
OFFLINE PATH PLANNING OF COOPERATIVE MANIPULATORS USING  
CO-EVOLUTIONARY GENETIC ALGORITHM 

 
by 
 

M.S.Ajmal Deen Ali1, N. Ramesh Babu1 and Koshy Varghese2 
   

1Dept. of Mechanical Engg., I.I.T. Madras, India, email: nrbabu@iitm.ac.in 
2Dept. of Civil Engg., I.I.T Madras,India, email: Koshy.Varghese@asu.edu 

 (Currently on Sabbatical as Visiting Eminent Scholar at Del E. Webb  
       School of Construction Arizona State University, Tempe, AZ) 

 

ABSTRACT: This paper presents a new path planning approach using 
Coevolutionary genetic algorithm (CGA) for automating the path planning of two 
Cooperative construction manipulators. A methodology based on the concept of 
configuration space (C-space) technique in conjunction with the Coevolutionary 
genetic search is used for generating the path. The paper proposes a method for 
finding the minimum distance and collision free path using CGA. It uses an 
interference detection algorithm that runs in parallel with CGA to check collision 
between obstacle and cooperative cranes during path planning. The effectiveness of 
CGA is compared with other search approaches like A* and Genetic Algorithms GA.  

KEYWORDS: Cooperative manipulators, Path planning, Coevolutionary genetic 
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1. INTRODUCTION 
 
Cooperative manipulators are being widely 
employed in construction and assembly for 
handling medium to heavy objects. Path 
planning of cooperative manipulators is quite 
different from path planning of a single 
manipulator. When the object to be lifted is too 
heavy or large for a single manipulator, options 
such as specially assembled equipment such as 
jacking systems and cooperative use of multiple 
medium capacity manipulators can be a suitable 
alternative.  
 
Path planning techniques are classified based on 
the criteria such as dimension of space, mobility 
of manipulator and obstacles, representation of 
space and nature of information gathering [1-6].       
Trajectory planning of two manipulators, 
cooperating to manipulate the same object, was 
solved using genetic algorithm (GA) [7]. 
Evolutionary algorithm has been used to find 
time-optimal trajectories of two coordinating 
manipulators sharing the same work space [8]. 

Customized genetic operators such as analogous 
crossover, which suits certain problem 
situations, was also designed [9]. Recent efforts 
include the development of natural systems that 
can capture key features such as Co-evolution 
and Life Time Fitness Evaluation, for solving 
path-planning issues [10]. 
 
Earlier attempts for path planning include Hill 
climbing search, A* search and Genetic 
Algorithm (GA) search [11, 12]. These 
approaches have certain disadvantages like 
excessive computational time, memory 
requirement and non-optimal paths. Recent 
works utilize the concepts of co-evolutionary 
genetic algorithm (CGA). Two populations 
constantly interact and co evolve in case of 
CGA. 
 
A 2-D path-planning problem using CGA was 
attempted [10]. This paper presents a new 
approach to solve the 3-D path-planning 
problem of cooperative manipulators using 
CGA.  



2. PROBLEM STATEMENT 

This section presents the details of a path-
planning problem involving two spatial 
cooperative manipulators, each of 3 DOF with 
hinged base. Two important considerations of 
cooperative manipulators path planning are: 

 
(a)  Ensuring cooperation between the two     

 manipulators during lifting. 
 

 (b) Handling the computational complexity  
 of the problem based on the DOF of the 
 cooperative manipulator system and its 
 movement in obstacle clustered 
 environment. 
 
a) Ensuring     cooperation     between    the  
two     manipulators during lifting 
 
Cooperation between the two manipulators is 
ensured by (i) Nature of movement of 
cooperative manipulators. (ii) Spatial distance 
between the hook ends of the manipulators 
during cooperative lift. (iii) Altitude difference 
between the hook ends of the manipulators and 
(iv) Hoist limit evaluation for both manipulators.  
 
Nature of movement represents the movement 
between the two arms, which can be either 
synchronous or asynchronous. A synchronous 
movement refers to the identical movement of 
different joints of cooperative cranes between 
two steps. In case of asynchronous movement, 
the movement between the two successive steps 
will not be the same.  
 
The spatial distance between the boom tips of 
the manipulators is kept within object length ± 2 
units. When the spatial distance between the 
boom tips of both manipulators is different from 
the object length, the sloping of load line occurs. 
This can be computed by (Figure 1).     
 
                     (1) 
  
            
where ‘HL’ - hoisting length of the hook and ‘D’ 
- Off-lead i.e. displacement of the hook from 
boom tip. Let ‘W’ be the vertical component of 
the load transferred from the object to the 

manipulator and ‘Wa’ the actual load acting 
along the load line of the crane. ‘Wa’ is 
calculated by 
 
              Wa  = W / Cos β                         (2)        
    
 (W – Wa) is the additional load transferred to 
the crane due to the slope ‘β’ of the load line. 
This results in additional load transformation to 
the manipulators. 
 
If the altitude difference (H1-H2), as shown in 
figure 2, exists, different loads will be acting on 
the hook ends. This results in more payload 
acting on a particular manipulator. In order to 
limit the extra load on the crane, an altitude 
difference of ‘3’ units is considered. 
   
Hoist limit evaluation represents the safety to be 
considered in hoisting the rope in either 
direction i.e. up or down from the ground level. 
Minimum limit is considered as ‘0’ unit i.e. at 
ground level and maximum position is boom tip 
position, considered above ground level, which 
keeps on varying depending on the luffing angle. 
 
b) Handling the computational complexity of 
the problem based on the DOF of the 
cooperative   manipulator system and its 
movement in obstacle clustered environment 
 
Collision of the cooperative manipulator system 
in the obstacle-clustered environment can occur 
due to (i) manipulator-1 colliding with obstacles, 
(ii) manipulator-2 colliding with obstacles, (iii) 
object colliding with obstacles and (iv) 
manipulator-1 colliding with manipulator-2. 
 
The feasible movement of the manipulators in 
the obstacle-clustered environment is ensured by 
means of interference detection algorithm that 
assesses the different configurations of the 
manipulator for collision. The collision checking 
is done by means of interference checking 
algorithm that performs interference check 
between line and plane segments. For this 
purpose, the obstacle is represented by many 
plane segments and cooperative manipulator 
system is represented by many line segments. 
 

β = tan-1      D 
                   HL 



A test problem considers two spatial cooperative 
manipulators performing asynchronous 
movement. Both manipulators are identical in 
size and shape. Table 1 shows the configuration 
of different arms. The upper and lower bound 
movement for different arms are shown in Table 
2.  

 

3. SEARCH METHODOLOGY 

This section covers the details of modeling and 
implementation for 2x3 cooperative manipulator 
system using A*, GA and CGA. 
 
3.1 A* search in open C-space 

A* search is a free search in the open C-space 
with on-line feasibility check [12]. The main 
advantage of this search is that it has the ability 
to go back to any node which was visited earlier. 
The step size values of swinging, luffing and 
hoisting for generating neighbors are 5, 5 and 1. 
 
3.2 GA search in open C-space 

GA search is a free search in the open C-space 
with on-line feasibility check [11]. The 
population consists of 250 strings. Each string in 
GA represents movements of the manipulator 
from pick to place location. A typical string with 
fifteen intermediate configurations between pick 
and place location is shown in figure 3.  
 
3.3 CGA 
 
In this approach, two populations known as 
solution population and test population 
continuously interact with each other to evolve 
an optimal solution.  
 
a) Solution population: Path representation as 
a string 
 
The solution population consists of 200 strings. 
Each string represents the movement of 
manipulator from pick to place location (Figure 
3). The number of steps between pick and place 
location is taken as fifteen. 
 
 

b) Test Population 
 
The test population consists of test conditions 
known a priori (Figure 1 and Figure 2). It 
consists of (1) spatial distance between the hook 
ends of the manipulators i.e. object length ± 2 
i.e. 15+2 and 15-2, (2) altitude difference 
between the hook ends of the manipulator i.e. 
(H1-H2) = ‘3’ units, (3) hoist limit evaluation 
varies according to boom luffing angle and (4) 
collision of the cooperative manipulator system 
with the environment that consists of  (i) 
manipulator-1 colliding with obstacles, (ii) 
manipulator-2 colliding with obstacles, (iii) 
object colliding with obstacles and (iv) 
manipulator-1 colliding with manipulator-2. 
 
c) Encountering 
 
In CGA encountering is the process in which 
one string from solution population and 
randomly chosen test conditions from test 
population interact with each other to produce a 
better offspring. It consists of three stages.  
 
STAGE 1 
 
Fitness is found for all the individuals in both 
the populations by subjecting them to encounter 
‘3’ randomly selected individuals from the other 
population. A solution receives a payoff of one 
if it satisfies the test. Otherwise, it receives a 
zero. The opposite is true for test. It gets a 
payoff of one if the solution encountered does 
not satisfy a test. Each individual - test or 
solution - has a history, which stores the payoff 
resulting from such an encounter.  The fitness of 
an individual in solution population is estimated 
by  
 
Fs = P (x) [1+(1/Hs)]   (3) 
 
where P (x) is the objective function and Hs is 
the total payoff for that individual. The objective 
function is defined as the sum of square of 
absolute differences of identical joint angles 
between successive configurations for all the 
joints of the manipulators as the cooperative 
manipulator system moves from pick to place 
location. It is estimated by 

   



 n-1      m 
P(x) = Σ       Σ   | θ i+1, j - θ i, j | 2  (4)

 i=1    j=1     
                     
where ‘n’ represents the number of 
configuration sets and ‘m’ represents the number 
of joint parameters required to define a unique 
position of the cooperative manipulator system 
and ‘θ i, j’ is the value of joint angle of jth link in 
ith configuration set. The fitness of an individual 
in the test population is estimated by  
 
F = Ht.     (5) 
 
where Ht is the total payoff for that individual. 
An individual according to their fitness value i.e. 
minimum distance and payoff for first 
population and only payoff for second 
population, is arranged in descending order in 
their respective population 
 
STAGE 2 
 
In this stage, one fittest string from the first 
population and three randomly selected test 
conditions from the test population are subjected 
to encounter. The selection of this string and test 
conditions are biased towards highly ranked 
individuals i.e. the fittest individuals are more 
likely to be selected. The result of such an 
encounter is ‘1’ if any test is satisfied (or) ‘0’ in 
case of violation. The fitness (or) maximum pay-
off for this string is calculated. According to its 
fitness value, it is ranked in descending order in 
the first population. A similar operation is 
performed on the test population also. Since 
both the populations are sorted based on their 
fitness values, an individual might move up and 
down in its population as a result of the update 
of its fitness.  
 
STAGE 3 
 
In this stage, the conventional GA process is 
followed. Two strings from the first population 
are selected based on their fitness. An offspring 
is created by the process of adaptive crossover. 
Adaptive crossover is illustrated in figure 4, i.e. 
the same intermediate configurations on both 
parent 1 and parent 2 will be checked for their 
payoff value. The particular configurations, with 

highest payoff, will be inserted in to the same 
configuration in the offspring. This cycle is 
repeated for the remaining configurations until 
all the configurations in the offspring are filled.  
 
Mutation is applied in an adaptive manner with a 
probability of ‘0.1’. Adaptive mutation is 
implemented in order to reduce the angular 
displacement between adjacent configurations as 
well as to bring the cooperation between 
manipulator 1 and manipulator 2. All the joint 
angle positions are subjected to this probability. 
If they are satisfied, they will undergo adaptive 
mutation as shown in Figure 5. For example, the 
swing position as marked by arrow ‘1” is to be 
subjected to adaptive mutation (assumed to be 
the jth position) then the j-6th (arrow 2) and j+3rd 
position (arrow 3), both are swing positions, will 
be considered. A random number will be 
generated between the swing positions 
considered. Similarly if luffing position is 
considered as jth position, then the j-6th and j+3rd 
positions i.e. luff position, will be considered for 
mutation. A random number will be generated 
between these points. The value generated is 
inserted in the jth position. This process is 
applied to all the joint angle positions, which 
satisfy the mutation probability condition.   
 
Figure 6 shows the methodology adopted for 
finding a feasible collision free string with CGA. 
The fitness of offspring is estimated as the sum 
of payoff received from encounter with three-
selected test conditions. The offspring is then 
inserted into the solution population based on 
their fitness values. To accommodate this new 
offspring, the lower fitness value string in the 
solution population is deleted. The procedure 
adopted in STAGE 2 and STAGE 3 is continued 
until the fitness of string in the solution 
population remains almost the same in ten 
consecutive generations.  
 
4. RESULTS AND DISCUSSIONS 

 
The manipulators shown in the section 2 are 
considered for cooperative path planning with 
the proposed CGA approach. In order to asses 
the effectiveness of this approach, two different 
approaches such as A* and GA for path 
planning were also considered and these 



approaches were developed using C++ 
programming language and implemented on the 
same platform, i.e. 333 MHz Pentium II 
processor PC with 128 MB RAM with Windows 
NT operating system. The computation time for 
finding the feasible path from pick to place 
location using different approaches like A*, GA 
and CGA, depends on the lift path and position 
of the pick and place location in the obstacle 
clustered environment i.e. lifting an object 
vertically up may be simpler to compute than 
another path. For path planning of cooperative 
manipulators, C-space approach was adopted for 
representing the position of the manipulators. 
Performance of A*, GA and CGA for path 
planning of 2x3 cooperative manipulators is 
assessed and the results are presented in Table 3. 
 
4.1. A*search 
 
The minimum incremental movements of 
different joints of manipulator are shown in 
Table 4. A* search could determine the feasible 
path from pick to place location in 30 
intermediate steps. The time taken for finding 
the feasible path is 320 minutes. The minimum 
distance, in terms of linear movements, from 
pick to place location is 73 units. If A* is 
allowed to search the C-space exhaustively i.e. 
with 1 degree increment, the time taken will be 
more than 2000 minutes. The disadvantage with 
this step angle increment is that pick and place 
angle has to lie within the increment angle of 
search; otherwise the search will never give a 
feasible solution.  
 
4.2. GA search  
 
Total number of joint angles to represent a 
unique configuration is 6; Range for different 
joint angles  swing: 0-360 degrees: luffing: 30-
80 degrees: hoist: 0-39 units; Number of 
configuration sets representing a string 
excluding pick and place location: 15. 
 
For generating the path with GA, the number of 
intermediate configurations between pick and 
place location is fixed as fifteen. The time for 
computation of feasible path with GA is 183 
minutes. The minimum distance in terms of 
linear movements from pick to place location is 

79 units. GA computes the collision for all the 
configurations in the population, due to which a 
considerable time was spent.  
 
4.3. CGA search 
 
Total number of joint angles to represent a 
unique configuration: 6; the arm configurations 
and its lower and upper bound values are shown 
in Table 3 and Table 4. Number of configuration 
sets representing a string excluding pick and 
place location: 15. 
 
The computation time for finding a feasible path 
is 20 minutes. The minimum distance, in terms 
of linear movements, from pick to place location 
is 58 units. CGA subjects only two strings i.e. 
one fittest string and one offspring for collision 
computation in the successive   generations 
except the initial fitness ranking generation, thus 
saving a large amount of time.  
 
The pictorial view showing the object position at 
intermediate locations for A*, GA and CGA are 
shown in figure 7, figure 8 and figure 9. These 
discrete object positions are drawn by 
converting the intermediate configuration angles 
of the cooperative manipulator system in C-
space to the Cartesian Space. 
  
From the figure 7, it is observed that the discrete 
object positions are placed in a zigzag position 
in A*. This is due to the move taken by the 
search for adjacent feasible configuration when 
it encounters one. In the Figure 8,  it is observed 
that discrete object positions computed with GA 
are not located at equal intervals. Since the 
entire population undergoes cross over and 
mutation at the same time, the possibility of a 
larger random joint angle movement exists. In 
the Figure 9, it is observed that discrete object 
positions computed with CGA are almost 
located at equal intervals. Two populations i.e. 
highly biased individuals from string population 
undergo adaptive cross over and parameter 
based mutation, which results in the possibility 
of smooth movement of joints with equal 
interval of displacement.  
 
 
 



5. CONCLUSIONS 
 
This paper presents a new approach using CGA 
for automated path planning of 2x3 cooperative 
manipulator system. The suitability of CGA for 
offline path planning in comparison with other 
techniques was demonstrated. From the results 
presented in this paper, the following 
conclusions can be made: 
 

1. CGA in conjunction with C-space 
technique proves to be an effective 
approach to solve path planning 
problems of cooperative construction 
manipulators in complex environment 

 
2. Search using CGA is found to be 

effective approach in terms of 
computation time, when compared to 
other search techniques like A* search 
and GA search.  

 
3. CGA was found to be efficient in 

generating the shortest path from pick to 
place location, when compared to other 
search techniques like A* and GA.  

 
The future work attempts to investigate the 
suitability of this approach for more complex 
cooperative manipulator applications like 2x4 
i.e. two manipulators each with 4 DOF. 
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Table 1. Manipulator arm configurations 

Arm 

configurations 

Length Breadth Height 

Base 10 8 2.5 

Boom 40 3 3 

Hoisting Rope 39 unit - - 

 
 

 
 
Table 2. Upper and lower bounds for the  
  manipulator arms 
Arm Base Boom Hoisting 

Rope 

Lower 00 300 0 unit 

Upper 3600 800 39 unit 

    
 

Figure 1 Increase in Load Transferred to the manipulators due to slope of the load line 

Figure 2 Difference in load shared by hook ends of the manipulators 



      Configuration of                                                                             Configuration of 
       Robot 1           Robot 2                                 Robot 1        Robot 2  

 

θ1 θ2 θ3 θ4 θ5 θ6 1 2 3 . . . . 13 14 15 θ1 θ2 θ3 θ4 θ5 θ6 

                           

        (Pick location)                     (Intermediate location)         (Place location)  

θ1 θ2 θ3 θ4 θ5 θ6

 

Figure 3.A typical string with fifteen intermediate configurations of 2x3 cooperative manipulators 

between pick and place location 
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Figure 4. Adaptive cross over 
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Figure 5. Adaptive mutation 
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Figure 6: CGA methodology for finding feasible collision-free string 
 



Table 3. Performance comparison of A*, GA and CGA for 2x3 cooperative manipulator path planning 
  
    Method    Earlier approach [11,12]  Current approach 

     A*    GA   CGA 

Pick location       [320,70,2][320,70,2]  [320,70,2][320,70,2]        [320,70,2][320,70,2] 

Place location [270,40,2][270,40,2]  [270,40,2][270,40,2]        [270,40,2][270,40,2] 

Number of generation       -              540   750 

CPU time (minutes)  320              183    20  

Distance in terms of linear  
movements (units)   73                     79                                58  

 
 
Table 4. Incremental angle between adjacent 
moves of manipulator 
 
Arm Base Boom Hoisting 

Rope 

Lower 00 300 0 unit 

Upper 3600 800 39 unit 

Increment 50 50 1 unit 

 

 
 

Figure 7. Pictorial  view   showing   the   path  
generated by A* for cooperative manipulators 
 

 

Figure 8. Pictorial   view   showing  the    path  
generated by GA for cooperative manipulators 
 
 

 

Figure 9. Pictorial   view    showing    the    path  
generated by CGA for cooperative manipulator



  

 


