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Abstract 
 

Development of a reference model to predict the value of system parameters during fault-free operation 
is a basic step for fault detection and diagnosis (FDD).  In order to develop an accurate and effective 
reference model of a heat pump system, experimental data that cover a wide range of operating conditions 
are required.  In this study, laboratory data were collected under various operating conditions and then 
filtered through a moving window steady-state detector.  Over five thousand scans of steady-state data 
were used to develop polynomial regression models of seven system features.  A reference model was 
also developed using an artificial neural network (ANN), and it is compared to the polynomial models.   
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Nomenclature 
a coefficient of multivariate polynomial 
ANN Artificial neural network 
c offset used in the sigmoid function 
COP coefficient of performance 
CMF compressor or reversing valve fault 
DB dry bulb 
F feature 
FDD fault detection and diagnosis 
g number of coefficients minus one in a reduced model 
h1,hi2,hi3 ANN hidden layer neurons 
i1, i2, i3 ANN input layer neurons 
LL refrigerant liquid line 
m number of coefficient in the regression model  
MFR mass flow rate 
MPR multivariate polynomial regression 
MSR mean squared residual 
N number of data samples used to generate the regression model 
o ANN output layer neurons 
P pressure 
s variable used within the sigmoid function of Equation 2 
SSR sum of squared residuals 
T temperature (°C) 
w hidden node weighting factor in Equation 2 for the kth input 
x input to hidden node of the ANN model 
 
Greek symbols 
 
Δ difference 
φ(n) feature or performance parameter of nth order model 
 
Subscripts 
 
C condenser 
CA condenser air 
D compressor discharge 
drop comparison of two identical models where one model has had some terms removed 
E evaporator 
EA evaporator air  
full refers to the model with a complete number of coefficients 
i feature index 
ID indoor 
IDP indoor dew point  
k number of data samples in a moving window or input number in Equation 2 
meas measured 
n time index for moving window method 
OD outdoor 
pred predicted 
reduced refers to a model with some of the coefficients removed 
sat saturation 
sc subcooling 
sh superheat 
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1.  Introduction 
 

A survey of over 55000 air conditioning units in the United States showed that more than 90 % were 
operating with one or more kinds of faults (Proctor, 2004).  In another study, the average operating 
efficiency of the 1468 roof top units surveyed was 80 % of designed performance with 63 % of these 
units having performance degradation due to refrigerant leakage (Rossi, 2004).  An effective fault 
detection and diagnostic (FDD) system would prevent these losses and reduce the energy usage of the air 
conditioning equipment. 

FDD systems recognize a set of key system performance parameters and function by comparing 
predicted fault-free parameter values to the current values, and analyzing their residuals.  Thus, a 
reference model is required to estimate the fault-free system parameters at any operating condition.  Since 
a FDD system model requires precise estimation of system parameters, generalized conventional 
analytical modeling techniques were replaced with empirical correlations in several studies (Gordon and 
Ng, 1995; Rossi, 1995).  Lee et al. (1996) used an artificial neural network to relate the dominant 
symptoms and faults of an air-handling unit.  To improve the modeling capability of a FDD system, Li 
and Braun (2003) implemented a polynomial/generalized neural network regression in their reference 
model, and they produced improved interpolation and extrapolation results for a roof top unit.  Navarro-
Esbri et al. (2007) developed a low-data-requirement model based on neural networks for a water-to-
water vapor compression system focused on refrigerant leak detection.  In this study we collected 
extensive data for cooling mode operation of a residential air-source heat pump, and evaluated 
multivariable polynomial and artificial neural network reference models for their ability to predict system 
features selected for the FDD scheme. 

2.  Development of a Fault-Free Steady-State Reference Model 
 
2.1  Tested Heat Pump System 

The studied system was a R410A, 8.8 kW (2.5 ton) split residential heat pump with a Seasonal Energy 
Efficiency Ratio (SEER) of 13 (ARI, 2006).  The unit consisted of an indoor fan-coil section, outdoor 
section with a scroll compressor, cooling mode and heating mode thermostatic expansion valves (TXV), 
and connecting tubing.  Both the indoor and outdoor air-to-refrigerant heat exchangers were of the finned-
tube type.  The unit was installed in environmental chambers and charged with refrigerant according to 
the manufacturer’s specifications.  Figure 1 shows a schematic of the experimental setup indicating the 
measurement locations of temperature, pressure, and mass flow rate.  On the refrigerant side, pressure 
transducers and T-type thermocouple probes were attached at the inlet and exit of every component of the 
system.  The refrigerant mass flow rate was measured using a Coriolis flow meter.  The air enthalpy 
method served as the primary measurement of the system capacity, and the refrigerant enthalpy method 
served as the secondary measurement.  These two measurements always agreed within 5 %.  Table 1 lists 
uncertainties of the major quantities measured during this work.  Detailed specification of the test rig 
including indoor ductwork, dimensions, data acquisition, measurement uncertainty, and instrumentation 
was described in Kim et al. (2006). 
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Figure 1.  Schematic diagram of the tested heat pump with measurement locations 

 
 

Table 1.  Measurement uncertainties 

Measurement Range Total Uncertainty at the 95 % 
Confidence Level 

Individual Temperature -18 °C to 93 °C  ±0.3 K  
Temperature Difference 0 °C to 28 °C  ±0.3 K  

Air Nozzle Pressure 0 Pa to 1245 Pa  ±1.0 Pa  
Refrigerant Mass Flow Rate 0 kg/h to 544 kg/h  ±1.0 % 

Dewpoint Temperature -18 °C to 38 °C  ±0.4 K 
Dry-Bulb Temperature -18 °C to 40 °C  ±0.4 K 
Total Cooling Capacity 3 kW to 11 kW 4.0 % 

COP 2.5 to 6.0 5.5 % 
 
2.2  Steady-State Detector 

The large amount of test data needed to empirically model the cooling mode operation of a heat pump 
dictated that a consistent and automated method of data acquisition be implemented.  For this purpose we 
used a steady-state detector which determined when the heat pump was in a steady state; thus, the steady-
state detector qualified the data that were suitable for inclusion in the dataset used to generate the fault-
free steady-state reference models.   

The steady-state detector used in our data collection was described in detail by Kim et al. (2007).  It  
focused upon the seven dependent features listed in Table 2.  A moving window standard deviation 
technique was used for monitoring these variables and making a decision as to when steady state occurred.  
A moving window, as depicted in Figure 2, was characterized by a time (or sample) interval over which 
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each feature was sampled and saved.  The average and standard deviation of the saved data within this 
time interval were calculated for each feature.  The key to using the moving window technique is 

 
Table 2.  System features used in fault detection 

Independent Features Dependent Features 

Outdoor dry-bulb temperature TOD Evaporator exit refrigerant saturation 
temperature 

TE 

Indoor dry-bulb temperature TID Evaporator exit refrigerant superheat Tsh 

Indoor dew point temperature TIDP Condenser inlet refrigerant saturation 
temperature 

TC 

  Compressor discharge refrigerant 
temperature 

TD 

  Condenser exit liquid line refrigerant 
subcooled temperature 

Tsc 

  Evaporator air temperature change ΔTEA 
  Condenser air temperature change ΔTCA 

 

Time, t

n− k− 1    n− k n− k+1 n− 2      n− 1        n

k

 
 

Figure 2.  Moving window of k data points at nth time   
 
determining the appropriate moving window size and the standard deviation threshold value for each 
feature below which the feature is defined to be at steady state.    

To illustrate the technique, an example implementation of the steady-state decision is shown in Figure 
3(b) where the moving window standard deviation for Tsh is shown.   As TID changes, features such as Tsh, 
Tsc, and ΔTEA show instability.  In this case Tsh showed the most fluctuation and was the dominant feature 
in determining steady state (Figure 3(c)).  In most cases, evaporator exit superheat and liquid line 
subcooling are the two features that determine the steady-state status, but they are not indicative of steady 
state for all operational conditions; therefore, the steady-state detector monitors all seven features, and all 
seven features’ standard deviations within the moving window must be below their respective threshold 
values to indicate a steady system.  A non steady-state condition for any one feature indicates that the 
system is not in steady state.   
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Figure 3. Example of steady-state detection using the moving window standard deviations with Tsh 

being the dominant feature; (a) Measurements of TID, ΔTEA, Tsh, and Tsc; (b) Moving window 
standard deviation of Tsh; (c) Steady-state status (yes=1, no=0) 

 
2.3  Experimental Method and Conditions 

We systematically varied three independent variables, TOD, TID, and TIDP, and monitored the seven 
features.  To implement the most efficient test procedure, outdoor temperature was fixed at one of four 
constant values, the addition of steam to the indoor chamber was set at one of several discrete levels by 
modulating a steam valve, and the indoor dry-bulb temperature was changed over the desired operating 
range by sequentially energizing ten fixed heaters.  For example, as the number of indoor electric heaters 
increased, the test conditions moved from A to B in Figure 4(a) with indoor temperature increasing.  The 
data were recorded continuously and filtered through the steady-state detector, which qualified steady-
state data for use in development of the reference model.  In this process, instability of the system due to 
on-off transients and rapid load changes was filtered out by the steady-state detector.   

Table 3 shows operating conditions for the fault-free tests. The four outdoor temperatures were 
maintained within ±0.3 °C.  For the indoor conditions, the amount of steam introduced to the indoor 
chamber was fixed such that the humidity ratio varied from 0.0037 to 0.0168.  Data were recorded, every 
18 s, as indoor dry-bulb temperature varied from 15.3 °C to 33.9 °C.   The range of operating conditions 
for which data were collected defines the applicable limits for the FDD scheme.  
 

Table 3.  Operating conditions for fault-free tests  
Outdoor DB temp. (°C) 27.8, 32.2, 35.0, 37.8 
Indoor DB temp. (°C) 15.3 to 33.9  
Indoor humidity ratio 0.0037 to 0.0168 

 
From the total number of 10409 recorded data sets, 5830 data sets passed through the steady-state 

detector.  Among these steady-state sets, 2176 sets were collected at 27.8 °C outdoor temperature, 1732 
sets at 32.2 °C, 633 sets at 35.0 °C, and 1289 sets at 37.8 °C.  Figure 4(b) shows a sample of data (every 
fifth data point) taken at four fixed outdoor temperatures.  In addition, we performed ARI standard rating 
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tests at 27.8 °C indoor and 35.0 °C outdoor dry-bulb temperatures (ARI, 2006) and included these data to 
develop the fault-free steady-state reference models.   
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Figure 4.  Indoor test conditions on a psychrometric chart for fault-free model experiments at a fixed 

outdoor temperature; (a) Indoor condition change as electric heaters activate; (b) Sampled 
indoor air conditions at TOD of 27.8, 32.2, 35.0, and 37.8 

 
2.4  Multivariable Polynomial Regression (MPR) Reference Model 

The MPR model belongs to the “black-box” category of models, which do not consider the physics of 
the system and require a large data set to accurately predict a system’s performance.  In our study, we 
evaluated 1st, 2nd, 3rd, and 4th order MPR models representing the seven key features of the heat pump.  
The higher order MPR models offer better accuracy of prediction; however, excessive polynomial order 
for a relatively small database may worsen data interpolation.  The MPR models presented in this work 
have an advantage in that they have a simple structure and can be programmed easily.  In addition, they 
can be implemented for any other experimental database with little modification, because they have no 
physical basis.   

We used outdoor dry-bulb temperature (TOD), indoor dry-bulb temperature (TID), and indoor dew point 
temperature (TIDP) as independent variables.  These variables were regressed upon the database generated 
from the fault-free tests.  Equations (1a), (1b), (1c), and (1d) show the general form of the regressed 
equations for the ith feature (or ith dependent variable) as 1st, 2nd, 3rd, and 4th order MPR models, 
respectively. 

 
(1)

0 1 OD 2 ID 3 IDi a a T a T a Tφ = + + + P   (1st order)                                                                                         (1a) 

2 2 2(2) (1)
4 OD 5 ID 6 IDP 7 OD ID 8 ID IDP 9 IDP ODi i a T a T a T a T T a T T a T Tφ φ= + + + + + +   (2nd order)                         (1b) 
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3 3 3(3) (2)
10 OD 11 ID 12 IDP 13 OD ID IDP

2 2 2 2 2
14 OD ID 15 OD IDP 16 ID OD 17 ID IDP 18 IDP OD 19 IDP ID

i i a T a T a T a T T T

a T T a T T a T T a T T a T T a T T

φ φ= + + + +

+ + + + + + 2

2

3

  (3rd order)         (1c) 

4 4 4 2 2 2 2 2(4) (3)
20 OD 21 ID 22 IDP 23 ID OD 24 ID IDP 25 IDP OD

3 3 3 3 3
26 ID OD 27 ID IDP 28 IDP OD 29 ID OD 30 ID IDP 31 IDP OD

2 2 2
32 ID OD IDP 33 ID OD IDP 34 ID OD IDP

i i a T a T a T a T T a T T a T T

a T T a T T a T T a T T a T T a T T

a T T T a T T T a T T T

φ φ= + + + + + +

+ + + + + +

+ + +

   (4th order)       (1d) 

 
2.5  Artificial Neural Network (ANN) Reference Model 

An Artificial Neural Network (ANN) model was developed for the seven features.  The relationship of 
independent variables and features is learned by an artificial neural network using a back propagation 
algorithm (Wasserman, 1989; Hassoun, 1995).  Figure 5 shows the structure of the ANN used in this 
study.  It has three input variables (TOD, TID, and TIDP) and one output.  This neural network has three 
layers consisting of an input, hidden, and output layer with the input and hidden layers having three nodes.  
The sigmoid function is used as the activation function of the hidden layer.  The weight coefficients and 
offsets are “learned” using a momentum back propagation algorithm through more than 10,000 iterations.   

The input layer acts only as input nodes; no processing of TOD, TID, or TIDP occurs within the input layer.  
The various arrows between the input layer and the hidden layer indicate weights, or multipliers, applied 
to each input variable before passing to the sigmoid function within each hidden layer node.  Equation 2 
illustrates the output of a neuron, f(s), and how the sigmoid function is applied within the layers.   
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The three-node hidden layer uses 9 adjustable weighting coefficients and 3 offset coefficients.  The 

single output node has its own 3 adjustable weighting coefficients and a single offset to produce the final 
predicted value of the feature, Fpred.  Each heat pump feature to be represented by the ANN is calculated 
in this manner using TOD, TID, or TIDP as inputs.  The predicted value is compared to the measured value to 
produce an error value (residual) for each feature.  The back propagation algorithm is then used to adjust 
the weights and offsets to minimize the error, or “train” the ANN.   

 
Figure 5.  Artificial neural network structure 

3.  Model Validation 
In validating the model, we used a dataset of 111 points, a subset of the full 5830 point dataset, to 

improve the performance of the ANN learning process.  The 111 point dataset was created by selecting 
the datapoints that were spaced by a minimum predetermined distance in the independent variables space.  
First, TID , TOD , and TIDP were mapped onto xyz-coordinates.  Each (x, y, z) point was then compared to 
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all of the other points to determine if any of the other points fell within the predetermined distance of the 
point.  This is equivalent to drawing a sphere of radius r at a particular (x, y, z) location and examining 
this sphere volume to determine if any other points fall within.  If another (x, y, z) point fell within this 
sphere, it was removed from the data set; thus all of the independent variable (x, y, z) points were 
examined and winnowed in this manner.  In this study, r was selected to be 0.96 °C.   

Table 4 shows the mean squared residual (MSR), as calculated by Eq. 3, for the multivariate 
polynomial regression models and ANN model when fit to the reduced dataset consisting of 111 points.  
The mean squared residual is the sum of the squared residuals divided by the degrees of freedom for the 
regression and is an estimate of the model variance (Graybill and Iyer, 1994a).   
 

( )( )
( )1mN

MSR

2

+−

−
=
∑

i

n
iix φ

                                                                 (3) 

 
Table 4.  MSR of the models fit to a reduced dataset of 111 points for the seven selected features 

Feature 1st order 2nd order 3rd order 4th order ANN 
TE (°C) 1.298 0.095 0.052 0.016 0.122 
Tsh (°C) 0.980 0.442 0.222 0.140 0.263 
TC (°C) 0.136 0.014 0.007 0.005 0.072 
TD (°C) 2.215 0.373 0.246 0.110 1.341 
Tsc (°C) 0.198 0.139 0.081 0.036 0.395 
ΔTEA (°C) 1.431 0.087 0.030 0.012 0.159 
ΔTCA (°C) 0.106 0.019 0.012 0.009 0.024 

m+1 4 10 20 35 16 
 
Table 5 shows the MSRs for the models fit to the full dataset of 5830 points while Table 6 shows the 

MSRs for the reduced dataset models applied to the full dataset.  The reduced models’ MSRs of Table 6 
and the full dataset MSRs of Table 5 differ by an average of 26 %.  Thus the reduced dataset is a good 
representation of the system features, but the full dataset model produces smaller MSRs.   
 

Table 5.  MSR of the models fit to the full dataset of 5830 points for the seven selected features 
Feature 1st order 2nd order 3rd order 4th order ANN 
TE (°C) 0.979 0.072 0.051 0.015 0.129 
Tsh (°C) 1.055 0.397 0.176 0.121 0.273 
TC (°C) 0.108 0.011 0.007 0.005 0.068 
TD (°C) 2.078 0.342 0.213 0.088 1.403 
Tsc (°C) 0.202 0.135 0.066 0.028 0.480 
ΔTEA (°C) 1.103 0.066 0.027 0.011 0.159 
ΔTCA (°C) 0.085 0.018 0.014 0.012 0.030 

m+1 4 10 20 35 16 
 

Table 6.  MSR of the reduced dataset model applied to the full dataset of 5830 points for the seven 
selected features 

Feature 1st order 2nd order 3rd order 4th order ANN 
TE (°C) 0.992 0.077 0.061 0.023 0.129 
Tsh (°C) 1.160 0.465 0.258 0.213 0.273 
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TC (°C) 0.110 0.012 0.0080 0.0078 0.068 
TD (°C) 2.403 0.409 0.285 0.161 1.407 
Tsc (°C) 0.213 0.144 0.083 0.055 0.482 
ΔTEA (°C) 1.116 0.072 0.033 0.017 0.160 
ΔTCA (°C) 0.087 0.019 0.017 0.019 0.030 

m+1 4 10 20 35 16 
 

As expected, a higher order MPR model produces a smaller mean squared residual.  However, the 
number of model coefficients increases exponentially due to the addition of the crossterm coefficients.  
The number of coefficients, m+1, used to model each feature may be reduced by applying an F-Test to 
each coefficient of the respective models (Graybill and Iyer, 1994b).  The F-statistic is calculated using 
the following equations: 

( )
g-m

SSRSSR
MS fullreduced

drop
−

=                                                            (4) 

 

( )1m-N
SSR

MSR full
full +

=                                                                 (5) 

 

full

drop

MSR
MS

 F =                                                                          (6) 

 
where g+1 is the number of coefficients in the reduced model.  The F-statistic follows an F distribution 
with m-g and N-(m+1) degrees of freedom.  Large values of F indicate that the terms removed from the 
reduced model were significant.  One may use the F-statistic as a means of ranking the contribution of a 
particular coefficient to the fit of the regressed model.  By dropping one term at a time and sorting the 
reduced models in terms of their F-statistics, the effect of removal of a particular term may be assessed by 
comparing the MSR of the reduced model to that of the full model.  Table 7 shows the results of this 
technique when applied to a backward elimination on the full 3rd order polynomial model.   

 
Table 7.  Terms removed from the 3rd order MPR model using an F-Test 
3rd Order MPR Model Backward Elimination, x = TOD, y = TID, z = TIDP 

Feature Less than 1 % 
higher MSR Less than 5 % higher MSR Less than 10 % higher 

MSR 
Term(s) removed 

TE (°C) z, xy, z2 z, xy, z2, x2, y, y3 NA 

Tsh (°C) y2, z, z2, y2z, x y2, z, z2, y2z, x, y, z3 y2, z, z2, y2z, x, y, z3, y2x, 
y3 

TC (°C) y y, y2z, y3 y, y2z, y3, yz, z3 
TD (°C) x, y3 x, y3, yz, x2y, z2y, xyz x, y3, yz, x2y, z2y, xyz, z2 
Tsc (°C) y, z2, z2y, y3 y, z2, z2y, y3, y2x, yz, z2x NA 
ΔTEA (°C) y NA y, z 
ΔTCA (°C) x2z, y, z3 x2z, y, z3, y3, z, x2y, xz NA 

NA:  The % change in MSR does not fall between the upper and lower bounds with the removal of a single coefficient. 
 

Table 7 shows that one to four terms may be removed from the full 3rd order polynomial while the 
models’ MSRs remain less than 1 % from the full models’ MSRs.  If the criteria is raised to within 5 % of 
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the full models’ MSRs, up to seven terms may be removed from several of the 3rd order polynomials.  
Raising the percentage change in MSR to within 10 % allows the removal of up to nine coefficients for 
Tsh.  The decision as to how many terms to remove is at the discretion of the model developer, but as with 
any regression equation, the confidence interval on the mean value of any of the features determined at a 
particular value of the independent parameters will be larger for larger MSRs.  The confidence interval is 
a function of the MPR model standard residual ( MSR ), the Student’s t-value for the particular 
confidence level, and degrees of freedom (Ott 1984).   

Figure 6 shows the performance of the full MPR models and ANN model during operation at a TOD of 
27.8±0.3 °C.  If an air conditioning system is installed in the field, TID may change continuously 
according to indoor cooling load or thermostat settings.  The three features, Tsh, Tsc, and TD, are shown in 
Figure 6 because they varied the most as indoor temperature changed.  In Figure 6(a) where there is an 
abrupt change in TID, the steady state of the system is broken, as indicated by the steady-state detector in 
Figure 6(e).   

Figure 6(b), 6(c), and 6(d) show Tsh, Tsc and TD as predicted by the 1st, 2nd, and 3rd order MPR models 
and the ANN model.  The 3rd order MPR model shows the best fit to the measured data during steady-
state operation.  As the order of the polynomial model decreases, the fit to the experimental data set 
degrades.  Predictions by the ANN model are worse than those by the 3rd order MPR model.  The Tsh 
predicted by the ANN model is comparable to that of the 3rd order MPR model (Figure 6(b)), but Tsc was 
not predicted well by the ANN model, as shown in Figure 6(c).  The predicted values of TD for the ANN 
model are between the 1st and 2nd order MPR models, as shown in Figure 6(d).   

4.  Summary 
Seven features of a residential heat pump system were modeled using the 1st, 2nd, 3rd, and 4th order 

MPR models and an ANN model.  The laboratory data were filtered by a steady-state detector, which 
automatically examined and processed data to improve data collection consistency and the resulting 
steady-state reference model.  Considering the fit, the polynomial model should be at least 3rd order.  The 
4th order polynomial model’s use of 75 % more coefficients for only a 14 % decrease in MSR does not 
justify it replacing the 3rd order model.  The F-Test can be applied to reduce the number of coefficients in 
a general linear model, and this technique may aid a developer in creating a more compact representation 
of the system features.  The ANN model predicted all features with less accuracy than the 3rd order MPR 
model.  Because of insignificant non-linearity between the independent variables and the features in the 
cooling mode, the ANN model’s ability to fit nonlinear behavior did not provide any advantage over the 
3rd order MPR models.   

The reference model should not be over-specified by increasing the order of the MPR model.  The 
model variance should be lower than that of independent variable measurements.  The smaller the 
models’ variances, the smaller their contribution to the overall uncertainty of the predicted features.  The 
model developer must decide on an acceptable level of model variance based upon his FDD requirements 
and his ability to measure the independent variables and features.   
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Figure 6. Performance of MPR models and ANN model to predict features during a sample operation 

period; (a) TID; (b) Tsh; (c) Tsc; (d) TD; (e) Steady-state status (yes =1, no = 0) 
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