of view of the presence of the
two polar types of the limiting behavior of probabilities
of large deviations).

Open Problems. (i) It seems possible to construct
more accurate asymptotic expansions for

P{S, - X,(n) > y} compare to those of Theorem 3.
(ii) To extend Theorem 3 to the case when an
arbitrary fixed number of upper order statistics are
deleted from S,.

(iii) To extend Theorem 3 to the case of power tails
(cf. condition (7)) with index a, > 2.
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Extremes For Independent Nonstationary
Sequences

Weissman, 1.
Technion-Israel Institute of Technology, Haifa, Israel

Extreme value theory for nonstationary sequences of independent random variables
is discussed. We present limit distributions for extremes, point processes associated with
extremes, extremal processes, record values and record times. The results shown are those
which, we think, are useful for practitioners and are not found in textbooks. The last two

sections include some new results.

1 Introduction

The literature of extreme value theory and its ap-
plications is huge and continues to grow. Articles
on the subject appear frequently in journals of al-
most all sciences. A great deal of the literature is
devoted to sequences of independent, identically
distributed (iid) random variables (rv’s). The in-
terested practitioner can find the necessary mate-
rial in texts such as Refs. [1-5].

A common generalization of the iid sequence is
the stationary sequence. Reference (6] provides an
extensive coverage of extreme value theory for sta-
tionary sequences. Another generalization is the
independent nonstationary sequences. Except for
two sections in Ref. [2], this case is not discussed
in texts. Dependent nonstationary sequences are
discussed in this volume in Ref. [7]. The purpose
of the present paper is to bring to the attention
of practitioners of all sciences the kinds of results
available in the literature. The last two sections
contain some new results.
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2 Limiting Distributions for

Extremes

Let {X;} be a sequence of independent rv’s, where
F; is the distribution function (df) of X;, and let

M, = k-th largest of {Xy,X2,...,Xa} -
The df of M, = M, is given by

P{M, <z} =]] Fiz)= Halz) . (2.1)
=1
What are the possible limits, as n — o0, of Hn?
The answer is trivial, since every df G can appear
as a limit of (2.1) (just take F; = G?™"). In order to
avoid trivialities, we normalize M,, with constants
an, > 0 and b, such that as n —

P{M, <apz+b,}= (2.2)

= H Fi(apz + by)

=1

= Hy(anz + by) — G(z)

at all continuity points of G (assumed to be non-
degenerate) and such that

lim min Fi(a.z+bn)=1 (z>z1). (2.3)

n—oo 1<i<n



Here z; = z1(G) = sup{z : G(z) = 0}. Condi-
tion (2.3) is called the uniform right-negligibility
(URN) condition. Under URN, no finite set of X;
can play a predominant role in determining the
maximum M,, as n — oo.

For a df G let A(z) = Ag(z) = —log G(z). De-
fine the following classes of df’s:

M?° = {G : X(z) is convex}
Mt = {G:z1 > —oco and A(zy + €%) is convex}
M~ = {G:zp < 00 and A(zgr — e”7) is convex}.

Here zp = zp(G) = inf{z : G(z) = 1}. The char-
acterization of the possible limit laws of M, is
given by the following theorem.

Theorem 2.1 (Refs. [8,9]) A df G can be a limit
in (2.2) under (2.3) if and only if it belongs to

M=MUMYUM™ (= M°UM™).

Note that if A(z +€7) is convex sois A(z) (—o0 <
T < 00), thus M+ C M°. The classical extreme
value distributions (EVD) A(z) = exp{—e~ %},
®,(z) = exp{—z7*} (¢ > 0) and ¥.(z) =
exp{—|z|*} (¢ < 0) belong respectively to
M Mt and M~. Thedf F(z) =2z (a>0,0<
z < 1) belongs to each one of the three subclasses.
The normal distribution is not in M. So, in situa-
tions where the iid assumption is not justified, the
practitioner might fit a df for the extremes from
a much larger class than the EVD.

Note that if G € M, then G is strictly increas-
ing, continuous and differentiable inside (zr, zRr).
The right-end zr can be a point of discontinuity

only if G € M™.

Note that under (2.3), Hp(@n412 + bp41) and
H,11(an41z + byyq) have the same limit (as n —
00), thus the Convergence of Types Theorem (Ref.
[10], p. 253) implies

An41 -1 bn+1 - bn =0

n— 00) .
. = (n — o)

(2.4)

If A(z) is convex, then G(z)/G(z+ A)is a df for
every A > 0. Thus, for every increasing sequence
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{b,} with b, = 0,b, — oo which satisfied (2.4),
the df’s Fi(z) = G(z — b;)/G(z — bi_1) satisfy
(2.2) and (2.3) (with a, = 1). If G € M, then
G(zp + z)/G(zL + az) is a df for a > 1 and thus
for every increasing sequence {a,} (an > 0, a, —
oo) which satisfies (2.4), the df’s Fi(z) = G(zr +
z/a;)/G(zL+z/ai—1) satisfy (2.2) and (2.3) (with
b, = —anzr). Finally, if G € M™, then G(zgr +
z)/G(zr + az) is a df for 0 < & < 1 and thus for
every decreasing sequence {a,} (an > 0, a, —
0), which satisfies (2.4), the df’s F;(z) = G(zr +
z/a;)/G(zr+z/ai—1) satisfy (2.2) and (2.3) (with
b, = —anzR).

Let X,; = (X; — b,)/an and let J, be the point
process of the points {X,; : i = 1,...,n}; that
is Jn(z,00) = 37y I(Xni > z) is the number of

-exceedances in the sample over the level e,z +

bn. Since P{I(Xp; > z) = 1} = 1 - Fi(anz +
b,) = F,i(z), under the URN condition, (2.2) is
equivalent to

ZFn;(z) — —logG(z) = Mz) (n— ).

(2.5)
Let mp; = (Myn; — bp)/ax; then the points {my; :
¢ = 1,...,n} are the points of J, in descending
order. We have the following Poisson convergence.

Theorem 2.2 (Ref. [11]) Under (2.2) and (2.3),
there erists a nonhomogeneous Poisson process
J on (z1,zR) whose mean measure at (z,00) is
A(z). Moreover, if my > my > --- are the points
of J in descending order, then for each k

D
(mn17"-,mnk)—’(ml""1mk) (n—+oo).

(2.6)

Notice that {A(m;)} are the points of a standard
homogeneous Poisson process (SHPP) on (0, c0);
thus a simple exercise shows that the joint density
of (my,...,my) is

k
¥(z1,-..,2k) = G(zk) H(—A'(z;))

=1

(T1 2222 -+ > 2k), (2.7)

where A(z) is the derivative of A(z). The
marginal df of my is given by



Jim P{mu, <z} = (2.8)

k-1
P{my <z} =G(z))_ Mi(z)/4!

=0

= /oo e *uFldu/(k - 1)!.
M=)

The results (2.4)—(2.8) are the same as in the iid
case, except that G belongs to M, a much larger
class than the classical EVD.

Suppose a df G is a candidate for the limiting df
of M, then for each fixed k and large n we should
have

{M(Mpi —br)/an) 1 i=1,...,k}

R{Ti:i=1,....k}
where {T;} are the points of an SHPP.

Suppose 7 is large. Fix a k € n; thus if G is
the right df then

{Mm':iz 1,...,k}
B {ap A" M) + b ii=1,....k} .

A graphical method to verify that G is indeed
the right df is to plot M,; vs. A=}(7) (we replace
T: by its expectation ET; = i) for ¢ = 1,...,k.
If the points are scattered around a straight line,
then we have statistical evidence in favor of this G.
Moreover, the slope and intercept are estimates
of a, and b,, respectively. Another possible ap-
proach is mazimum likelihood. Suppose one wants
to fit Gy € M as the limiting df for M, , where 8 is
a parameter to be estimated. Then the likelihood
based on My, ..., M, is approximately

L(07 Qn, bn) = ar—;kGe((Mnk

k
—bn)/ax) H("’\Ia((Min -

=1

bn)/ax)) -

The triple (6, &y, b,) which maximizes L will be
used as our estimates. This approach is similar to
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Ref. [12] or Ref. [13], except that Gy is not limited
to the EVD class.

For the iid case, let £;(p) and &,(p) be the p-
quantiles of X; and My, respectively. Then for all
0<p<1

&n(p) = &(p'/™) = £2(1 + (log p)/n) -
The classical «xtreme value theory implies
(£x(p) = bn)/an — £(p) = G™(p) (n— 0).

(2.10)

In the general case, where X; ~ Fj, (2.9) is not
necessarily true but (2.10) still holds.

(2.9)

3 Functional Limit Theorems

Suppose one is interested not just in the maximum
M,, of the sample, but also in its evolution along
time. The process {Mp,y :t > 0} (Mp = X;) is a
pure-jump Markov process, whose distinct values
consist of the set of upper records of the sequence
{Xi}; My, jumps at t if and only if Xy, is an
upper record. Let mn1(t) = (Mng — ba)/an, then
we have
[nt]

P{m,(t) <z} = H Fi(anz +by) = 3.1)
=1

a,z + (bn — bpnp)
= H[nz] (a[nt} . ( [nt) +b[nt]) .

Gint)

Suppose H,(a,z+b,) — G(z) (G being nonde-
generate). Then (3.1) will have a nondegenerate
limit if and only if

bn -b n
“n - Qg e — Bt
4{nt) [nt)
for some constants a; > 0 and S:;. Moreover, in
this case limp—oo P{mn1(t) < z} = G(ayz 4+ B¢) =
Gi(z). In fact, we have the following result.

(n—o0) (32)

Theorem 3.1 Suppose (2.2) and (2.3) hold.
Then

nlin;o P{mn1(t) < z} = Gi(z)
= G(atz + ﬂg) (t > 0)

if and only if (3.2) holds for all t > 0. Moreover,
if (ay, Bt) is not identically (1,0), (3.3) implies the
URN condition (2.3).

(3.3)



Note that in the iid case F*(a,z + b,) — G(z)
implies both the URN condition F(apz +b,) — 1
and Fl™(a,z + b,) — G¥(z) for all t > 0 (i.e.
(3.3)). Reference [14] shows that ay, 8; must have
the form

ar=1t ; Bi=c(1-1t")/p (3.4)
for some constants p and ¢ (interpret (1 —t°)/p as
—log tif p = 0). The convergence of the marginals
of my;(-) implies a functional limit theorem.

Theorem 3.2 (Ref. [15]) Under (3.3), there ez-
ists a pure-jump Markov process m; = {m(t) :
t > 0} such that forall0 =ty < t; < --- <t} and
1 STy < - STk

P{mnl(t;) <z;:ii=1,...,k} - P{my(t;) < z;:

i=1,...,k}

k
= [[{Gu(z))/Gui(z)} (Go(z)=1). (3.5)

=1

Theorem 3.2 claims that all the finite dimen-
sional laws (fdl) of m,; converge to those of m;
(write mpy i my). Note that myy(-) is right con-
tinuous and we can always choose a right contin-
uous version for m;(-). Therefore, both m,; and
m; are elements of the Skorohod space D(0,c0)
with the Ji-topology. Reference {16] proves full
weak convergence in D(0, o0).

The process m; is called an eztremal processand
its transition probabilities for ¢, s > 0 are given by

P{m(t +5) < y| mi(t) = } =

Giys(y)
e SAL4 y>z
G(y)
0 y<zx.
For joint convergence of mni(t) = (M, —

bn)/a, (¢ > 1), it is useful to employ the point
process K, of the points {(i/n, X,;)}. Let K be
a Poisson point process on IRy x IR, whose mean
measure at (0,t] X (z,00) is Ay(z) = —log Gy(z).
If {(T},Y;)} are the points of K, let my(t) be the
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kth largest Y; among points with T; < t. Then
obviously we have

P{ma(t) < z} =
= P{K((0,t] x (z,00)) < k— 1}

k-1 .
= Gifz) Y. A(@)/i!

=0
The main result of this section is the following:

Theorem 3.3 (Refs. [16, 17]) Under (3.8), the
point process K, converges to the nonhomoge-
neous Poisson process K. Moreover, for each k,
asn — oo

(mnl,...,mnk)—q(ml,...,mk) in Dk(O,oo).

4 Upper Records

Given a sequence of random variables {X; : ¢ >
1}, Xj; is an (upper) record if X; > M;_;; when
all F; are continuous, X; is a record if X; = M;.
The indices {L(j) : 7 > 1} (L(1) = 1), where the
Markov process {Mjy : £ > 1} jumps are called
record times and the values {My;) : j > 1} =
{XLr@) : 7 2 1} are the record values. Let N, be
the number of records among the first n observa-
tions.

Record values and record times for iid sequences
and their relation to Poisson and the extremal pro-
cess are treated extensively in Ref. [3]. A lovely
review of this subject is provided by Ref. [18].
Records of independent nonstationary sequences
are treated in Refs. [19-25]. Reference [21] is mo-
tivated by the unpredicted high sea levels in The
Netherlands that caused the collapse of the sea
dikes and the loss of 2000 human lives; all the
other authors are motivated by sport-records. The
models treated can be presented as follows. The
sequence of independent rv’s {X; : j > 1} is such
that '

Xj-‘-ﬁZj-{-Cdj (j=1,2,...), (4.1)

where ¢ is a constant, {d;} is a monotone se-
quence, d; € IR, and {Z;} are iid with a common



df F. Here the df of X; is Fj(z) = F(z — cd;),
i.e. all the Fj are of the same type. Climatologists
who believe in global warming can use these mod-
els for their data. For a linear-growth model we
have the following useful result.

Theorem 4.1 (Ref. [19]) Suppose EZ} <
0, ¢ >0 andd; = j.

(a) There ezists p € [0,1] such that as n —
o0 Nn/n — p a.s. and in Ly and L(n)/n —
p~! as.

(b) If F is continuous, E(X{)? < o and 0 <
p<1thenasn — o©

Va(n™ Ny — p) 2 N(0,0%) ;

Va(n tL(n) - p 1) B N(0,p30?)

for some a? = o%(p).

The record rate p is obtained from

oo k-1

p= lim p= lim /.wI_IlF(”C")dF(””)’
(4.2)

where px = P{Ax} = P{Xy is a record}. Note

that EN, = 3.7 p;. Ballerini and Resnick show

that Ax and Axym tend to be independent for

k,m large. When F(z) = A((z — b)/a) (a > 0),

the {A;} are mutually independent, p; = 6;/5j,

where 6; = exp(cj/a) and 5; = I_; 8 (Smith
and Miller (1984)) and
p=1l—e"c". (4.3)

Let A, = L(n + 1) — L(n) be the inter-record
times.

Theorem 4.2 (Ref. [20]) For F(z) = A((z -
b)/a), ¢ >0 and d; = j, as n — © we have
(Ansr: k2138 (Tk: k21},  (44)

where {Ti} are iid geometric withp=1-— e~c/a,
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The two results N,/n — p a.s. and (4.4) are
complementary; by Theorem 4.1 p; = P{A;} —
p. Thus, the independence of the A; implies that
for all k = k(n) — oo and j > 1, the num-
ber of records among {Xk+1,...,Xk+;} tends to
Bin(j,p). Hence, the inter-record times must con-
verge to independent geometric rv’s with param-
eter p.

Recall that when ¢ = 0 (i.e. when the X ; areiid)
then p; = 1/j, ENy, ~ logn, the Aj; are indepen-
dent and N,/logn — 1 a.s. Moreover, EA = 00
for all k> 1 and (log Ag)/k — 1 as. (k — o).

Ballerini and Resnick analyze the mile-race data
in Ref. [19]. The fastest time X; of every year
(1860-1982) is plotted vs. j (j = 1,...,123) and
indeed a linear trend is exhibited. There are 36
records altogether and the record-rates {N;/Jj :
j=1,2,...,123} do stabilize around p = 36/123
from about j = 50 to the end.

Let us assume now that F € D(A), ie.
F™(anz + b,) — A(z) for some constants an > c
and b,,. Define the extremal processes for {Z;} and
{X; = Zj + cbj} by

mZ(t) = (max{Z1,. .., Zjng} — bn)/an

and

mX(t) = (Mg — (1 + ¢)bn)/an .

Then clearly mZ 24 m, in D(0, c0), where m, is an
extremal process as in (3.5) with G(z) = A¥(z) =

A(z —logt). We have the following result for mX.

Theorem 4.3 (Ref. [21]) Forc >0, asn — o©
mX B m, in D(0,00)
where

{(me(t) 11> 0} 2 {mo (15t /(c +1)) = t>0}.
(4.5)

The properties of m can be read off easily from
the properties of m, via (4.5). In particular, for
large n and y, P{M, < y} = Frett/(4e)(y), It
means that M, behaves like a maximum of nctl
iid rv’s (whose common df is F/ (e+1)), This im-
plies an analogous result to Theorem 4.1(a).



Theorem 4.4 (Ref. [21]) For N,,, the number of
records among {X; = Z; + ¢b; : j = 1,...,n}
with ¢ > 0, we have

N,

m— and in L2 .

(4.6)

— 1 a.s.

Notice that when F = A, we have b, =
logn, a, = 1and X; = Z; + clogj, i.e. — we
have a logarithmic growth.

Another result of a similar nature is the follow-
ing.

Theorem 4.5 (Ref. [21]) Let {Z;} be iid with
F(z) = ®1(z) = e~/%(z > 0). Let N,, be the num-
ber of records among {X; = Z;+j: j=1,...,n}.
Then

Ny
2

N, - 1
log?n 6"

—)% , Var

log“n

Note, here we have a linear-growth model, but
since Z; > 0,EZ; = oo, Theorem 4.1 does not

apply.

5 Extreme Value Times

Let Rux = min{j < n: My = My}, 50 Ry =
L(N,) is the last record time in {1,...,n}, Rp;
is the time (or index) of the second largest obser-
vation, etc. Asymptotic results for R,; are taken
from Ref. [26]. Results for R.x (k > 1) are new.

Observe first that

P{Rnl <k, M, < I}
= P{M(k,n) < M <z}

z n k
= [ 11 eI B .

=0 i=k+1 =1

(5.1)

where M(k,n) = max{Xi41,...,Xn}. Thus, we
have the following asymptotic result.
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Theorem 5.1 (Ref. [26]) Under (3.3) we have
for0<t<1

nlLHgo P{Rnl <nat, mp < z} = (’5'2)
G
= —2dG
oo Gt(y) t(y)

[_; G(y)dlog Gi(y) = Hy(t, ).

Let Hy(t) = H1(t,0) be the limiting df of R,
then (3.3) is only sufficient for the existence of a
limiting distribution for R,; (take F; = F, where
F is not in any domain of attraction of an EVD,
but R, /n EA U(0,1) (uniform on [0, 1])).

Theorem 5.1 is generalized as follows.

Theorem 5.2 Under (3.3) we have fork > 1 and
0<Lt<1

nlingo P{R.x <nt, mpp < 2} = (5.3)
T G(Y) yk-1
— dG = Hi(t,
oo Gt(y) (y) t(y) k( 2})
and for0 < s, 1 <1
nango P{Rn; < nt, Rpz < ns} = (5.4)
= G(z) _
. G’(z)/\t(z)dG’,(x) = Q(1, ).

For the special case
Gy(z) = G*Y(z)

for some function ¢ we have the following results.

(5.5)

Theorem 5.3 Under (3.3) and (5.5) we have

(i) #(t) = t7 for some ¥ > 0 and G must be an
EVD.

(i) Hi(t) = Hi(t,00) = (1) (k> 1)

(1ii) For each k, Rnr and My are (asymptoti-
cally) independent.

(iv) For each k, Rni,...,R.. are (asymptoti-
cally) independent.

We have a 0-1 law.

Theorem 5.4 Under (3.3), if for some k (fized)

P .
Rpx/n = ci, where ¢ is a constant, then ¢ = ¢
andc=0 or 1.



6 Two Growth Models

Let {Z; : j > 1} beiid, Z; ~ A and let
X;=2Z;+4d; (d; € RR). Define §; = exp(d;) and
Sn, = 37 6;. Then Fj(z) = A(z — d;) = Ad%(z)
and P{M, < z} = A®*(z). Hence the right nor-
malization is a, = 1, b, = log S, and

P{mﬂ(t) < z} = P{M[nt] -b, < .’L'}

ASnd/Sn(z) (> 0).

Since Fj(z + bn) = A%/S»(z), URN holds when
§; =o(Sn) (1L5 < n).

(i) Logarithmic models. Suppose d; = clogj.
For URN we need ¢ > —1. If ¢ > —1, we have
b, = log(n°t'/(c + 1)) and P{m,(t) < z} —
Gi(z) = A*"(z) = A(z —(c+1)logt). Thus (3.2)
holds with (ay, Bt) = (1, (c+1)logt). By Theorem
5.3, Hi(t) = tt? (0 < t £ 1, k > 1). Moreover,
the extreme values and their times of occurrence
are (asymptotically) independent. The de Haan-
Verkade result Ny, ~ (¢ + 1)logn (a.s.) holds in
fact for ¢ > —1 and not just for ¢ > 0.

For ¢ = —1 we have b, = loglogn, (3.2) holds
with (as,B¢) = (1,0), which means that m(t) =
m(1) a.s. (t > 0) — the extremes occur very early.
Indeed, here, since G = G, Hi(t) = 1 (¢t > 0)
(i.e. Ruk/n £ 0) and N, ~ loglogn (a.s.). For
c< —1,wehave S, / § < ooand P{M, <z}=
AS»(z) — AS(z). URN does not hold, but we can
show that P{R, = k} — k¢/§ (k = 1,2,...),
i.e. the last record occurs at a finite time w.p.1.
Since N, < R,i, N, remains finite as n — 0.
This is not surprising since the sequence {Xj;} is
stochastically decreasing, so the first few observa-
tions determine the sample maximum.

(i) Polynomial models. Let d; = j*. When a =0
the {X;} areiid. When a < 0, é; — 1. Thus, the
{X;} are “almost” iid and they yield the same
asymptotic results as the iid sequence.

For a > 0 we have b, = logS, = n® + (1 —
@) logn and by, — bjng — oo. Hence, mn(t) — —o0
(a.s.) (0 < t < 1) but P{m,(1) < z} = A(z).
This means, Gy(z) = 1 and Hx(1) =0(0 < t < 1),
i.e. Rnr/n E 1 As long as 0 < a < 1, URN
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holds, p; = 6;/S; — 0, 1 p; ~ log Sp and Ny ~
log S, (a.s.), i.e. Ny = O(n®). Since P{Rn <
k} = Si/Sn, one can show that for 0 < a < 1

lim P{(n= Ru)an®™ 25} = ¢ (2> 0).

(6.1)
For o = 1 (the linear model), URN does not hold,
pi=06;/S; = e e-1)/(el=1) > p=1-€"! —
the case treated by Ballerini and Resnick. Here,
N, ~ np (a.s.) and the inter-record times are
(asymptotically) geometric (result (6.1) is actually
a generalization of this fact).

When o > 1,p; = §;/5; — 1 very fast, so not
only N, ~ n but except for finitely many, all X;
are records.
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Order Statistics and Proofs Of Combinatorial
Identities

Wenocur, R.S.
University of Pennsylvania, Philadelphia, PA

An urn model approach to exceedances of order statistics leads to new proofs of com-
binatorial identities, one of which is Gauss’s 2F; summation formula. The relationships
among Gauss’s o F) identity, inverse Pdlya distributions, and order statistics emerge as a
consequence. We discuss connections among combinatorial methods of proving hyperge-
ometric identities and our probabilistic approach, with emphasis on exceeding the upper
order statistics, in particular the mazimum, of a random sample.

1. INTRODUCTION

Proofs of combinatorial identities have a long
history. For a classic proof of Gauss’s 2 F; sum-
mation theorem see for example Slater (Ref. [1],
pp. 27-28).

Often a proof of an identity using order statis-
tics — in particular eztreme order statistics
— appears in the literature; see for example
Refs. [2, 3, 4]. The purposes of this paper are:
to present proofs of combinatorial identities us-
ing order statistics, with emphasis on Gauss’s
,F) summation theorem which generalizes the
result in Ref. [3]; to show relationships with
WZ-pairs which are explained in the following
paragraph; and to illustrate how classic results
can be proven by various methods which are the
consequences of posing mathematical questions
in different contexts.

Many combinatorial identities can now be ver-
ified by means of the Wilf-Zeilberger certifica-
tion theorems (Ref. [5]) which provide a method
for certifying couples of identities via WZ-pairs.
If two functions F(N,k) and G(N,k), defined
for integer k and nonnegative integer N, satisfy
the condition

ANF = AyG  (forintegers N > 0 and k),
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(F,G) is a WZ-pair. Under the condi-
tions that for each integer k, the limit
fx = limy _ o F(N,k) exists and is finite; for
each integer N > 0, limy , + G (N, k) = 0; and
limz o 00 N0 G(NV, —L) = 0, we have a couple
of identities

ZF(N, k) =const. (N =0,1,2,...), (1)
k

and

S GIN,E) = Y (f — F(0,5)).

N2>0 j<k—1

Moreover, computerized proofs of hypergeomet-
ric identities are now possible (see Ref. [6]).

2. ORDER STATISTICS

As a consequence of studying the works of
Galambos, including Ref. [7], Galambos and
Seneta (Ref. [8]), David (Ref. [9]), and Gum-
bel (Ref. [10}), we analyzed order statistics from
the following point of view, using an urn model
approach (see, for example, Refs. [11, 12, 13]).
For a very clear and concise introduction to
order statistics and extremes, see Galambos’s

book (Ref. [7], pp.16-17)‘



Let X;, X5, ... Xy be a random sam-
ple from an arbitrary real-valued continu-
ous distribution. Call X;, X,, ... Xy the
previous sample, and consider future trials
XN+1, XN+2, --- XNk, ... from the same
distribution. With probability 1, the order
statistics X(;) < X < < X(ny as-
sociated with the previous sample determine
N + 1 disjoint random intervals I, I, .. Ix4;
on the real line, into which any future ob-
servations must fall. For any I,, a =
1, 2, ,» N + 1, the conditional probability
P(XNiks1 € In|Xni1, Xni2---Xnak)
equal to N:_’;i_k, where 7 is the number of
XN+j’s, 7 = 1,2,...k, that fall into I,. Since
the I,’s are almost surely disjoint, determining
P(XNnik+1 € UneslalXni1, XNni2. - Xngr),
where S C {1,2,... N + 1}, poses no difficulty.
See for example Refs. [11, 13].

3. EXCEEDANCES

Sample until exactly m future trials exceed the

k order statistic Xy where 1 < j < N. If
Wn,j,m equals the number of future trials until
X(;) is exceeded m times, then (adopting the
convention that the empty product equals 1, of
course)

P(WN,J',.,,, =m++ k) =

(m+k—1)!(N+1-3)- (N +m—j)
K (m—-11(N+1)---(N +m)
(4)---(+k=-1)
(N+m+1)---(N+m+k)
_ (N+m—j N
" (N +m)! (N =)
(m)(m+1)---(m+k-1)G)---G+k-1) @
K(N+m+1). - (N+m+k)
Since EP(WNNm—m+k) 1 (see John-

son and Kotz, Ref. [14], sections 4.4 and 4.5;
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Wenocur, Refs. [11,13] ), it must follow that

i P(WNjm=m+k) = (3)
k=0

4. PROBABILISTIC PROOF
OF GAUSS’S ,F, IDENTITY

Let us now apply results of §2 and §3 to prove
Gauss’s 3 F identity and to show its relationship
to an inverse Pdélya distribution.

Gauss’s 2F; summation theorem often ap-
pears in the form (see for example Ref. [1], pp.
27-28 or Ref. [4])

F(c)(c—a—-10)

2Filab;c;1] = feare—y @

for ¢ > a + b; where 2 F[a, b; c; 1] is defined by

2F1[a, b;c; 1]

_ i a---(a+k-1)b---(b+k-1)
ico cle+1)---(c+k-1)K
see for example Slater (Ref. [1], p. 1) or Ref. [4].
The purpose of this section is to present a proba-
bilistic proof of (4) where a, b, and ¢ are positive
integers.
Directly from (2) and (3),

2Fifm,5; N +m + 1;1]

I'(c)T(c—a—-1b)

_ NAmI(N—g)
" T(c—a)T(c—b)’

(N+m-—3)IN!

where a=m, b=j,c= N + m+ 1, and where
N +m+1 > j+ m is equivalent to Gauss’s
condition ¢ > a +b .

Notice that (2) describes an inverse Pélya dis-
tribution; see Ref. [13], Ref. [14], pp.194-200,
and Ref. [15]. Hence, Gauss’s sum is related to
this particular type of waiting-time distribution.
A combinatorial argument leads to a different
proof of Gauss’s 2 F) identity in Ref. [4]; nev-
ertheless, the relationship between Gauss’s o F)
sum and the inverse Pélya distribution emerges.



Bose-Einstein statistics are related, too; see, for
example the now classic texts of Feller, that of
Galambos, and Refs. [11, 13].

5. PROBABILISTIC PROOF
OF A CLASSIC IDENTITY
WITH A TERMINATING SUM

The urn model approach to order statistics pre-
sented in §2 is useful for proving various hyper-
geometric identities. In Ref. [3], a less general
form of Gauss’s identity is proven by means of
a similar but more restrictive method. For dif-
ferent techniques which are combinatorial in na-
ture, see Refs. [4, 5, 6].

As another example of applying the approach
of §2, let us derive a result which involves a fi-
nite sum. Certainly, this is a well-known identity
that appears in Ref. [16] and in textbooks, but
let us derive it again in the present context for
at least two reasons: (a) to illustrate the util-
ity of methods employed in this paper; (b) to
lead to an identity (6) that has been of inter-
est in industry (Ref. [17]) but proved by longer
means, namely, an induction argument, that ig-
nores order statistics. Suppose we consider n
future trials and let g; be the probability that
exactly k of these n trials have values less than
X(j), the 4t* smallest of past N values. The fact
that i: qr =

k=0
urn model presented in §2 lead to the identity

“ (i+k—-1\[N—-j+n—-k
G (e
=(N:n) (5)

If j = N = p+ 1, (5) reduces to a result from
the ancient field of summation calculus:

1 and direct application of the

Xn:(k+1)-~-(k+p)
k=0

_(n+1)---(ntp+1)

(p+1) (©)
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A probabilistic interpretation of (6) involves the
Ntk order statistic. (that is, the mazimum). Di-
vide both sides of Eq.(6) by its right-hand-side.
Thus, we obtain the sum, from £ = 0 to n, of
the probabilities that exactly k of our n future
values fall below the maximum X ) of our pre-
vious sample.

6. RELATIONSHIP TO SOME WZ-PAIRS

Strong connections exist between the urn model
approach to order statistics and the Wilf-
Zeilberger certification theorems of Ref. [5] de-
scribed in §1. Suppose we restrict our attention
to the j*® upper order statistic.

Let m = 1 and consider exceeding the j**
largest (that is, X(vi1_j), the (N +1 — 3tk
smallest ) of the first N values observed. Letting
F(N,k) = P(WN Ny1-j1 = k) for k=1,2, ...,
we have the WZ-pair

FNU(N +k—1—j)!
(N =) (N+k)!

F(N,k) =

§(1-k) NI (N +k=1-3)
(N —j+ DN +k)!

G(N,k) =

Suppose m = 1 and consider exceeding the
mazimum X(y) of the first N values observed.
Letting F(N,k) = P(WnnNy = k) for k =

1,2,..., we obtain the WZ-pair
N
F N,k = ’
( ) (N+Ek)(N+k-1)
G(N,k) = 1k

(N+k)(N+k-1)’

and potential function
-N

®(N,k) = m >

where, as defined in Ref. [5],
AkQ=F and AN§=G.



Although the notation is different, F(N, k) ap-
pears in Refs. [3, 11, 12, 13] as a probability de-
pending on N and k, namely, previous sample
size and stopping time respectively. Probabilis-
tic analysis of F'(N, k) presented here, employed
in Refs. [3, 11, 12, 13], and described from an-
other perspective in Ref. [4], provides a counter-
point to combinatorial methods in Ref. [5] and

Ref. [6].
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An Examination Of The Extremes Of Selected
New Zealand Rainfall And RunOff Records For
Evidence Of Trend

Withers, C.S. and Silby, W.W.

Institute for Industrial Research and Development, Lower Hutt, New Zealand

This report examines selected annual NZ rain and river flow maxima and minima for
evidence of long term trend. The model assumes a linear time trend while the residuals are
from the generalised extreme value (GEV) distribution. This is the most popular model
for dealing with extremes, and gives a first-order approximation to the theory of extremes.

The iterative estimation technique combines the high-efficiency L-moment method of
Hosking et al. (1985) for the GEV-parameters with the maximum likelihood equation for
slope.

Regions chosen were prone to flood or drought. The results were surprising: the evidence
for the presence of a trend in rainfall and runoff was very weak using the least squares
estimate (LSE) of slope but extremely significant when using our mixed MLE/L-moment
method.

It is recommended that the techniques used here be tried on NZ temperature series, as a
greenhouse effect is much more likely to show up as a trend in temperature than a trend in
rainfall.

To eliminate the possibility of programming error it is also recommended that the method
be reprogrammed from scratch.

1 INTRODU CTION §2 describes the data series chosen.

The theory developed for estimating the
This paper examines selected annual New parameters is outlined in §3. It is based on an
Zealand (NZ) rain and river flow maxima and extension and modification of the method of
minima for evidence of long term trend. L-moments (also called probability weighted

The main results, given in §4, regress these series moments) given by Hosking et al. (1985) that
against time, assuming that the residuals are from uses the maximum liklihood equation for the
the generalised extreme value (GEV) distribution. slope iteratively with the L-moment method for
This is the most popular model for dealing with the 3 GEV parameters.

extremes, and gives a first-order approximation Regions chosen were prone to flood and drought.
to the theory of extremes. (Ongoing work aims at The evidence for the presence of a trend in
improving this approximation by considering the rainfall and runoff was very weak using the least

two main families of distributions that arise in squares estimate (LSE) of slope but extremely
theory: distributions with power tails and significant when using our mixed
distributions with exponential-power tails.) MLE/L-moment method. At first sight this is
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surprising — partly because examining extremes
throws away a lot of information, partly because
one might expect the data series the data series
to be too short for confirmation of a trend — and
partly because rainfall need not increase linearly
as global CO2 increases according to global
circulation models as presently developed. In fact
it may decrease in some regions: see Mullan and
Renwick (1990) for New Zealand climate change
from increased CO2 as inferred from a global
circulation model, and Salinger et al (1990) for a
scenarios approach to changes in New Zealand
climate. However since Hosking et al (1985)
showed that the L-moment estimates for GEV
parameters were more efficient than the MLEs,
one does expect that the LSE of slope for a model
with GEV residuals would be inefficient
compared with our MLE/L-moment method.

It is intended to work out an analytic form for
the asymptotic covariance, both to confirm that

it is regular enough for its jackknife estimate to
be consistent, and to cut down on the long
amount of time jackknifing took — typically over
one hour per run, using Splus.

We recommend that our iterative estimation
method be started from the LSE for slope rather
than from slope 0, as in seven out of the 18 runs,
beginning iterations from slope 0 gave
convergence to a wrong result.

Jump scenarios were also tested for in an ad hoc
manner: see §4 for numerical results.

Detection of a trend in rainfall is a much more
difficult problem than in temperature, and it is
recommended that the methods developed as well
as refinements in progress be applied to NZ
temperature series. In addition more theoretical
work needs to be done to settle the question of
the efficiency of regression methods in detecting a
trend over methods based purely on analysis of
extremes. )

2 THE DATA SERIES CHOSEN
RAINFALL SERIES — MAXIMUM DAILY PER ANNUM in mm

Gisborne 876902 1937-87
Masterton 59604 1926-87
Timaru 414201 1881-1985
Palmerston North 53603 1928-87
Arthur’s Pass 219510 1957-89
Arthur’s Pass 219501 1941-87

RIVER FLOW SERIES — ANNUAL 15 MINUTE FLOOD PEAKS
(cubic metres/second)
— MINIMUM AVERAGE OVER 7 DAYS

Minimum 1960-1990
Minimum 1955-1987
Minimum 1965-1986
Minimum 1965-1986

(litres/second)
Motu 16502 Flood 1960-1987
Ruamahanga 29201 Flood 1955-1987
Opihi 69618 Flood 1936-1987
Opuha 69614 Flood 1936-1987
Manawatu 1032560 Flood 1929-1988
Waimakariri 66401 Flood 1930-1987

Minimum 1972-1989
Minimum 1967-1989

The number following each series is the NZ Meteorological Service’s code.

3 THEORY: ESTIMATES
FOR THE GEV
DISTRIBUTION WHEN

A TREND IS PRESENT

Much has been written on the theory of extremes
for the case of stationary observations. See for

example the books of Gumbel (1958), Leadbetter
et al (1980), Galambos (1987) and Resnick
(1987). However these books give very little
theory for the case when the observations are not
stationary.

One of the few papers dealing with a search for a
trend is Smith (1989): this paper analyses the
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number of exceedances of a given (high) level
based on 15 years of hourly measurements. He
applies techniques to remove short-term
dependency and seasonality in the data. Then he
uses the 3 parameter generalised extreme value
(GEV) model for exceedances, allowing the
parameters to vary from period to period as well
as from year to year. (Here a ‘period’ is one or
two months.) Parameters are estimated by
maximum liklihood. Fit is measured by plotting
the ordered (estimated) residuals against their
expected value for GEV exceedances (the
‘generalised Pareto distribution’) and also
by plotting the ordered values transformed by
their estimated distributions against the expected
value of the order statistics from a uniform
distribution. This paper also gives a number of
useful references, such as Husler (1986) on
extremes of nonstationary sequences.

Davison and Smith (1990) proceed further with
this approach, allowing the parameters of this
model to be given functions of regression
covariates, with the parameters estimated by
maximimum liklihood or least squares.

Tawn (1988) and Smith (1986) give a related
approach but use the joint distribution of the r
largest extremes rather than the threshold
method.

McKerchar and Pearson (1989) looked at 13 New
Zealand continuous water level recordings of more
than 50 years each and found some evidence
(p15-16) of long term trend. They fitted the
GEV distribution to annual flood peaks to a
great number of New Zealand flood peak series
and noted (p33) that the EV 1 distribution (that
is the GEV distribution with & = 0) gave an
unsatisfactory fit to many series.

The approach taken here is to fit the model

Yi=b; + X;,1<:i<n (3.1)

where Y; = extreme value for #th observation, ;
= year of ith observation (typically ) and the ith
residual X; is assumed to come from the GEV
distribution

F(z) = ezp{~-Mz)},M(z) = (1 — kz)YE,
z=(z — £)/a where « > 0.

(3.2)

The GEV distribution is the limiting distribution
of

(ma::f":l Z; —bn)/cn as N — oo,

if a limit exists for some cy > 0 and by when
Zy,.-.,2N is a random sample from some
distribution on R. The following examples are
from §4 of Withers (1992a).

EXAMPLE 3.1. If

P(Zy > z) = (a/z)’ as £ — oo where a,b > 0,

then one can take by = 0, cy = aN/?,
“b1<0,a=b"1,6=10
EXAMPLE 3.2. If

P(Zy > z)~ fzle " asz — 00

where z = {(z — b)/c}® and a,c > 0,

then one can take

by = cNM® {1+ a'N7}(dN2 + f1)} where
Ny = logN, N2 = log Ny, fi = log f and

CN = ca-lN:/a_l, k=0,a=1,£=00
EXAMPLE 3.3. If Z; is bounded above by b
and

P(Zy > z) = c(b—z)* as z T b where a,¢ > 0,

then one may take by = a, cy = (cN)™/?,
k=a=a"1>0£¢6= -1.0

By the first two examples, if the density of the
underlying variable Z has upper tail falling to
zero as a power law (or exponentially) then for
ma:z:;-v=1 Z;, the corresponding GEV distribution
has k < 0 (or k = O respectively).

By the third example (with Y; = —Z;) if Y; is
bounded below (as for daily rainfall or riverflow)
then for min/_, Y; the corresponding GEV
distribution has k > 0.

Without loss of generality we took

t= n-12?=1t;

to be zero. (That is we replaced ¢; by t; — . This
is the same as reparameterising £.)
We refer to the 4 parameters of the model as

6 =(b,&,a,k)

If k = 0, A\(z) = ezp(~—2), the limit as k — o0, so
F is the “EV'1” distribution.
The range of z is given by 1 —kz > 0, that is

z<é+4+afkifk>0 andz>€&+a/k if k<O

If b is known to be 0, Hosking et al. (1985) have
shown by simulation that the L-estimates (also
called PWMs) for (k,&, a) are more efficient than
the maximum liklihood estimates (MLEs) for
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n=15,2550and k = —.4,—.2,0,.2, .4 and are
comparable for n = 100. For n = oo, the relative
efficiencies of these estimates at k£ = 0 are about
.8 for k, .95 for é and .85 for &, but fall to 0 at
k = —.5. The relative efficiency of k falls to 0 at
k = .5 while the other 2 remain high (Figure 4).
The L—estimates do not exist if ¥ < —1; the
mean MLEs do not exist if £ > 1/3: see p252,254.
(See Phien (1987) for a comparison of estimates
for the case when k is known to be 0.)

However no results are available for the case
when b is unknown. Tawn and Dixon (1992) use
the model (3.1) on extreme sea levels, estimating
# by the MLE. Our approach is to use the MLE
equation for b iteratively with equations (14),
(15) of Hosking et al for the L—estimates of
(k,€, a) based on the estimated residuals,

X; = Y; — bt; . Beginning with b = 0 we found
that in all cases except two, 5 iterations gave
‘accuracy to at least 4 decimal places.

The derivative of the mean log likelihood ratio
w.r.t. bis —g(b)/a where

g(6) = n7 St WD (k- )W) (3.3)

where W; = 1—kZ; for Z; = (X; — §)/e; g(b)
was plotted against = 0 for the first and last
iterations, and in each case found to be
monotonic with a single root. (See the figures at
the end of §5 for some examples.) Thus the
“method is not complicated by the presence of
multiple roots. (To evaluate the root we used
Newton’s method.)

Our sample sizes ranged from 17 to 95 years and
our estimates £ from —.45 to .23 with none
significantly different from 0. Only one b was
significantly different from 0.

We end this section with a refinement available to
the theory of Hosking et al. when k> 1 or k> 1.
(It turned out that in our applications k was less
than one in each case so that this refinement was
not needed.)

Hosking et al. noted that MLEs are ‘not always
satisfactory’ if £ > 1 as the density approaches co
as max X; approaches its upper bound

u =& + a/k. In situations where the range
depends on the parameters — in this case X < u,
the corresponding estimate — in this case

@ = maz X;, is superefficient, that is has variance
O(n~?) , not just O(n~1), so that one can reduce
the variances by replacing say the 3rd of Hosking
et al’s 3 L-moment equations, that is their (12),

by ) X
E+ajk=z,
(their notation for maz X;).
By their (15) this is equivalent to replacing their
(13) by
bo + 6T (1 + k)/k = z,,.

This results in their implicit estimate & of (13)
being replaced by the explicit estimate

k = —logy{1 — (261 — bo)/(zn — bg)}

where by = X,b; = (n? — n)"lil;-‘:z(j —1)z; and
z; < ... < z, are the ordered values of Xj,..., X,,.
The corresponding estimates of £ and « are now
given by their (15) with k replaced by & .

To summarise: if £ > 1, use k . This will decrease
the variances of the estimates with high
probability.

(With exponentially small probability as n
increases one could find ¥ < 1 < k ; in that case
one cannot rely on either estimate of k.)

(3.4)

4 NUMERICAL RESULTS

For each series we give the minimum, quartiles,
maximum, and number of years covered (n),
followed by the number of iterations (5 except for
two cases), parameter’ estimates, their covariance
as estimated by the jackknife method, the
estimate and variance of the quantile estimates
for the GEV distribution fitted. By (8) of
Hosking et al the F'—quantile of the GEV is

z(F) =€+ a{l — (=logF)*}/k=1(6) (4.1)
This is estimated by t(9) and its variance by
v(8,C) where

v (8,C) =1 Ci,i = 61(8)/96

and
C is the jacknife estimate of the covariance C of §.
We then estimate the years ¢ for which
EY:; = bt + EX will equal 1.1 and .9 of EY,—
that is, the mean will increase by 10% or drop by
10%, according to the model (3.1). The ¢ for
which the FY; changes to a fraction H of EY is
given by

bt+EX = H(bi+ EX)

that is by ¢(6) = Ht + b~}(H — 1)EX where
EX=¢(+aEZ and EZ = k™1 - T(k).

(4.2)
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We then estimate the standard deviation of t(6)
as for the previous example of (6).
Next we compute the goodness-of-fit statistic

Y (% = ¥i)?*/{(n = 3)var(X)}

i=1

(4.3)

where var(X) = (a/k)*{T(1 +2k) - T'(k + 1)%}.

(This is only an ad hoc statistic as the usual
regularity conditions for its asymptotic
distribution are not satisfied.)

Finally we give the 2-sample t-statistic for testing
that the first and second half of the data series
have the same mean, without assuming equal
variances. Under the null hypothesis of no change
in mean, this is asymptotically normal (0,1).

RAINFALL SERIES — MAXIMUM DAILY PER ANNUM

Gisborne
Masterton
Timaru
Palmerston North
Arthur’s Pass
Arthur’s Pass

Mean Years
Years available
876902 1937-87 1962 51
59604 1926-87 1956.5 62
414201 1881-1985 1937.505 95
53603 1928-87 1957.5 60
219510 1957-89 1973 33
219501 1941-87 1964 47

RIVER FLOW SERIES — ANNUAL 15 MINUTE FLOOD PEAKS

Motu 16502 1960-1987
Ruamahanga 29201 1955-1987
Opihi 69618 1936-1987
Opuha 69614 1936-1987
Manawatu 1032560 1929-1988
‘Waimakariri 66401 1930-1987

1973.5
1971

1961.5
1961.5
1958.5
1958.5

28
33
52
52
60
58

NOTE 1 For Timaru, data for the years 1883,1887-1895 1s not available. O

RIVER FLOW SERIES — ANNUAL 15 MINUTE MINIMA

Motu 16502 1960-1991 1975.5 32
Ruamahanga 29201 1955-1987 1971 33
Opihi 69618 1965-1986 1975.5 22
Opuha 69614 1965-74,1978-84 1973.97 17
Manawatu 1032560 1972-1989 1980.5 18
‘Waimakariri 66401 1967-1989 1978 23

NOTE 2 The minima are for the 7 day averages Before giving the
ervations. The data years for following summary of the estimates of the slopes

of the 15 minute obs

minima and mazime flow are different as the
minima flow came from electronic files and the
mazima flows from McKerchar and Pearson
(1989) Appendices 1 and 2. O

results in detail, we give the

b and the extreme value parameters k, and the
t-statistics for testing the difference in means
between the first and second half of each series.

SUMMARY OF ESTIMATES OF b AND k AND THEIR SIGNIFICANCE AND THE

T-TEST
RAINFALL MAXIMA
Gisborne 876902
Masterton 59604 —
Timaru 414201
Palmerston North 53603

b b/sd. B Efsd. t-—stat’c
451 797 =197 -12.79 .67
08 —4.16 -.179 -16.27 —.04

—.096 -—13.92 -—.044 -—-3.69 15
—.049 -3.29 -.036 3.50 7
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Arthur’s Pass 219510 1.000
Arthur’s Pass 219501 .445
RIVER FLOOD PEAKS

Motu 16502 —.339
Ruamahanga 29201 2.128
Opihi 69618 1.775
Opuha 69614 —.198
Manawatu 1032560 1.342
Waimakariri 664014 519
RIVER FLOW MINIMA

Motu 16502 —-27.18
Ruamahanga 29201 84.42
Opihi 69618 —34.97
Opuha 69614 -—57.69
Manawatu 1032560 169.72
Waimakariri 66401 52.07

NOTE 3 The value of b/sd(b) wien residuals
were GEV turned out to be larger than that for
normal residuals by a factor of 2 to 5. This could
possibly suggest that convergence to normality is
far from being approached at the sample sizes
considered here. Although a search for a
programmang error to explain this effect was
fruitless, this possibility cannot be ruled out. O

The most striking feature of the analyses was the
reduction in variance of b when moving from the
LSE to our estimate. The result is to make all
the b’s highly significant — ie non-zero, whereas
using the LSE one would draw the opposite
conclusion — ie that they were not significantly
different from 0.

There are several possible explanations: (a) the
LSE of slope is highly inefficient for the model
trend plus GEV residuals; — recall that our
estimate mixes the MLE method with the
L-moment method , and that the latter is more
efficient than the MLE method. The LSE is
efficient for normal residuals but not for GEV
residuals — but it seems surpising that it should
be so inefficient. This feature will be checked by
obtaining an analytic form for the asymptotic
variance; (b) the jacknife estimate of variance is
too small because the analytic form for the
asymptotic variance is not regular ( ie. not
estimable by replacing the distribution of
residuals by their estimated empirical
distribution); — this is the case for quantiles such
as the median, and will be checked by obtaining
an analytic form for the asymptotic variance in
the coming year using the method of stochastic

485 118 437 112
6.39 082 429 136
69 229 938 .00
482 102 381 181
598 —.400 —27.93 62
—.90 —244 —159 —.74
243 —.025 -204 —.34
74 —.254 —2228 —1.01
-10.68 —.039 —14.31 —2.02
N/A 877 N/A  2.04
-12.00 366  9.48 -156
-5.63 766  9.17 —1.10
N/A 675 N/A -—.14
86 346 11.32 .08

expansion of Withers (1987); however if the
asymptotic variance was not regular one would
expect the jackknife estimate of variance to be
too large, not too small; (¢) program error; the
program is listed in Appendix B and has been
carefully checked.

The second feature that jumps out is the highly
significant values of the shape parameters, due to
their small standard deviations — as estimated
by the jackknife. This is no doubt closely
connected with the small s.d.s for the slope
estimate.

In this regard we quote Pearson (1992) p 67:
“Three-parameter distributions such as the GEV
should not be used to analyse flood frequency at
single sites, unless the annual series is at least 30
years long, since sampling errors are much larger
than for two-parameter distributions”. With our
four-parameter model variability will be even
greater.

A third surprising feature of the data is that the
slope of b is positive (and highly significant) in
six cases but negative (and highly significant) in
six cases. (This allows for the fact that negative
minima not minima should be fitted to GEV
distributions: these estimated slopes have been
reversed so that a positive slope indicates an
increase.) This is not so surprising on further
thought as different regions are expected to react
differently to global warming — some will get
more rain and some less — though globally the
average rainfall will increase.

NOTE 4 These results were run beginning our
iterations with =0 and also beginning with the
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LSW for b to check that convergence to the same
results occurred. In fact this failed for seven
cases:

1. for Gisborne mazimum rainfall starting at
=0 the final estimates were
b= 156k = —.194 & = 19.712 £ = 63.419

2. for Palmerston North mazimum rainfall
starting at b=0 the final estimates were
b=-012k=—-.049G = 12583E 42.773

3. for Motu flood peak starting at b=0 the final
estimates were
b=.950k = 163&—'775465—218559

4. for Opihi flood peak starting at b=0 the final
estimates were
b= 161k——447a—55551€—77337

5. for Opuha flood peak starting at b=0 the
final estimates were
b=1.210 k = —.280 & = 82.063 § = 124.867

6. for Manawatu flood peak starting at b=0 the
final estimates were_ b=-17149k =
—.043 G = 468.015 £ = 1160.312

7. for Waimakariri flood peak starting at b=0
the final estimates were b=4.904k =
—0.2800 & = 361. 867{ = 1177.764

This is another reason lo begin iteration with the
LSE rather than 0. The other was that starting
with b=0 gave some residuals so large that in
some cases the method fails unless those outliers
are discarded. a

NOTE 5 The fact that the t-tests did not pick
up any differences in mean between the first and
second half of each series is consistent with
ezplanation (a) above ihat the LSE is much less
efficient than our estimate of slope; but it could
also be argued to be consistent with the
ezplanations (b) and (c). u]
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Extreme Values In Business Interruption
Insurance

Zajdenweber, D.

Université de Paris X-Nanterre, Nanterre Cedex, France

The size-distribution of yearly claims in the French business interruption insurance branch is
a Pareto law with an extremely long tail. The behavior of that law reflects the fact that the total
value of yearly claims is dominated by a small number of major claims. We estimate the
characteristic exponent of the tail, which is very close to one. This value means that the theoretical
probability distribution has no expectation, and that business interruption insurance may be a very

hazardeous economic activity.

INTRODUCTION.

The insurance industry lies on a
foundation stone : the subdivision of risks
through the law of large numbers. More
precisely, in case of a statistical distribution of
claims with a finite expectation, the law of large
numbers proves that the average amount of claim
per head (or per policy) becomes closer and
closer to the expectation as the number of
policies becomes larger. In the business
interruption branch, as in some other branches
where the risks may be catastrophic, Ref [1]}, the
rate of convergence of the average claim towards
the expectation can be very small. Even worse, it
can be nil, because of a small number of
extremely large claims. In that case, the main
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problems posed to managers of insurance
companies are the estimation of the actuarial
value of the risks and the estimation of the
appropriate amount of reserves necessary to cope
with the extreme values of some claims. In the
present paper, we shall only analyze the yearly
size-distribution of business interruption claims
in France.

LEMPIRICAL EVIDENCE.

Fire is the most frequent caunse of business
interruption. If a damaged firm is insured against
business interruptions, the insurance company
pays for the losses in sales, minus the costs
spared because of the interruption of the
production. Two facts motivate the analysis of
business interruption.



First, on a microeconomic level : the value
of a business interruption claim is seldom a
simple proportion of the size of the physical
damges due to fire. Sometimes its value is
insignificant compared to the fire-damages, and
it may be much greater than the value of the
equipment, machines, furniture or buildings
burnt.

Second, on a macroeconomic level : the
most striking feature of business interruption
claims is the extreme variability of yearly claims
recorded in a country. In France, for instance, the
total amount of business interruption claims paid
in 1988 by the insurance industry was nearly US
$ 200 million, that was twice as much as 1987's
(US $ 87 million). And for the first time in the
history of that type of insurance in France, the
total amount of the claims paid to the firms was
greater than the premiums collected (US $193
million). The variability can be easily explaned
by the occurence of huge claims, the amount of
which is greater than US $ 16 million and even
sometimes greater than US $ 160 million. They
are not numerous, but they make the tail of the
yearly size-distribution of claims extremely long.
The analysis of that tail is the main subject is the
main subject of the paper.

All the data used in our analysis originate
from the statistics of the French insurance union :
"ASSEMBLEE PLENIERE des SOCIETES
D'ASSURANCES de DOMMAGES" (APSAD).
it records all business interruption claims due to
fire, the amount of which is greater than US $
1600. All the claims are located in France. the
available data span the years 1975 up to 1991.
Yearly claims are ranked and valued in constant
US § (reference year 1988).

Fifteen out of the seventeen yearly size-
distribution (all but 1979 and 1981) look like the
typical distributions shown on the graphs #1 and
#2. The abscissa is the Log of the sizes of the
claims. The ordinate is the Log of the number of
claims which are greater than the size on the
abscissa. It is thus the Log of the complement of
the cumulative distribution function of the
random variable : "size of yearly claims”. The
common slope of the parallel dotted lines is -1.
The small steps on the curves are by-products of
the tendency to report rounded values of the
damages.

N.B. Claims amounting to less than US §
16000 (=100000 F.) are not shown on the
graphs. That threshold may be approximatively
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distribution of claims : in 1988, for instance, 227
claims amounted to less than US $16000 and
223 amounted to more than this value. But the
cumulated value of those small claims, below the
median, is always insignificant. For instance, in
1988, 1989 and in 1990, their cumulated value
amounted to a mere 0.3 percent of the total value
of the yearly claims (in 1991 that proportion fell
to 0.2 percent). Thus the loss of information is
harmless.
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Except for the years 1979 and 1981
(fortunately, no very large claims occured these
two years), the size distributions of yearly claims
always display the same two features. Below a
threshold of about US$ 330000 the curves are
concave.But above that threshold, the tails fit a
straight line the slope of which is close to -1. The
behavior of the tail can be described and the
value of its slope can be approximatively
estimated by means of a graphical analysis.
Graph #3 shows the superposition of three size-
distributions of yearly claims corresponding to
years 1975, 1976 and 1977. The common
behavior is striking (in the next chapter we shall
use a more rigorous estimation technique). The
straight line is also known in economic literature
as the Pareto line. Each year the cumulated value
of the claims on the Pareto line amount to at
least 80% of the total value of the claims. In
1988 and also in 1989 they even shared 92% of
that total value. Thus it is easy to understand why
the Pareto line is the heart of the matter for the
insurance companies. Their managers speak
about "lucky" years when no large claims occur,
as in 1979 and in 1981. Nevertheless those
happy years are exceptional, they give only a
temporary relief. Most of the time the claims on
the Pareto line strikes a severe blow to the profits
of the insurance industry.
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N.B. It is worth noting that the size-
distribution of business interruption claims in
Western Germany in 1989 also fits a Pareto line
with a slope close to -1. But the data recorded by
the COMITE EUROPEEN DES
ASSURANCES in that country do not state the
claims less than US$ 3,3 million. Hence the
number of claims reported is small in absolute
value (32 instead of 112 claims larger than US $
330000 in France that year). Nevertheless the
number of huge claims is relatively large in
Western Germany, because the number of firms
insured in that country is greater than in France
(where there were only 12 claims greater than
US $3.3 million the same year).

ILTHEORETICAL PROBABILITY
MODELS.

Since the data in our sample only record the
yearly values of the claims greater than a
(relatively) high threshold, and since the size-
distribution is invariant (except for two "lucky"
years), the theoretical model is to be found in the
families of "max-stable” extreme distributions.
One of the main theorem of the mathematical
theory of extreme values, states that there are
only three types of max-stable probability
distribution functions,Ref.[2], Ref [3].

- The Pareto d.f : 1-x&¢ x>1 a>0
This d.f has a "heavy" or "fat" upper tail. Its
main mathematical feature is that it has no
variance when a < 2 and no expectation when
o <1. The exponent o also gives the value the
slope of the Pareto line on a double-log graph.

- The Weiball or "type II" d.f. : 1- (-x)"C
1<x<0 o <0; This d.f has a short upper tail.
The Weibull d.f is found in the context of a
maximum value that cannot be passed. This is
not the case in the data concerning business
interruption : the maximum potential value of a
claim is far greater than the record value already
observed (between US $ 2,1 billion and US $
18,7 billion!).

- The exponential d.f. : 1- X x>0

This d.f has a medium upper tail. In
practice, when dealing only with the large values
exceeding high thresholds (US $ 3,3 million in
our samples), this outstanding result means that
only one of those three d.f. can be observed.
However, since both the cumulated distribution
function of the Weibull law and of the
exponential law display a concave tail without a



straight line when drawn on a double-log graph,
only the Pareto law may be relevant to the data
on the business interruption claims. (With the
exception of the two "lucky" years, 1979 and
1981, without major claims, that cannot fit the
Pareto law, but may fit the exponential
distribution or the Weibull law).

L. ESTIMATION OF THE SLOPES OF
THE PARETO LINES.

Since each year we know the value of the
empirical threshold (US$330000), the estimation
of each yearly Pareto distribution is completely
performed through the estimation of its
characteristic exponent .

Let N be the number of claims in the Pareto tail,
x the size of a claim, x the threshold value, i
the rank of a claim with the value x; (i=1.2,..,
N); the maximum likelihood estimator of o (or
Hill estimator, Ref[4]) is:

1/& = (1/N )=Log x; -Logxg
We have E(1/&)=1/a and Var( 1/& )= 1/Na?

Thus, the confidence interval defined by means
of the central-limit theorem is, for N sufficiently
large:

VNa(1/8 -1/0)~3 (0,1)

This means that there is a probability 0.95 that
the true value of 1/a lies within the interval:

1/ (11 2HN)

Table #1 sums up all the estimations,
except for the two "lucky” years 1979 and 1981
when no huge claims occurred, thus changing the
Pareto line into a concave curve.The last column
on the right shows the values of the largest claim
(maxclaim) in thousands of US §, each year .
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TABLE #1
ESTIMATED CHARACTERISTIC
EXPONENTS
Year N o conf.iint. maxcl.
1975 29 09523 0.69-1.51 6789
1976 46 0.9283 0.72-1.32 18844
1977 40 0.8937 0.68-1.31 6611
1978 46 1.0250 0.79-1.45 7434
1979 29 - - 4685
1980 59 1.0130 0.80-1.37 11689
1981 48 - - 4315
1982 71 1.1117 0.90-1.46 18667
1983 68 09775 0.79-1.29 24116
1984 52 09918 0.78-1.37 27191
1985 61 1.0549 0.84-1.42 6584
1986 71 1.0072 0.81-1.32 16776
1987 61 1.0152 0.81-1.36 5549
1988 91 0.8854 0.73-1.12 24547
1989 112 1.0235 0.86-1.26 13183
1990 114 09049 0.76-1.11 52542
1991 127 0.9779 0.83-1.19 16076
Average value of o =0.9842

Median value of a =0.9918

All these estimations are compatible with
the theoretical value inferred from the graphical
analysis of the data : ome. The sample
fluctuations are small (range of the estimated
values : 0.8854-1.1117) and there is no trend in
the estimated values of the characteristic
exponents. But, a trend obviously appears in the
number of yearly claims greater than US $3,3
million. It is due to the increasing number of
firms insured. Nevertheless, no significant
correlation is measured between the number of
claims in the tail and the estimated characteristic
exponents (R=-0.05).

A property of the Pareto law is its stability
when the extreme values only are recorded,
Ref.[5]. This means that the size-distribution of
the n records of n identical and independent
Pareto laws with a minimum value m and a
characteristic exponent a=1 is the same Pareto
law with a new minimum value n.m. Here the
records are the 15 "maxclaims”, hence the
theoretical minimum value is US $ 5 million. We
can verify that the Hill estimator gives the same
characteristic exponent : =0.9847. With other
minimum values, greater than US § 5 million, we
have :



o=1.0001 with m=US $ 5078000.
o=1.0006 with m= US $ 6789000.

(but there are only 11 records larger than

this very high value).

N.B. In Western Germany in 1989, a=1.0149
with the confidence imterval 0.75-1.57. The
largest claim amounted to US $ 240 million.
This huge claim is not far from the greatest
historical business interruption claim in France :
US $ 330 million. It happened before 1975. It
of business
interruption premia paid in France. The second
largest historical business interruption claim
happened in 1992, in an oil refinery. It amounted

nearly equalled two years

to US $ 180 million.

CONCLUSION.

Large business interruption claims in France
display a remarkabie feature, their yearly size-
distributions fit accurately a Pareto distribution
with a constant characteristic exponent o around
one. This means that without an objective
ceiling, the theoretical probability distribution of
the claims have no expectation. Claims can have
a giant size, may be a size larger than the worst
claims already experienced in the past.Those
huge claims show that business interruption is of
the same nature as natural hazards, for instance
hurricanes or earthquakes, it can be an economic

catastrophy.
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