
OFFLINE PATH PLANNING OF COOPERATIVE MANIPULATORS USING
CO-EVOLUTIONARY GENETIC ALGORITHM

by

M.S.Ajmal Deen Ali1, N. Ramesh Babu1 and Koshy Varghese2

1Dept. of Mechanical Engg., I.I.T. Madras, India, email: nrbabu@iitm.ac.in
2Dept. of Civil Engg., I.I.T Madras,India, email: Koshy.Varghese@asu.edu

 (Currently on Sabbatical as Visiting Eminent Scholar at Del E. Webb
 School of Construction Arizona State University, Tempe, AZ)

ABSTRACT: This paper presents a new path planning approach using
Coevolutionary genetic algorithm (CGA) for automating the path planning of two
Cooperative construction manipulators. A methodology based on the concept of
configuration space (C-space) technique in conjunction with the Coevolutionary
genetic search is used for generating the path. The paper proposes a method for
finding the minimum distance and collision free path using CGA. It uses an
interference detection algorithm that runs in parallel with CGA to check collision
between obstacle and cooperative cranes during path planning. The effectiveness of
CGA is compared with other search approaches like A* and Genetic Algorithms GA.

KEYWORDS: Cooperative manipulators, Path planning, Coevolutionary genetic
algorithm

1. INTRODUCTION

Cooperative manipulators are being widely
employed in construction and assembly for
handling medium to heavy objects. Path
planning of cooperative manipulators is quite
different from path planning of a single
manipulator. When the object to be lifted is too
heavy or large for a single manipulator, options
such as specially assembled equipment such as
jacking systems and cooperative use of multiple
medium capacity manipulators can be a suitable
alternative.

Path planning techniques are classified based on
the criteria such as dimension of space, mobility
of manipulator and obstacles, representation of
space and nature of information gathering [1-6].
Trajectory planning of two manipulators,
cooperating to manipulate the same object, was
solved using genetic algorithm (GA) [7].
Evolutionary algorithm has been used to find
time-optimal trajectories of two coordinating
manipulators sharing the same work space [8].

Customized genetic operators such as analogous
crossover, which suits certain problem
situations, was also designed [9]. Recent efforts
include the development of natural systems that
can capture key features such as Co-evolution
and Life Time Fitness Evaluation, for solving
path-planning issues [10].

Earlier attempts for path planning include Hill
climbing search, A* search and Genetic
Algorithm (GA) search [11, 12]. These
approaches have certain disadvantages like
excessive computational time, memory
requirement and non-optimal paths. Recent
works utilize the concepts of co-evolutionary
genetic algorithm (CGA). Two populations
constantly interact and co evolve in case of
CGA.

A 2-D path-planning problem using CGA was
attempted [10]. This paper presents a new
approach to solve the 3-D path-planning
problem of cooperative manipulators using
CGA.

2. PROBLEM STATEMENT

This section presents the details of a path-
planning problem involving two spatial
cooperative manipulators, each of 3 DOF with
hinged base. Two important considerations of
cooperative manipulators path planning are:

(a) Ensuring cooperation between the two

 manipulators during lifting.

 (b) Handling the computational complexity
 of the problem based on the DOF of the
 cooperative manipulator system and its
 movement in obstacle clustered
 environment.

a) Ensuring cooperation between the
two manipulators during lifting

Cooperation between the two manipulators is
ensured by (i) Nature of movement of
cooperative manipulators. (ii) Spatial distance
between the hook ends of the manipulators
during cooperative lift. (iii) Altitude difference
between the hook ends of the manipulators and
(iv) Hoist limit evaluation for both manipulators.

Nature of movement represents the movement
between the two arms, which can be either
synchronous or asynchronous. A synchronous
movement refers to the identical movement of
different joints of cooperative cranes between
two steps. In case of asynchronous movement,
the movement between the two successive steps
will not be the same.

The spatial distance between the boom tips of
the manipulators is kept within object length ± 2
units. When the spatial distance between the
boom tips of both manipulators is different from
the object length, the sloping of load line occurs.
This can be computed by (Figure 1).

 (1)

where ‘HL’ - hoisting length of the hook and ‘D’
- Off-lead i.e. displacement of the hook from
boom tip. Let ‘W’ be the vertical component of
the load transferred from the object to the

manipulator and ‘Wa’ the actual load acting
along the load line of the crane. ‘Wa’ is
calculated by

 Wa = W / Cos β (2)

 (W – Wa) is the additional load transferred to
the crane due to the slope ‘β’ of the load line.
This results in additional load transformation to
the manipulators.

If the altitude difference (H1-H2), as shown in
figure 2, exists, different loads will be acting on
the hook ends. This results in more payload
acting on a particular manipulator. In order to
limit the extra load on the crane, an altitude
difference of ‘3’ units is considered.

Hoist limit evaluation represents the safety to be
considered in hoisting the rope in either
direction i.e. up or down from the ground level.
Minimum limit is considered as ‘0’ unit i.e. at
ground level and maximum position is boom tip
position, considered above ground level, which
keeps on varying depending on the luffing angle.

b) Handling the computational complexity of
the problem based on the DOF of the
cooperative manipulator system and its
movement in obstacle clustered environment

Collision of the cooperative manipulator system
in the obstacle-clustered environment can occur
due to (i) manipulator-1 colliding with obstacles,
(ii) manipulator-2 colliding with obstacles, (iii)
object colliding with obstacles and (iv)
manipulator-1 colliding with manipulator-2.

The feasible movement of the manipulators in
the obstacle-clustered environment is ensured by
means of interference detection algorithm that
assesses the different configurations of the
manipulator for collision. The collision checking
is done by means of interference checking
algorithm that performs interference check
between line and plane segments. For this
purpose, the obstacle is represented by many
plane segments and cooperative manipulator
system is represented by many line segments.

β = tan-1 D
 HL

A test problem considers two spatial cooperative
manipulators performing asynchronous
movement. Both manipulators are identical in
size and shape. Table 1 shows the configuration
of different arms. The upper and lower bound
movement for different arms are shown in Table
2.

3. SEARCH METHODOLOGY

This section covers the details of modeling and
implementation for 2x3 cooperative manipulator
system using A*, GA and CGA.

3.1 A* search in open C-space

A* search is a free search in the open C-space
with on-line feasibility check [12]. The main
advantage of this search is that it has the ability
to go back to any node which was visited earlier.
The step size values of swinging, luffing and
hoisting for generating neighbors are 5, 5 and 1.

3.2 GA search in open C-space

GA search is a free search in the open C-space
with on-line feasibility check [11]. The
population consists of 250 strings. Each string in
GA represents movements of the manipulator
from pick to place location. A typical string with
fifteen intermediate configurations between pick
and place location is shown in figure 3.

3.3 CGA

In this approach, two populations known as
solution population and test population
continuously interact with each other to evolve
an optimal solution.

a) Solution population: Path representation as
a string

The solution population consists of 200 strings.
Each string represents the movement of
manipulator from pick to place location (Figure
3). The number of steps between pick and place
location is taken as fifteen.

b) Test Population

The test population consists of test conditions
known a priori (Figure 1 and Figure 2). It
consists of (1) spatial distance between the hook
ends of the manipulators i.e. object length ± 2
i.e. 15+2 and 15-2, (2) altitude difference
between the hook ends of the manipulator i.e.
(H1-H2) = ‘3’ units, (3) hoist limit evaluation
varies according to boom luffing angle and (4)
collision of the cooperative manipulator system
with the environment that consists of (i)
manipulator-1 colliding with obstacles, (ii)
manipulator-2 colliding with obstacles, (iii)
object colliding with obstacles and (iv)
manipulator-1 colliding with manipulator-2.

c) Encountering

In CGA encountering is the process in which
one string from solution population and
randomly chosen test conditions from test
population interact with each other to produce a
better offspring. It consists of three stages.

STAGE 1

Fitness is found for all the individuals in both
the populations by subjecting them to encounter
‘3’ randomly selected individuals from the other
population. A solution receives a payoff of one
if it satisfies the test. Otherwise, it receives a
zero. The opposite is true for test. It gets a
payoff of one if the solution encountered does
not satisfy a test. Each individual - test or
solution - has a history, which stores the payoff
resulting from such an encounter. The fitness of
an individual in solution population is estimated
by

Fs = P (x) [1+(1/Hs)] (3)

where P (x) is the objective function and Hs is
the total payoff for that individual. The objective
function is defined as the sum of square of
absolute differences of identical joint angles
between successive configurations for all the
joints of the manipulators as the cooperative
manipulator system moves from pick to place
location. It is estimated by

 n-1 m
P(x) = Σ Σ | θ i+1, j - θ i, j | 2 (4)

 i=1 j=1

where ‘n’ represents the number of
configuration sets and ‘m’ represents the number
of joint parameters required to define a unique
position of the cooperative manipulator system
and ‘θ i, j’ is the value of joint angle of jth link in
ith configuration set. The fitness of an individual
in the test population is estimated by

F = Ht. (5)

where Ht is the total payoff for that individual.
An individual according to their fitness value i.e.
minimum distance and payoff for first
population and only payoff for second
population, is arranged in descending order in
their respective population

STAGE 2

In this stage, one fittest string from the first
population and three randomly selected test
conditions from the test population are subjected
to encounter. The selection of this string and test
conditions are biased towards highly ranked
individuals i.e. the fittest individuals are more
likely to be selected. The result of such an
encounter is ‘1’ if any test is satisfied (or) ‘0’ in
case of violation. The fitness (or) maximum pay-
off for this string is calculated. According to its
fitness value, it is ranked in descending order in
the first population. A similar operation is
performed on the test population also. Since
both the populations are sorted based on their
fitness values, an individual might move up and
down in its population as a result of the update
of its fitness.

STAGE 3

In this stage, the conventional GA process is
followed. Two strings from the first population
are selected based on their fitness. An offspring
is created by the process of adaptive crossover.
Adaptive crossover is illustrated in figure 4, i.e.
the same intermediate configurations on both
parent 1 and parent 2 will be checked for their
payoff value. The particular configurations, with

highest payoff, will be inserted in to the same
configuration in the offspring. This cycle is
repeated for the remaining configurations until
all the configurations in the offspring are filled.

Mutation is applied in an adaptive manner with a
probability of ‘0.1’. Adaptive mutation is
implemented in order to reduce the angular
displacement between adjacent configurations as
well as to bring the cooperation between
manipulator 1 and manipulator 2. All the joint
angle positions are subjected to this probability.
If they are satisfied, they will undergo adaptive
mutation as shown in Figure 5. For example, the
swing position as marked by arrow ‘1” is to be
subjected to adaptive mutation (assumed to be
the jth position) then the j-6th (arrow 2) and j+3rd
position (arrow 3), both are swing positions, will
be considered. A random number will be
generated between the swing positions
considered. Similarly if luffing position is
considered as jth position, then the j-6th and j+3rd
positions i.e. luff position, will be considered for
mutation. A random number will be generated
between these points. The value generated is
inserted in the jth position. This process is
applied to all the joint angle positions, which
satisfy the mutation probability condition.

Figure 6 shows the methodology adopted for
finding a feasible collision free string with CGA.
The fitness of offspring is estimated as the sum
of payoff received from encounter with three-
selected test conditions. The offspring is then
inserted into the solution population based on
their fitness values. To accommodate this new
offspring, the lower fitness value string in the
solution population is deleted. The procedure
adopted in STAGE 2 and STAGE 3 is continued
until the fitness of string in the solution
population remains almost the same in ten
consecutive generations.

4. RESULTS AND DISCUSSIONS

The manipulators shown in the section 2 are
considered for cooperative path planning with
the proposed CGA approach. In order to asses
the effectiveness of this approach, two different
approaches such as A* and GA for path
planning were also considered and these

approaches were developed using C++
programming language and implemented on the
same platform, i.e. 333 MHz Pentium II
processor PC with 128 MB RAM with Windows
NT operating system. The computation time for
finding the feasible path from pick to place
location using different approaches like A*, GA
and CGA, depends on the lift path and position
of the pick and place location in the obstacle
clustered environment i.e. lifting an object
vertically up may be simpler to compute than
another path. For path planning of cooperative
manipulators, C-space approach was adopted for
representing the position of the manipulators.
Performance of A*, GA and CGA for path
planning of 2x3 cooperative manipulators is
assessed and the results are presented in Table 3.

4.1. A*search

The minimum incremental movements of
different joints of manipulator are shown in
Table 4. A* search could determine the feasible
path from pick to place location in 30
intermediate steps. The time taken for finding
the feasible path is 320 minutes. The minimum
distance, in terms of linear movements, from
pick to place location is 73 units. If A* is
allowed to search the C-space exhaustively i.e.
with 1 degree increment, the time taken will be
more than 2000 minutes. The disadvantage with
this step angle increment is that pick and place
angle has to lie within the increment angle of
search; otherwise the search will never give a
feasible solution.

4.2. GA search

Total number of joint angles to represent a
unique configuration is 6; Range for different
joint angles swing: 0-360 degrees: luffing: 30-
80 degrees: hoist: 0-39 units; Number of
configuration sets representing a string
excluding pick and place location: 15.

For generating the path with GA, the number of
intermediate configurations between pick and
place location is fixed as fifteen. The time for
computation of feasible path with GA is 183
minutes. The minimum distance in terms of
linear movements from pick to place location is

79 units. GA computes the collision for all the
configurations in the population, due to which a
considerable time was spent.

4.3. CGA search

Total number of joint angles to represent a
unique configuration: 6; the arm configurations
and its lower and upper bound values are shown
in Table 3 and Table 4. Number of configuration
sets representing a string excluding pick and
place location: 15.

The computation time for finding a feasible path
is 20 minutes. The minimum distance, in terms
of linear movements, from pick to place location
is 58 units. CGA subjects only two strings i.e.
one fittest string and one offspring for collision
computation in the successive generations
except the initial fitness ranking generation, thus
saving a large amount of time.

The pictorial view showing the object position at
intermediate locations for A*, GA and CGA are
shown in figure 7, figure 8 and figure 9. These
discrete object positions are drawn by
converting the intermediate configuration angles
of the cooperative manipulator system in C-
space to the Cartesian Space.

From the figure 7, it is observed that the discrete
object positions are placed in a zigzag position
in A*. This is due to the move taken by the
search for adjacent feasible configuration when
it encounters one. In the Figure 8, it is observed
that discrete object positions computed with GA
are not located at equal intervals. Since the
entire population undergoes cross over and
mutation at the same time, the possibility of a
larger random joint angle movement exists. In
the Figure 9, it is observed that discrete object
positions computed with CGA are almost
located at equal intervals. Two populations i.e.
highly biased individuals from string population
undergo adaptive cross over and parameter
based mutation, which results in the possibility
of smooth movement of joints with equal
interval of displacement.

5. CONCLUSIONS

This paper presents a new approach using CGA
for automated path planning of 2x3 cooperative
manipulator system. The suitability of CGA for
offline path planning in comparison with other
techniques was demonstrated. From the results
presented in this paper, the following
conclusions can be made:

1. CGA in conjunction with C-space
technique proves to be an effective
approach to solve path planning
problems of cooperative construction
manipulators in complex environment

2. Search using CGA is found to be

effective approach in terms of
computation time, when compared to
other search techniques like A* search
and GA search.

3. CGA was found to be efficient in

generating the shortest path from pick to
place location, when compared to other
search techniques like A* and GA.

The future work attempts to investigate the
suitability of this approach for more complex
cooperative manipulator applications like 2x4
i.e. two manipulators each with 4 DOF.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the
Department of Science and Technology (DST),
New Delhi, India, for the financial support given
to this research work vide Grant No. III.
5(23)/2000-ET.

6. REFERENCES

[1] Latombe, J.C. (1991) Robot Motion
Planning, Kluwer Academic Publishers,
Norwell, Massachusetts.

[2] Schwartz, J.T. and Sharir, M. (1988) A
Survey of Motion Planning and Related
Geometric Algorithms, Artificial Intelligence,
37, 157-169.

[3] Udupa, S. (1977) Collision Detection and
Avoidance in Computer Controlled
Manipulators, Ph.D. Dissertation, Department of
Electrical Engineering, California Institute of
Technology, California.

[4] Lozano-Perez, T. (1983) Spatial Planning: A
Configuration Space Approach, IEEE
Transactions on Computers, C-32(2), 108-120.

[5] Khatib, O. (1986). “Real-Time Obstacle
Avoidance for Manipulators and Mobile
Robots,” International journal of Robotics
Research, Vol. 5, no. 1, pp. 90-98

[6] Schilling, R. J. (1990). Fundamentals of
Robotics: Analysis and control, Prentice-Hall,
Englewood Cliffs, New Jersey

[7] Sun, S., Morris, A.S. and Zalzala, A.M.S.
(1996) Trajectory Planning of Multiple
Coordinating Robots using Genetic Algorithms,
Robotica, 14, 227-234.

[8] Rana, A.S. and Zalzala, A.M.S. (1996) Near
Time Optimal Collision Free Motion Planning
of Robotic Manipulators using an Evolutionary
Algorithm, Robotica, 14, 621-632.

[9] Davidor, Y. (1991) Genetic Algorithms and
Robotics: A Heuristic Study for Optimization,
World Scientific Publishing Company.

[10] Paredis, J., Westra, R., (1997) Co-
evolutionary Computation for path planning,
Proceedings 5th European Congress on
Intelligent and Soft Computing (EUFIT 97),
H.-J Zimmermann(ed.), Verlag Mainz, Aachen.

[11] Sivakumar, PL., Varghese, K. and Ramesh
Babu, N. (1999) Path Planning of Construction
Manipulators using Genetic Algorithms,
Proceedings of the 16th International Symposium
on Automation and Robotics in Construction,
Madrid, Spain, 555-560.

[12] Sivakumar, PL., (2001) Automated Path
Planning of cooperative crane lifts using
Genetic and heuristic searches, M.S. Thesis,
Department of civil engineering, Indian institute
of technology Madras.

Wa

Boom Tip

W

H
L

Counter
weight

We

Working Radius ' r '
o

α

D

W

β

Base

Center of
rotation

Wb

Hook

β

Boom

Working Radius ' r '

Wa

D

W

β

α

Counter
weight

o

We

Wa

Hook
Object

β

D
β

Wb

Boom

Center of
rotation

Base

Object

T1>T2

Boom Tip

Base

H
1

Counter
weight

We

o

α

Center of
rotation

Wb T1

Boom

δ Base

α

Counter
weight

o

We

H
2

H1-H2

hook

T2

Wb

Boom

Center of
rotation

Table 1. Manipulator arm configurations

Arm

configurations

Length Breadth Height

Base 10 8 2.5

Boom 40 3 3

Hoisting Rope 39 unit - -

Table 2. Upper and lower bounds for the
 manipulator arms
Arm Base Boom Hoisting

Rope

Lower 00 300 0 unit

Upper 3600 800 39 unit

Figure 1 Increase in Load Transferred to the manipulators due to slope of the load line

Figure 2 Difference in load shared by hook ends of the manipulators

 Configuration of Configuration of
 Robot 1 Robot 2 Robot 1 Robot 2

θ1 θ2 θ3 θ4 θ5 θ6 1 2 3 13 14 15 θ1 θ2 θ3 θ4 θ5 θ6

 (Pick location) (Intermediate location) (Place location)

θ1 θ2 θ3 θ4 θ5 θ6

Figure 3.A typical string with fifteen intermediate configurations of 2x3 cooperative manipulators

between pick and place location

Pick 1 2 3 13 14 15 Place

Pick 1 2 3 . . 13 14 15 Place

Pick 1 2 3 13 14 15 Place

Figure 4. Adaptive cross over

320 70 2 320 70 2 260 60 3 300 50 5 290 56 6 280 60 3 . .

 2 1 3

 Insertion point

Figure 5. Adaptive mutation

Parent string 2

Offspring

Adaptive cross over

Parent string 1

Random number generation between 320 and 300

Place
Pick 1 2

Figure 6: CGA methodology for finding feasible collision-free string

Table 3. Performance comparison of A*, GA and CGA for 2x3 cooperative manipulator path planning

 Method Earlier approach [11,12] Current approach

 A* GA CGA

Pick location [320,70,2][320,70,2] [320,70,2][320,70,2] [320,70,2][320,70,2]

Place location [270,40,2][270,40,2] [270,40,2][270,40,2] [270,40,2][270,40,2]

Number of generation - 540 750

CPU time (minutes) 320 183 20

Distance in terms of linear
movements (units) 73 79 58

Table 4. Incremental angle between adjacent
moves of manipulator

Arm Base Boom Hoisting

Rope

Lower 00 300 0 unit

Upper 3600 800 39 unit

Increment 50 50 1 unit

Figure 7. Pictorial view showing the path
generated by A* for cooperative manipulators

Figure 8. Pictorial view showing the path
generated by GA for cooperative manipulators

Figure 9. Pictorial view showing the path
generated by CGA for cooperative manipulator

