NIST Time|NIST Home|About NIST|Contact NIST

HomeAll Years:AuthorKeywordTitle2005-2010:AuthorKeywordTitle

Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Match to Theory and Experiment.


pdf icon Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Match to Theory and Experiment. (308 K)
Arns, C. H.; Knackstedt, M. A.; Pinczewski, W. V; Garboczi, E. J.

Journal of Geophysics, Vol. 67, No. 5, 1396-1405, September/October 2002.

Keywords:

elastic property; finite elements; porosity; saturation; microtomography; petrophysics; rock morphology

Abstract:

Elastic property-porosity relationships are derived directly from microtomographic images. This is illustrated for a suite of 4 samples of Fontainebleau sandstone with porosities ranging from 7.5% to 22%. A finite element method is used to derive the elastic properties of digitized images. By estimating and minimizing several sources of numerical error very accurate predictions of properties are derived in excellent agreement with experimental measurements over a wide range of the porosity. We consider the elastic properties of the digitized images under dry, water- and oil-saturated conditions. The observed change in the elastic properties due to fluid substitution is in excellent agreement with the exact Gassmann equations. This shows both the accuracy and the feasibility of combining microtomographic images with elastic calculations to accurately predict petrophysical properties of individual rock morphologies. We compare the numerical predictions to various empirical, effective medium and rigorous approximations used to relate the elastic properties of rocks to porosity under different saturation conditions.