Modeling the microstructure and elastic properties of complex
materials

by

A.P. Roberts
Centrefor Microscopy and Microanalysis
University of Queendland
St. Lucia, Queendand 4072, Australia

and

E. J. Garboczi
Building and Fire Research Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

Reprinted from MSM 2000 I nter national Conference on Modeling and Simulation of
Microsystems. Proceedings. Applied Computational Research Society. March 27-29, 2000,
San Diego, CA, 2000.

NOTE: This paper isa contribution of the National I nstitute of Standards and

Technology and is not subject to copyright.

mEER
I
il
I1SQE-1061

k4

IST CENTEMMIALE



NIST

Mational Institute of Standards and Technology
Technelogy Adminisration, LS. Department of Commerce



Modeling the microstructure and elastic properties of complex materials

A. P. Roberts®' and E. J. Garboczi*

*Building Materials Division, National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA, Edward.Garboczi@nist.gov
tCentre for Microscopy and Microanalysis, University of Queensland,
St. Lucia, Queensland 4072, Australia, anthony.roberts@mailbox.uq.edu.au

ABSTRACT

The finite element method is used to study the influ-
ence of porosity and pore shape on the elastic properties
of model porous media. The Young’s modulus of each
model was found to be practically independent of the
solid Poisson’s ratio. The results are in good agreemen-
t with experimental data. We provide simple formu-
lae that can be used to predict the elastic properties of
porous media, and allow the accurate interpretation of
empirical data in terms of pore shape and structure.
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1 Introduction

Materials with complex microstructure arise in a wide
range of applications. Materials include ceramics, foamed
solids, aerogels, polymer blends, and artificial bone [1]-[3]
If a material is to be synthesized for a particular pur-
pose, it is important to understand the relationship be-
tween microstructure and the target property. Gener-
ally, theoretical relationships only account for porosity,
although the shape and nature (e.g. connectivity) of the
the porosity and solid phase are known to be critical. In
this study, we use the finite element method to study the
relationship between microstructure and the bulk elastic
properties of a wide range of realistic porous models.

There have been several different approaches to de-
riving property-porosity relations for random porous ma-
terials. Formulae derived using the micro-mechanics
method [4] are essentially various methods of approx-
imately extending exact results for small fractions of
spherical pores to higher porosities. A drawback of this
approach is that the microstructure corresponding to a
particular formula is not precisely known; hence agree-
ment or disagreement with data can neither confirm nor
reject a particular model. A second class of models,
based on periodic microstructures (for example arrays
of spheres or repeated cell-units), are often too simple
to mimic the complex microstructures found in real ma-
terials. Finally, there do exist rigorous theories based on
microstructural inputs [3], but the information required
to evaluate the results is generally difficult to obtain.
The most promising results in this class are variational

bounds [1], [3].

Another approach is to computationally solve the e-
quations of elasticity for digital models of microstruc-
ture [5). In principle this can be done exactly. How-
ever, large statistical variations and insufficient resolu-
tion have limited the accuracy of results obtained to
date. Only recently have computers been able to han-
dle the large 3-D models and number of computations
needed to obtain reasonable results. As input to the
method, we employ nine different microstructural mod-
els that broadly cover the types of morphology observed
in porous materials. The results, which can be expressed
simply by two parameter relations, correspond to a par-
ticular microstructure and explicitly show how the prop-
erties depend on the nature of the porosity. Therefore,
the results can be used as a predictive tool for cases
where the microstructure of the material is similar to
one of the models, and as an interpretive tool if the mi-
crostructure is unknown.

2 Results and discussion

The models we consider are depicted in Fig. 1. The
models are digitized on grids of a sufficiently high resolu-
tion to capture the important details of the model. This
study is limited to grids of linear dimension M < 128
(ie. M3 ~ 2 x 106 pixels). The finite element method
(FEM) uses a variational formulation of the linear elas-
tic equations, and finds the solution by minimizing the
elastic energy via a fast conjugate gradient method. A
strain is applied, with the average stress or the aver-
age elastic energy giving the effective elastic moduli [1],
[3]. Details of the theory and programs used are re-
ported in Ref. [5]. The actual programs are available at
http://ciks.cbt.nist.gov/garboczi/, Part II Chapter 2.

Results for the “Boolean” models (overlapping solid
sphere, spherical pores and ellipsoidal pores) are shown
in Fig. 2. Each symbol represents the average over five
different samples to reduce statistical errors in the re-
sults. We study the models for reduced densities p =
p/ps > 0.5, where p and p, are the density of the porous
media and solid matrix respectively. It becomes in-
creasingly difficult to make accurate measurements at
low densities as the properties depend more and more
on thin connections which are difficult to accurately re-
solve. The density range we study encompasses most



Figure 1: The model microstructures. (a) overlapping solid spheres, (b) overlapping spherical pores, (c) overlapping
ellipsoidal pores, (d) open-cell Voronoi tessellation, (e) closed-cell Voronoi tessellation, (f) open-cell node-bond model,
(g) open-cell node-bond model, (h) open-cell level-cut Gaussian random field, and (i) closed-cell level-cut Gaussian
random field. The Boolean models (a—c) are discussed in Refs. [3], [6] and the Voronoi tessellation (d-e) is reviewed
by Stoyan et al [6]. The node-bond models (f-g) will be described in a forthcoming paper [7] and the details of the
level-cut Gaussian random field scheme we use is reported in Ref. [8]
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Figure 2: The Young’s modulus of the Boolean models
shown in Fig. 1. The almost overlapping symbols at each
point correspond to different solid Poisson’s ratios. The
dotted line is the Hashin-Shtrikman upper-bound [1] for
isotropic media.
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Figure 3: Experimental data for porous alumina com-
pared with the overlapping spherical pore (—, Fig. 1b)
and solid sphere models (- — —, Fig. 1a).

sintered ceramics, with which we compare our results
below. The density dependence of the Young’s modulus
can be fitted with the equation

E/E, = ((p—po)/(1 — po))™ (1)

where pg and m are reported in Table 1. Here E (E,)
is the Young’s modulus of the porous medium (solid
matrix). Note that m and py are empirical correlation
parameters and should not be interpreted as the perco-
lation exponent and threshold, respectively. The FEM
results shown in the figure took approximately four t-
housand hours to compute on current high-end worksta-
tions.

In Figure 3 we compare the results to experimental
data for porous alumina [9], [10]. Most of the data falls
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Figure 4: The Young’s modulus of the cellular models
shown in Figs. 1(d-i). The solid and dashed lines corre-
spond to the empirical fits given in Table 1.
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Figure 5: Experimental data for open- (o) and closed-
cell (A) cellular solids compared with the FEM results
for open- (— - —, Fig. 1d) and closed-cell (—, Fig. le)
Voronoi tessellations.

close to the line for overlapping solid spheres (Fig. 1a).
Many of these ceramics are synthesized by sintering a
ceramic powder, consistent with the model microstruc-
ture. The additional data [9] are for a material made
with a particulate filler, which should give a microstruc-
ture similar to that observed in the overlapping spherical
pore model (Fig. 1b). The FEM result for this model is
seen to agree well with the data.

We have also studied the properties of six differen-
t models of cellular solids [2]. At high densities the
data can be described by Eq. (1) with the parameters
reported in Table 1. The density range where Eq. (1)
remains accurate is also given. Since cellular solids can
have extremely low densities (e.g. p =~ 0.01 for open-
cell materials), it is necessary to obtain results at lower
densities. For each of the models the FEM results ap-
pear to adopt a linear behaviour on a log-log graph as



p — U, 1ndicating a conventional scaling ht ot the tor-
m [2] E/E, = Cp". The parameters C' and n, and the
applicable density range, are given for each of the cellu-
lar models in Table 1.

In Fig. 5 we compare selected FEM results for the
cellular models with experimental data. The Young’s
modulus of closed-cell foamed glass [11] agrees well with
results for the closed-cell Voronoi tesselation (Fig. le).
Moreover, micrographs of the glass [11] show a struc-
ture similar to that of the model. Data for open-cell
materials [2] show considerable scatter, but appear to
be reasonably well modelled by the open-cell Voronoi
tessellation (Fig. 1d).

We have also studied the influence of solid Poisson’s
ratio v, on the Young’s modulus. The Young’s modulus
at v =[—0.1,0.0,...,0.4] is plotted in Fig. 2. At a giv-
en density the results are practically indistinguishable,
indicating that F is nearly independent of v,. Therefore,
the empirical formulae given in Table 1 can be applied
to solids with arbitrary Poisson’s ratios. Exact calcu-
lations for the modulus of a matrix containing dilute
spherical pores [1] actually show a small dependence on
v, indicating that the result is only approximately true.

The models we have considered above are qualita-
tively similar to the microstructures observed in real
composites. However, it is also important to establish
a quantitative link with experimental characterization
data. This may be done by tuning the parameters of
a 3-D model so that its statistical microstructure prop-
erties match those of a 2-D micrograph. As an exam-
ple, we show a porous tungsten matrix and its 3-D s-
tatistical reconstruction in Fig. 6 (the details are giv-
en in Ref. [8]). The finite-element code is then used
to measure the Young’s modulus of the model giving
E/E,=0.57 (where we have used a solid Poisson’s ratio
of v = 0.28). This compares well with the experimen-
tal value of E/E;=0.59. The process of measuring the
statistical properties of a given material, generating a
corresponding model, and measuring its properties is
time intensive. It is expected that future research will
make the method more efficient.

We have derived emprical finite-element theories that

explicity show the connection between density, microstruc-

ture, and the Young’s modulus of complex porous ma-
terials. The results may be used to predict the proper-
ties of porous materials, or accurately interpret experi-
mental measurements. The results will be described in
greater detail in a forthcoming publication [7].
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