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 This work emphasizes the importance for egress model users to choose a model 

for each project with the appropriate input features and simulation capabilities.  This 

report also gives model users a mechanism for choosing the appropriate model by 

providing a detailed egress model review (Chapter 2).   

Specifically this report focuses on the ability of two egress models, EXIT89 and 

Simulex, to simulate a high-rise hotel building evacuation.  When EXIT89 and Simulex 

are used to 1) simulate the same design scenarios and 2) perform a bounding analysis of 

the hotel building, significant differences in egress times were identified.  EXIT89’s 

evacuation times were found to be 25-40% lower than Simulex for the design scenarios, 

attributed to differences in unimpeded speeds, movement algorithms, methods of 

simulating slow occupants, density in the stairs, and stair configuration input between the 

models.   For the bounding analysis, EXIT89 produced maximum evacuation times 30-

40% lower than Simulex.  
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EXECUTIVE SUMMARY 
 
 With the move toward performance-based design, engineers have been looking to 

evacuation computer models to assess a building’s life safety.  Many times, the engineer 

is tasked with the selection of one evacuation model for a specific project.  Currently 

there is a wide variety of evacuation models for engineers to choose from.  However, 

with each model containing its own unique features and simulation capabilities, 

confusions may arise as to which model is best for the task at hand. 

 The results gained from this work emphasize the importance for egress model 

users to choose a model for each project with the appropriate input features and 

simulation capabilities.  This report also gives model users a mechanism for choosing the 

appropriate model by providing a detailed egress model review (Chapter 2).   

 Specifically this report focuses on the ability of two egress models, EXIT89 and 

Simulex, to simulate a high-rise hotel building evacuation.  This thesis aims to answer 

two sets of questions.  The first and second sets of questions ask the following: 

• How does an engineering egress design of a hotel using EXIT89 or Simulex 

account for the four factors of egress?  What is missing from these models to 

capture major factors of a hotel evacuation?   

• Will two specific models, EXIT89 and Simulex, give similar output for the same 

design scenario?  If not, why?  

To answer the first set of questions, a comprehensive model review is completed, 

as well as an in-depth study of two specific evacuation models, EXIT89 and Simulex.  

The focus of the set of questions is whether or not EXIT89 or Simulex can simulate all of 

the factors associated with a hotel evacuation, namely the building configuration, 
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procedures of the evacuation, environmental conditions, and behaviors.  If not, other 

models are listed which have the capabilities of simulating certain factors of a hotel 

evacuation.   

EXIT89 and Simulex are able to simulate certain features of a hotel evacuation, 

however, there are features of a hotel evacuation that these models are not able to 

simulate.  Some of these factors include an accurate representation of the building when 

using a coarse network, the simulation of the presence of hotel staff, the simulation of the 

effect of previous experience or training on the occupant, the incorporation of both fire 

and smoke conditions and the effects on the occupants’ decision making, exhaustion on 

the stairs, social affiliation, the simulation of actual pre-evacuation behaviors, elevator 

use, the condition of the occupant at the time of alarm (sleep, intoxicated, etc.), the 

simulation of carrying items or a baby, and the option of preparing an area of refuge 

instead of full evacuation.     

 From Chapter 2, it is apparent that other models have certain capabilities lacking 

in EXIT89 and Simulex to simulate a hotel evacuation.  These models and special 

features are expanded upon in Chapters 2 and 6 of this thesis. 

Along with choosing a model with the appropriate features for a specific design, 

the user must make sure there is an understanding of what data the input variables and 

features are based on and the limitations of the model.  Depending upon the complexity 

of the space and the uncertainty of the occupants who will use the space, it is possibly 

more accurate to use models with less complexity, such as the movement models.   
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Now that Chapter 2 has provided the mechanism for choosing the appropriate 

model, another question arises.  Is using only one model sufficient to evaluate the life 

safety of a particular building?  The second set of questions discussed in this thesis is the 

following: 

• Will two specific models, EXIT89 and Simulex, give similar output for the same 

design scenario?  If not, why?   

Since designers use only one model for a performance-based design, there is a 

concern about the difference in output from two similar models given the same design 

scenario.  EXIT89 and Simulex, both partial behavior models, are used to their full 

capacity to model the same evacuation design scenario from a hotel building.    To 

compare the results from EXIT89 and Simulex, a design simulation (labeled as the 

“hotel” design simulation) was run, as well as two additional simulations labeled as 

“hotel with 3% disabled” and “all disabled” simulations.  Also, each simulation described 

above is run with and without a time delay.  Overall, EXIT89’s evacuation times for 

these simulations are 25-40% lower than the times produced by Simulex.  However, the 

usage of exits (the number of people using exits 1 and 2) are equivalent for both models.   

The reasons for these differences in model results are due to the differences in 

stair configuration input, the movement algorithm used by each model, differences in 

unimpeded speeds of the occupants simulated, the differences in density in the stairwell, 

and the differences in the method that each model simulates disabled or slower moving 

occupants.  An in-depth analysis of each difference is presented and explained in Chapter 

9 of this thesis. 
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Overall, it was found that, in the simulations run for this thesis, EXIT89 allows 

faster movement of the occupants in the stairwells at increasing density as well as a larger 

number of occupants in a stair section (section of stairs between 2 floors of the hotel) at 

one time during the evacuation.  Also, Simulex simulates slower moving occupants to 

cause either slight delays or complete queues behind them in the stairwell, while EXIT89 

does not simulate the slower moving occupants to interfere with the able occupants 

during the simulation.  Lastly, EXIT89 begins occupant movement at higher unimpeded 

speeds when compared to the population modeled in Simulex.  All of these factors 

combined can explain why EXIT89 produces faster evacuation times when compared 

with Simulex in this comparison. 

Also, in addition to the design scenarios, both models are used in their full 

capacity to bound the evacuation results, since this is frequently done in performance-

based design.  As mentioned in Chapter 5, Simulex contains a wider range of occupant 

characteristic inputs, which is used in the bounding simulations.  The ranges of 

evacuation time from each model (with and without delays) are also compared.  In the 

Simulex model, the simulations are varied by occupant speed, occupant type (speed and 

body size varied), hotel use, and occupant mobility.  In the EXIT89 model, the 

simulations are varied by occupant body size and speed and occupant mobility.  Results 

of the bounding simulations can be seen in Tables 9.11 and 9.12 in Chapter 9.   

For the bounding results, the evacuation times of interest are the minimum and 

maximum evacuation times for each model (with and without delay times).  Simulex still 

contains evacuation times larger than EXIT89’s times for each minimum and maximum 

value, as shown in Figure 10.3.  This is especially seen with Simulex’s maximum value 
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simulations with and without delay times.  Larger evacuation times produced by Simulex 

are mainly due to the introduction of the slower populations, a known capability of the 

model.  EXIT89 produces maximum results in the bounding simulations that are 

approximately 40% lower than that of Simulex for no delay.  In the case of simulated 

delay times, EXIT89 produces maximum results that are approximately 30% lower than 

Simulex.  In both cases of delay and no delay, EXIT89 produces a faster minimum result, 

but only by approximately 10%.  The bounding maximum and minimum results are 

graphed in Chapter 10, Figure 10.3 

The question remains whether or not it is sufficient to use only one evacuation 

model for a project in a performance-based design.  This is a difficult question to answer 

due to other factors, such as time and cost.  In many cases, evacuation models may be 

second to hand calculations.  From the analysis done for this thesis, it is important to 

make sure that the model has sufficient capabilities and features to capture the scenario(s) 

for the specific building.  It is recommended for the designer to fully understand the inner 

workings of the models and to assess whether or not the movement algorithm and 

methods are realistic.  For example, in the case of EXIT89, it may not be a realistic 

scenario to model occupants who do not interact with each other during movement.   

The models in this comparison produced different evacuation results mainly due 

to the capabilities of the model to represent an actual hotel simulation.  The simulation of 

a variety of speed and body sizes by Simulex produced longer evacuation times.  

However, a variety of occupant types are realistically seen in evacuation from buildings.  

Therefore, instead of focusing on the number of models to use in a design, the 

recommendation is to choose a model that is capable of simulating a multitude of 
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scenarios for that building type and is conscious of differences in the population’s 

movement.  And, by providing the information in Chapter 2, the user now has the 

mechanism to choose the appropriate model for the specific project.  If time is available 

and costs are low, the designers may want to check results with another egress model of 

similar capabilities and features. 
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INTRODUCTION TO THESIS 
 

Evacuation calculations are increasingly becoming a part of performance-based 

analyses to assess the level of life safety provided in buildings.  In some cases, engineers 

are using back-of-the-envelope (hand) calculations to assess life safety, and in others, 

evacuation models are being used.  Hand calculations usually follow the equations given 

in the Emergency Movement Chapter of the Society of Fire Protection Engineers (SFPE) 

Handbook1 to calculate mass flow evacuation from any height of building.  The 

occupants are assumed to be standing at the doorway to the stair on each floor as soon as 

the evacuation begins.  The calculation focuses mainly on points of constriction 

throughout the building (commonly the door to the outside) and calculates the time for 

the occupants to flow past that point and to the outside. 

To achieve a more accurate evacuation calculation, engineers have been looking 

to evacuation computer models to assess a building’s life safety.  Currently, there are 

several different evacuation models to choose from, each with unique characteristics and 

specialties.  One major question is how do the engineers know which model is the best 

model for the task at hand?  What resources do they have to consult in order to find 

detailed information on the current and available egress models?  A concern with current 

evacuation models is whether or not they can accurately simulate the unique scenarios 

that accompany a certain type of building.  For instance, a hotel building is occupied by 

sleeping individuals and at least equipped with a limited, 24-hour desk clerk (and/or 

security guard) that can aid in arousal of the occupants.  Are current models equipped to 

simulate the unique characteristics of certain types of buildings?   



8  

Lastly, it is common for engineers to use only one evacuation model for a 

performance-based design of a structure.  Several evacuation simulations involving 

different scenarios are commonly run and analyzed using that model in order to bound 

the evacuation results.  These results are then compared with the results from a fire model 

in order to understand if occupants have a sufficient amount of time to escape before 

encountering life threatening conditions.  Is it sufficient to base the acceptability of a 

performance-based design on the predictions of a single model?  How different are the 

results from another possible model?  Will two specific models give similar output for the 

same design scenario?  If the answer is no, what does this mean for current evacuation 

models and the design process?    

 This paper attempts to answer some important questions about current evacuation 

models and the performance-based design process.  To narrow down the problem and 

questions asked above, one type of building is used for this analysis.  A high-rise hotel 

building residing on the West Coast of the United States is used for this analysis.  The 

two main questions that are answered are 1) what is missing, if anything, from current 

models (specifically two models) in capturing the major factors of a hotel evacuation, and 

2) whether or not two specific models will give a similar output for the same hotel design 

scenario and if not, why?  The two specific evacuation models that are analyzed and used 

to simulate the high-rise hotel scenarios are EXIT89 and Simulex.  The inputs and unique 

characteristics of these two models are described, and explained as to how they relate to 

the needs of a hotel evacuation scenario.  A list of current models that also address the 

characteristics of a hotel evacuation is provided.  Also, the simulation results of these two 

models are compared and differences between the outputs, if any, are explained.  The 
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results of this paper may challenge the current performance-based design process as well 

as the current models that are used by showing that two similar models can give 

significantly different output for the same building and design scenario.  From such 

analysis, future needs in evacuation modeling and the design process are recommended. 

 

Structure of the Paper 

 This paper consists of several chapters relating evacuation models, the 

performance-based design, and the application of the models to a high-rise hotel building.   

Chapter one of this paper begins with an introduction to evacuation modeling.  This 

chapter deals with an overview of the design process, a history of evacuation modeling, 

limitations, and an explanation of important characteristics helpful in choosing the correct 

evacuation model for a specific task.  Chapter two contains an extensive review of 28 

past and current evacuation models.  Each model is described in detail, highlighting 

important characteristics.  Chapter three introduces Gwynne’s four factors of any 

building evacuation.  These factors help to organize the essential elements of a building 

evacuation that should be captured in a prediction tool.  Chapter four is devoted to the 

unique elements of a hotel evacuation.  This chapter aims to list and explain the essential 

elements of a hotel evacuation as they relate to Gwynne’s four factors of egress.    

Chapter five is a description of EXIT89 and Simulex.  This chapter aims to discuss their 

structure and inputs, and also how these models represent the four factors of egress.  

Chapter 6 answers the question of what is missing from EXIT89 and Simulex in 

capturing a hotel evacuation scenario.  The design process and use of evacuation 

modeling are described, and an input matrix is established for both models for a hotel 



10  

evacuation.  From this input matrix and the information from Chapter four, inputs lacking 

from either model which could more effectively capture factors of a hotel evacuation are 

apparent.   Also in this chapter, information from chapter two is used to check if other 

models are available that would more accurately simulate such a scenario.   

Chapters seven, eight, and nine aim to answer question two of this paper; whether 

or not two specific models will give a similar output for the same hotel scenario, and if 

not, why?  A fire scenario for the hotel is described in Chapter 7 which is used to develop 

the fire scenario simulations for model comparison.  Also, the chapter provides 

information about the high-rise hotel building.  Chapter eight describes the inputs chosen 

for each model to simulate the fire scenario as well as reasons why each input is selected.  

In addition, bounding simulations are described for each model in order to achieve high 

and low evacuation times that are used to bound the evacuation results.  Chapter nine 

discusses the differences in the results of the fire comparison run and the bounding results 

between the two models.  Also, explanations on why any differences occurred are also 

included.  Chapter ten provides a summary of the results and answers to both questions 

posed:  1) How does a performance-based design of a hotel using EXIT89 or Simulex 

account for the four factors of egress? and 2) Will two specific models give similar 

output for the same design scenario?  If not, why?   

 

Limitations of the Study 

As with any research project, there are limitations to identify with this evacuation 

study.  Initially, only two models are being used to run the hotel simulations for 

comparison.  This certainly requires future work with additional models.  Secondly, the 
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blind simulations of the fire scenario in the hotel are run by the same person, the author 

of this study.  The purpose of a blind simulation is that two different people run different 

models in order to reduce bias in the evacuation results.  However, because of the 

purpose of this thesis, it is necessary for the author to use both models. 

As this section explains, the scope of the thesis is limited only to a specific hotel 

building.  Similar to the addition of evacuation models, future work into other types of 

occupancies and buildings with varied performance-based designs should be studied.   

Other limitations include the lack of actual fire data from the hotel building 

studied in this report.  The reason for not using drill or actual fire data is because the 

purpose of this thesis revolved around the comparison of results from the two models 

only, instead of identifying which model produced more accurate evacuation results 

(providing results closer to the evacuation time from an actual fire).  Also, since the hotel 

building plans were altered significantly to make comparison of model output possible, 

the use of actual evacuation data from the entire building was not a viable option.   

The remaining limitations are related to the input chosen for the blind run 

simulations using Simulex and Exit89.  Occupants with disabilities are not explicitly 

modeled; however, the bounding analysis is performed by looking at a variety of 

occupant speeds.  The reason for not including disabled occupants in the blind run is to 

limit the amount of input variables that would affect the comparable results.  And, it 

seems sensible to include this input variable during the attempt to bound the evacuation 

results.  Also, counterflow issues are not studied for similar reasons of model 

comparison.  For all model simulations, no smoke or fire is simulated.  This is primarily 

due to the fact that Simulex does not have this capability, and many times during a 
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performance-based design, the evacuation results are compared with results from a 

separate fire model.  Lastly, no specific pre-evacuation times were obtained from hotels 

with working alarm systems, therefore evacuation data from actual apartment fires has to 

be used. 
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CHAPTER 1:  INTRODUCTION TO EVACUATION MODELING 
 

Researchers have been building models of human behavior in fire evacuations 

since the late 1970s.  The two main categories of models used to predict human behavior 

and movement are known as conceptual models and computer models.  Although 

conceptual models are described here briefly, the main purpose of this chapter is to 

present the history, purpose, categories, and limitations of evacuation computer models.  

A diagram, Figure 1.1, is included here to show the organization of current egress 

models.  Each category is explained in detail throughout this chapter.   

 

Figure 1.1:  Primary organization of egress models 

Conceptual models seek to capture the relationship between concepts and/or 

behaviors at a more abstract or theoretical level than computer models.  These models 

have been constructed as an aid in explaining the decision making process2,3,4,5,6, stress7, 

and behavioral responses of occupants in an emergency8.  The conceptual models, or 

decomposition diagrams, produced by Canter, Breaux, and Sime8 are accompanied by 

numbers in between each behavior during a certain type of emergency.  Figure 1.2 shows 

Egress Models 

Conceptual Models Computer Models 

Movement Models

Partial-Behavioral 
Models

Behavioral Models
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a decomposition diagram involving behaviors from multiple occupancies.  These 

numbers indicate the strength of association between the two actions, which serves as a 

step toward quantification of human behavior.  Although many of the past and present 

computer models lack any inclusion of human behaviors during fires, the models that do 

attempt to simulate behavior use this kind of conceptual data as a starting point. 

 

Figure 1.2:  Decomposition diagram showing behaviors from multiple occupancies (8, p. 128) 
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Computer models, on the other hand, aim to quantify human movement and 

behavior during fire emergencies.  A model’s main objective, among others, is to predict 

an evacuation time for a certain type of building.  As technology and knowledge of 

human behavior and movement increased, evacuation models have been able to calculate 

and provide other important information, such as the following: 

• Flow rates through certain components of the building 

• Congestion areas throughout the structure 

• The risk to occupants (incapacitation and death) during the evacuation due to 

hazardous fire conditions in the building 

• Travel distances and times for one occupant to evacuate from certain spaces 

• The speed of occupants through all components of the buildings and under various 

density situations 

• The position of individual occupants throughout all time during the simulation 

• Population flow split of occupants to certain routes, exits, stairs, etc. 

• Individual movement and routes taken during extreme circumstances such as total 

evacuation, counterflow movement, fire conditions, etc. 

 
 

Purpose of Evacuation Models 

There are many reasons for performing evacuation simulations for a building.  In 

the prescriptive code approach, evacuation models are generally not needed because the 

building is designed by following the requirements set by local building codes9.  

However, evacuation modeling is increasingly becoming a part of performance-based 

analyses to assess the level of life safety provided in buildings.  Depending upon when 



16  

the fire protection engineer is brought into the project, evacuation models can be used 

during different stages of the design phase of the building.  Evacuation models are key in 

allowing the engineers and designers to answer “what if” questions about the building at 

hand.  If the model is used early enough in the design phase, models can aid in 

identifying possible solutions to heavy congestion points inside of the building.  In many 

of the models available, the engineer can easily change building component dimensions, 

add exits, extend or shorten corridors, etc. to alleviate identified problems that arise.  

It is most likely, however, that an engineer is brought into a project when the 

design is near completion and a problem has been identified9.  If the project has reached 

the detailed design phase, adding new stairs, exits, or extending means of egress may be 

an impossibility9.  In this case, the models can be used to make small, but important 

changes to the building, and assess the results of such changes.  Also, visualization 

techniques are helpful in assessing problem areas and the affects of such changes to the 

building.   

For performance based designs, the engineer is also tasked with deciding if the 

building is designed with enough protection to allow the occupants to escape before 

incapacitation occurs.  The engineer can use evacuation models to simulate several 

different egress scenarios in order to bound the evacuation results from a certain building.  

Input variables for egress scenarios include building characteristics, such as number of 

floors and floor layouts, and occupant characteristics, such as number of occupants, 

location of the occupants, speed, and body size.  Bounding evacuation results is important 

because many different fire scenarios can cause different results, and human behavior in 

different fire situations are difficult to predict.  Through bounding, the designer attempts 
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to anticipate different types of emergencies and check if the building and occupants will 

reach safety in a reasonable amount of time.   The egress results are then compared with 

fire modeling results for the building in order to establish whether or not the occupants 

have a sufficient amount of time to escape before they are faced with hazardous 

conditions, such as toxic products from smoke. 

 

Evacuation Model History 

Model developers have been working towards building and improving models 

that predict evacuation movement and behavior for almost 30 years now.  As more 

evacuation data has been gathered, computer technology expanded, and the performance-

based approach is more widely used, evacuation model developers constantly look to 

expand previous models to meet current needs.  However, it is important to understand 

how the modeling effort began and what the current state of the art is.   

Evacuation modeling aids in understanding the critical time to safety, which 

involves the time from awareness to the time to reach a safe location.  During a study of 

fire safety in buildings used to house the elderly, fire development and evacuation was 

considered as a time-structured problem10,11.  According to Fahy, this study established 

“the variables for the fire on a continuum of a ‘critical time’ and the parameters for the 

survival of the occupants on a continuum of a ‘reaction time.’  The definitions of both 

times are provided here: 

• Critical time – time from the start of the fire to the attainment of intolerable levels 

• Reaction time – time used by the occupant to react to the fire and reach safety by 

either evacuating the area or establishing an area of refuge. 
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This very timeline has been studied throughout the past thirty years and aided in 

the establishment of several computer models since 1967.  One such model developer 

used these critical times to create the available safe egress time (ASET) model.  This 

model focused primarily on calculating the conditions that developed during the critical 

time as well as an estimated average evacuation time and total evacuation time for the 

building. 

Four evacuation models have been identified as the “first wave” of models 

developed to quantify egress time from buildings in the U.S.  These models are known as 

BFIRES-II, EVACNET, Escape and Rescue Model, and the Effective-Width 

Model11,12,13.  Each model is described briefly in the following paragraphs. 

BFIRES-II12,14,15,16, developed by Fred Stahl from the National Bureau of 

Standards (NBS, now the National Institute of Standards and Technology), is an 

evacuation model that was created to simulate evacuation from smaller facilities.  Stahl 

places an emphasis on the decision process and corresponding actions in response to fire 

stimuli.  The program was originally designed to handle health care facilities and 

incorporates such special activities as rescuing non-ambulatory patients.  BFIRES-II 

simulates a fire scenario as a chain of discrete “time frames” and a behavioral response 

for each occupant is generated for each frame.  According to Nelson12, the model concept 

and structure is based on the suggestion that occupants “act in accordance with their 

perceptions of a constantly changing environment.”  Throughout the simulation, the 

occupant is in essence gathering information, interpreting the information, evaluating 

other options, and finally selecting an action to take.  The interpretation phase involves 

the occupant comparing current conditions with previous conditions, such as distance 
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between occupants, distance from fire threat, and distance to exit.  And, the action 

selection involves comparing the current move criteria with alternatives.   

BFIRES provides each occupant with a library of responses or actions from which 

to choose.  Overall, similar to previous conceptual models2, each occupant is routed 

through the processes of perception, interpretation, and behavioral response.  Nelson12 

gives an example of an application with BFIRES, and Chapter 2 of this thesis also 

describes this model in more detail. 

EVACNET12,17 is an optimization model that is used to evaluate the evacuation of 

a homogeneous mass of occupants.  Work on this model was initially performed by R.L. 

Francis and P.B. Saunders at NBS, and then continued with Francis and Kisko at the 

University of Florida.  EVACNET is described as a network model that represents the 

building as a series of nodes and arcs.  The user prescribes the flow and speed by which 

the occupants move throughout the space during each time period.  Since the model is 

used to solve for the minimum time for all of the occupants to evacuate the building, the 

model distributes occupants to certain exits to achieve this goal.  EVACNET also 

identifies bottlenecks, or areas of congestion, throughout the space.  This model is also 

described in more detail in Chapter 2.   

The Escape and Rescue Model (ERM)12,18 is a network model that was designed 

at NBS to simulate evacuation from Board and Care Homes by D. Alvord.  The model 

can simulate both able occupants and those in need of assistance in order to evacuate.  

This model also represents the structure using a series of nodes and arcs (network) by 

which the occupants must travel.  ERM asks the user to specify the impact of residents’ 

disabilities, the length of pre-evacuation times, the speeds of the residents and staff, and 
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rescue priority for each resident.  The model includes the following special activities that 

may occur in a Board and Care Home evacuation: 

• Staff members can alert residents to evacuate 

• Staff members can gather people to evacuate if they are already on the member’s 

route of travel 

• A resident requires help up or down the stairs only 

• Once a wanderer has left the building, a staff member stays outside with that person. 

During movement, the occupants take the shortest route to their desired location in the 

building.  Also, movement on the stairs is decreased by half of the walking speed on 

horizontal components.  The model includes several different resident types that attempt 

to match those mentioned in the Fire Safety Evaluation System for Board and Care 

Homes12.  Each type is accompanied by a movement speed and response time.   

Lastly, the Effective-Width Model for Evacuation Flow12,19 consists of a formula 

for determining the evacuation capacity of stairwells.  This formula was developed by 

J.L. Pauls at the National Research Council of Canada.  The model was created from two 

types of empirical studies from Canada.  The first type of study, from film and video 

records, contained observations of where crowds of people walk in relation to each other 

and the boundaries of the stair.  The other type consisted of graphs of mean egress flow 

vs. stair width.  According to Pauls19, the model shows the following three phenomena: 

• There is an edge effect at both sides of the stairwell, meaning that occupants leave a 

certain amount of space between the wall and themselves while walking down the 

stairs.  The edge effect is also known as “effective width.”  Also, people are more 
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likely to walk in a staggered pattern on the stair, rather than shoulder-to-shoulder in 

single-file lanes. 

• Mean evacuation flow vs. stair width is a linear function instead of a step function, as 

previously assumed. 

• Mean evacuation flow is influenced non-linearly by the total population per effective 

width of stair.   

Pauls’ model provides simple formulas that can be used to predict evacuation 

flows and select total effective stair widths in order to meet a certain performance 

criteria.  Like many other models, this model takes the “hydraulic model” approach.  This 

approach assumes that the occupants flow as a mass of water molecules throughout the 

structure.  Much more detail listing the formulas and corresponding graphs can be found 

in Nelson or Pauls work1,12,19. 

Even as early as 1982 with the first publications from the four previously 

described models, it can be seen that two types of models had begun to emerge.  Two 

models (EVACNET and Effective-Width) view the occupants as similar to hydraulic 

flow through pipes to the exits.  These models primarily focus on the movement of the 

occupants to a specific goal.  The other two evacuation models featured above (BFIRES 

and ERM) concentrate on understanding occupant types and individual characteristics 

that would be affected during a fire emergency.  These models attempt to incorporate 

behaviors and thoughts associated with certain evacuation conditions.  Also, with the 

exception of BFIRES, the early models represent the building as a network of nodes and 

arcs through which the occupants would travel.   
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Another way of categorizing early models was done by Watts13 in 1987.  He 

introduced early network algorithm models, queuing models, and “simulation” models in 

his extensive model review.  The label of network algorithm models was used to describe 

those that would search all combinations of node/arc paths in order to find the minimum 

evacuation time for the occupants of the space17.  An example of this type of model is 

EVACNET, which was described in the paragraphs above.  Queuing models, on the other 

hand, use queuing theory which describes the formation of lines when the current demand 

for service exceeds the capacity to provide such service20.  An example of such a model 

is the Queuing network model developed by Smith at the University of Massachusetts, 

Amherst.  This model examines the overall suitability of the building design as well as 

the overall safety of the evacuation population by estimating the worst case exit time, 

average queue lengths along routes, potential bottlenecks, and overall probability of a 

safe exit20.  Simulation models, a more dynamic technique, represent “item-by-item” or 

“step-by-step” the features of the evacuation process/system13.  An example of this type 

of model is the EMBER model developed by Berlin at Modeling Systems, Inc., which is 

now Computer Technology International, in Atlanta, GA21.  This model performs a 

comprehensive fire development and evacuation simulation of the situation.  EMBER 

incorporates certain features for the building evacuation, such as different types of 

occupant characteristics; rescue personnel capabilities; multiple route selections (shortest, 

quickest, myopic, and specified routes); user input of preparation times and speeds; 

simulation of fire, combustion products, and fire protection systems (detectors and 

sprinklers); and a graphical display of the simulation. 



23  

Lastly, an additional way of categorizing models is by labeling them either 

deterministic or probabilistic (stochastic).  Deterministic is used to describe those models 

that assume that the evacuation situation is determined based on a well-defined physical 

situation, while probabilistic models attempt to capture the randomness of the evacuation 

situation (movement and behaviors)22.  BFIRES could be labeled as the first probabilistic 

human behavior model developed in the United States.  According to Nelson23, the 

EXITT model developed my Bud Levin was the first deterministic evacuation model that 

included human behavior.   

These different types of categories describing the model type still pertain to 

current evacuation models.  The method of categorization is dependent upon preference, 

since many others have categorized models in completely different ways24,25,33 ,83.   

Examples of other categories used in describing egress models are the following: discrete 

or continuous, stochastic or deterministic, quantitative or qualitative, and macroscopic or 

microscopic.  In Chapter 2, an attempt has been made to categorize past and current 

evacuation models in various ways.  Most of these are microscopic (simulating to the 

level of the individual occupant), however a few can be labeled as macroscopic (focus is 

on the larger scale of evacuation).  As an introduction, the following section will attempt 

to describe all major model categories and the techniques used to choose the evacuation 

model best suited for a future performance-based design.     

Categorization of Evacuation Models 

The following categorization is developed to present an organization of the past 

and current models.  The categorization is also developed to identify the important 

characteristics of evacuation models.  These characteristics may serve as a checklist for 
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model users when choosing the best model for the design structure.  It is beneficial to 

understand the differences in characteristics between relevant models before making a 

decision.      

 
Modeling method 
All past and current evacuation models have been categorized using a primary 

category labeled Modeling method.  This category describes the method that each model 

uses to calculate evacuation times for certain types of building.  Under the Modeling 

method category, models are assigned one of the following three labels: 

1. Behavioral models 

2. Movement models  

3. Partial behavior models 

Behavioral models are those models that incorporate occupants performing 

actions, in addition to movement toward a specified goal (exit).  These models can also 

incorporate decision-making by occupants and/or actions that are performed due to 

conditions in the building.  Movement models are those that move occupants from one 

point in the building to another (usually the exit or a position of safety).  These models 

are key in showing congestion areas, queuing, or bottlenecks within the simulated 

building.  And, lastly, partial behavior models are those that primarily calculate occupant 

movement, but begin to simulate behaviors.  Possible behaviors could be implicitly 

represented by pre-movement time distributions among the occupants, unique occupant 

characteristics, overtaking behavior, and the introduction of smoke or smoke effects to 

the occupant.  These are models capable of simulating an entire building, and occupants’ 
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movements throughout the model are based on research of observed human behavior 

data. 

Beyond the primary categorization of Modeling method, several subcategories 

have been identified as important characteristics.  The subcategories are listed below and 

explained in the section to follow: 

• Purpose 

• Availability to the public for use 

• Structure of the model 

• Perspective of the model 

o Method of how the model views the occupants 

o Method of how the occupant views the building 

• Use of fire data 

• Import CAD drawings 

• Visualization capability 

• Validation studies 

• Occupant movement 

• Occupant behavior 

• Output 

• Special features of the model 

• Limitations of the model 

 
 

Purpose of the model: 
This subcategory describes the use of the model, as it pertains to certain building 

types.  Some of the models in this organization focus on a specific type of building and 
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others can be used for all building types.  The main purpose in using this as a category is 

to understand if the model can simulate the design building, for example the World Trade 

Center Towers.   

The current model categories for purpose involve 1) models that can simulate any 

type of building, 2) models that specialize in residences, 3) models that specialize in 

public transport stations, 4) models that are capable of simulating low-rise buildings 

(under 75 feet) only, and 5) models that only simulate 1-route/exit of the building. 

 
Availability to the public for use: 
This subcategory becomes important if the user is interested in modeling the 

building in-house or hiring the developing company to provide evacuation results.  In this 

subcategory, some models are available to the public for free or a fee.  Others are not 

available due to the following circumstances; the model has either not yet been released, 

the model is no longer in use, or the company uses the model for the client on a 

consultancy basis.   

 
Structure of model: 
This subcategory is used to assess the accuracy of occupant movement throughout 

the building.  A fine network model divides a floor plan into a number of grid cells that 

the occupants move in and out of.  The coarse network models divide the floor plan into 

rooms, corridors, stair sections, etc. and the occupants move from one room to another, 

instead of one grid cell to another.  The advantage of fine network structures over coarse 

is that fine networks have the ability to simulate the presence of obstacles and barriers in 

building spaces that influence individual path route choice, whereas the coarse networks 

“move” occupants only from one portion of a building to another. 
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Perspective of model:   
This subcategory explains how 1) the model views the occupants and 2) how the 

occupants view the building.  

How the model views the occupants: 

There are two ways that a model can view the occupant; globally and 

individually.  An individual perspective of the model is where the model tracks the 

movement of individuals throughout the simulation and can give information about those 

individuals (ex. their positions at points in time throughout the evacuation).   When the 

model has a global view of the occupants, the model sees its occupants as a mass and 

homogeneous group of people moving to the exits.  It is clear to see that an individual 

perspective of the occupants is more accurate, but it depends on the purpose of the 

simulation as to which alternative is best.  If the user is not interested in knowing the 

position of each occupant throughout the simulation or assigning individual 

characteristics to the population, than a global view is sufficient. 

How the occupant views the building: 

Again, the occupant can view the building in either a global or individual way.  

An occupant’s individual view of the building is one where the occupants are NOT all 

knowing of the building’s exit paths and decide their route based on information of the 

floor, personal experience, and in some models, the information from the occupants 

around them.  A global perspective of the occupants would be one where they 

automatically know their best exit path and seem to have an “all knowing” view of the 

building.   

 
 



28  

Fire data:   
This subcategory explains whether or not the model allows the user to incorporate 

fire data with the evacuation simulation.  However, the models incorporate fire data in a 

variety of ways and it is important for the user to understand the complexity of the 

coupling.  The model can incorporate fire data in the following ways:  Importing fire data 

from another model, allowing the user to input specific fire data at certain times 

throughout evacuation, or the model has its own simultaneous fire model.  If the model 

cannot incorporate fire data, it simply runs all simulations in “drill” mode.  “Drill” mode 

is the equivalent of a fire drill taking place in a building, without the presence of a fire. 

The purpose for evacuation models to include such data is ultimately to assess the 

safety of the occupants that are traveling through such conditions.  Purser has developed 

a model to calculate a fractional incapacitating dose for individuals exposed to CO, HCN, 

CO2, and reduced O2
26,27.  Many models that incorporate a fire’s toxic products 

throughout the building spaces, use Purser’s model to calculate time to incapacitation of 

the individual occupants.   Purser also developed mechanisms for models to calculate 

certain effects due to heat and irritant gases. 

Some models also go as far as to use data collected by Jin in Japan28.  His work 

claims to address the physical and physiological effects of fire smoke on evacuees.  Jin 

performed experiments with members of his staff, undergraduates, and housewives 

subjected to smoke consisting of certain levels of density and irritation.  He tested 

visibility and walking speed through irritant smoke in 198528 and correct answer rate and 

emotional stability through heated, thick, irritant smoke-filled corridors in the late 

1980s28.  This data is used in certain models to slow occupant movement through smoke 
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and also to change occupant positioning in certain spaces to a crawl position, instead of 

upright.  

Bryan and Wood data2 concentrated on the correlation between visibility distance 

in the smoke and the percentage of occupants within that smoke that would move through 

it.  This work was done in the United States (Bryan) and the UK (Wood) and was 

obtained by occupant self-reporting.  This data is used by current models to assess when 

certain occupants will turn back, instead of move forward into the smoke-filled space.   

Lastly, a few models use the technique for turn back behavior developed by 

Levin29 for the EXITT model.  Occupant decision-making and movement is based on the 

optical density of the smoke in the upper layer using the equation for psychological 

impact of smoke, S.  More about the calculation is found in Chapter 2.  The following 

decision rules are incorporated into the model using this technique: 

• Occupants do not move to a node where S>0.5 (or into a room where S>0.4) unless 

the difference between the height of the room and the depth of the upper layer is at 

least 1.2 meters (the occupant can crawl) 

• Occupants increase their travel speed by 30% after they encounter smoke of S>0.1 

• Occupants stop investigating if they are in a room where S>0.05.  They will stop 

investigating before entering a room where S>0.1 

• If the occupant is in a room where S>0.1, he/she will respond more quickly and 

believe the fire is more serious. 

• Penalties and demerits are assigned to a route where S>0.4 

 
There is a limited amount of information or data available on the validity of these optical 

density and occupant behavior requirements.   
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Import CAD drawings: 
It is important to note whether or not the model allows the user to import DXF 

files from a CAD program into the model.  In many instances, this method is time saving 

and more accurate.  If a user can rely on the CAD drawings (that can come straight from 

the architect) instead of laying out the building by hand, there is less room for input error 

of the building.  In some instances, the model developer is in the process of upgrading 

their model to include this capability. 

 
Visualization of the evacuation:   
Many times it is important for the client to see where the bottlenecks and points of 

congestion are inside the space.  Many of the models allow for at least 2-D visualization, 

and recently more have released versions or collaborate with other virtual programs that 

will present results in 3-D.  Other models do not have any visualization capabilities.   

 
Validation studies:   
The importance of validation studies is to show whether or not the model can 

simulate accurate movement and (if possible) behavioral actions of the occupants.  

Usually, this is done by comparing model results to real life scenarios (mainly fire drills).  

Although this method is widely used by model developers, it should be applied 

conservatively because this type of validation may not indicate that a model can actually 

simulate occupant behavior in a real fire situation.   

The current ways of validating evacuation models are included here:  validation 

against codes, validation against fire drills, validation against literature on past 

experiments (flow rates, etc), and validation against other models.  For some models, no 

indication of validation of the model is provided. 



31  

As an aside, some of the behavioral models will perform a qualitative analysis on 

the behaviors of the population.  Although this is problematic since occupant behaviors 

are difficult to catch in fire drills, past drill survey data is sometimes used to compare 

with model results. 

 
Occupant behavior:   
Behavior of occupants is represented in many different ways by current 

evacuation models.  The organization associated with this sub category is the following:  

No behavior, Implicit behavior, Rules or Conditional Behavior, Functional Analogy, or 

Artificial Intelligence.  Also, some models have the capability of assigning probabilities 

of performing certain behaviors to specific occupant groups.  Many of the partial 

behavioral models allow for a probabilistic distribution of the pre-evacuation times, travel 

speeds, and/or FED or smoke susceptibility.   In addition to these models, rules or 

conditional based models are stochastic, allowing for the variations in outcome by 

repeating certain simulations. 

 
The following bullets are explanations of each type of behavior listed above: 

• No behavior denotes that only the movement aspect of the evacuation is simulated  

• Implicit behavior represents those models that attempt to model behavior implicitly 

by assigning certain response delays or occupant characteristics that affect movement 

throughout the evacuation  

• Conditional (or rule) behavior reflects models that assign individual actions to a 

person or group of occupants that are affected by structural or environmental 

conditions of the evacuation (as an “if, then” behavioral method) 
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• Functional Analogy resembles models that apply a set of equations to the entire 

population.  Usually the equations are taken from another field of study, such as 

Physics, to represent occupant movement. 

• Artificial Intelligence resembles the models that attempt to simulate human 

intelligence throughout the evacuation.   

 
As expressed in the fire data characteristic, several models use the data from 

Bryan, Wood, and Jin2,28 to develop rules for occupants faced with fire conditions.  These 

behaviors involve turn back behavior, slowing of occupant movement, and the physical 

movement of crawling. 

 
Occupant movement:   
This subcategory organizes how the models move occupants throughout the 

building.  For most models, occupants are usually assigned a specific unimpeded (low 

density) velocity by the user or modeling program.  The differences in the models occur 

when the occupants become close in a high density situation, resulting in queuing and 

congestion within the building.  The different ways that models represent occupant 

movement and restricted flow throughout the building are listed here:  

1) Density correlation:  The model assigns a speed and flow to individuals or 

populations based on the density of the space.   

When calculating movement dependent on the density of the space, three key 

players come to mind from which the data originated that is used in current evacuation 

models.  These three sources of occupant movement for evacuation models are John 

Fruin30, Jake Pauls1,3, and Predtechenskii and Milinskii31.   
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John Fruin30, from observations of evacuations from several types of buildings, 

developed a Level of Service concept for assessing flow and speeds under specific 

density for horizontal and vertical building components.  Level of Service A (20 

ft2/person) for stairwells, for instance, describes a highly unrestricted movement area 

with flows and speeds near optimal.  On the other hand, Level of Service F (4 ft2/person) 

for stairwells describes completely restricted flow with speeds below 85 ft/min.  This 

Level of Service concept is used in current models for occupant movement.   

Jake Pauls3,32 performed many studies in Canada on high-rise office buildings.  

Pauls work focused on the relationship between the flow rate of people throughout 

different components of the building and the width of the components (stairs) they used 

to exit the building as well as the total evacuation time of the buildings.  From this work, 

Pauls was able to develop empirical relationships:  mean flow data plotted against stair 

width and total evacuation time against the evacuation population (per meter of effective 

width).  Also, as mentioned earlier, Pauls developed the Effective-Width Model based on 

his empirical data. 

Some regard Predtechenskii and Milinskii’s book, Planning for Foot Traffic Flow 

in Buildings31, as a stand-alone model for people movement23.  From the late 1930 to the 

1940s, they observed crowd movement in public buildings, including theaters, industrial, 

educational, and transportation buildings.  From their observations, they were able to 

establish a relationship between speed and density for different kinds of 

situations/circumstances.  They developed density/speed data tables for different building 

components (horizontal paths, through openings, down stairs, and up stairs) for three 

movement types; emergency, normal, and comfortable.  Emergency movement is known 



34  

as movement with increased tension, which was observed as nervous excitement of the 

occupants.  Normal flow is uniform flow without serious complications31.  People in 

these scenarios were usually familiar with their destination and how long it would take 

them to get there.  Lastly, comfortable movement is defined as no need to hurry.  An 

example of this is the lobby of a theater during intermission.   

2) User’s choice:  The user assigns speed, flow, and density calculations to certain 

spaces of the building 

3) Inter-person distance:  Each individual is surrounded by a 360° “bubble” that 

allows them only a certain minimum distance from other occupants, obstacles, 

and components of the building (walls, corners, handrails, etc.) 

4) Potential:  Each grid cell in the space is given a certain number value, or 

potential, from a particular point in the building that will move occupants 

throughout the space in a certain direction.  Occupants follow a potential map that 

lists the exits with a “0” potential and branch out from the exit with higher grid 

values, the farther away from the exit.  The occupants look to lower their potential 

with every step or grid cell they travel to.  Potential of the route can be altered by 

such variables as patience of the occupant, attractiveness of the exit, familiarity of 

the occupant with the building, etc. (which are usually specified by the user).   

5) Emptiness of next grid cell:  Potential and emptiness of a grid cell usually apply 

to the same model.  The occupant will most likely not move into a grid cell that is 

already occupied by another occupant.  buildingEXODUS33, for instance, 

incorporates a stochastic conflict resolution (assigned a certain time period) if two 

occupants want the same grid cell.  In this case, variables such as the drive factor, 
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determine which occupant will occupy that cell and which one will either wait or 

travel to another cell (possibly with equivalent or more potential).  When potential 

and emptiness are used by the model, the user can specify the flow rate at the 

exits of the building, and sometimes even at intermediate doors throughout the 

space, so that occupants are moving with accurate flow through the building.   

6) Conditional:  With conditional models, movement throughout the building is 

dependent upon the conditions of the environment and fire situation.  Not much 

emphasis is placed on congestion inside the space. 

7) Functional analogy:  The occupants follow the movement equations specified by 

the topic area, such as fluid movement or magnetism.  In some cases, the 

equations (such as fluids) depend on the density of the space. 

8) Other model link:  The movement of the occupants is handled by a link to 

another model, such as Pauls’ movement model discussed above19. 

9) Acquiring knowledge:  Movement is based solely on the amount of knowledge 

acquired throughout the evacuation.  For this model, there is no real movement 

algorithm because evacuation time is not calculated – only areas of congestion, 

bottlenecks, etc. 

10) Unimpeded flow:  For this model, only the unimpeded movement of the 

occupants is calculated.  From that evacuation time, delays and improvement 

times are added or subtracted to produce a final evacuation time result.  

ALLSAFE, the model that uses this method, recommends use of another 

movement model for complicated spaces. 
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Output:   
The subcategory of output is important to understand if the model is producing 

the kinds of information that the user is interested in knowing for the building scenario.  

Types of output include the following:  total evacuation time, time for the occupants to 

clear each floor, time spent using specific exits, occupant flow split to exits, etc. 

 
Special features:   
The special features subcategory describes certain options given to the user to 

make the evacuation simulation more realistic.  Although data may not always be 

available for these options, the model allows the user to incorporate these if needed.  The 

special features highlighted in this section are counterflow, manual exit block, fire 

conditions, defining groups, disabled occupants, delays/pre-evacuation time, route 

choice, elevator use, toxicity of the occupants, and impatience/drive variables.  Each is 

described in greater detail below. 

• Counterflow:  The model has the capability of modeling opposing flows, especially 

in the stairwell. 

• Manual exit block/obstacles:  The model allows the user to manually block exits 

from occupants.  This is similar to allowing the user to define routes for certain 

occupants, however, not the same as simply manually deleting the exit from the 

building. 

• Fire conditions:  The model allows for the inclusion of fire conditions.   

• Defining groups:  The model allows the user to define groups. 

• Disabilities/slow occupants:  The model allows the user to enter slower velocities for 

certain individuals/groups within the population and/or larger body sizes to account 

for wheelchairs, etc.  
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• Delays/pre-evacuation time:  The model allows the user to enter pre-evacuation 

times (value or distribution of values). 

• Elevator use:  The model incorporates the use of elevators for evacuation. 

• Toxicity of the occupants:  The model incorporates toxic effects to the occupants. 

• Impatience/drive variables:  The model incorporates variables of patience, drive, 

awareness, etc. as inputs for occupants. 

• Route choice:   The model allows the user to choose from multiple route choices.  

The most common example is that a user can plan out a defined route for certain 

occupants in the simulation.   

 
Limitations:   
This subcategory specifies the limitations of the model as far as running a 

simulation on a desktop PC.  Limitations can be placed on the number of occupants, 

floors, obstacles, grid cells, nodes/arcs, etc. by the modeling program. 

 

SFPE Guidelines for Choosing a Model 

As an aid to users of evacuation models, the SFPE Handbook1 established 

“Questions a Potential Model User Should Ask About an Evacuation Model.”  This guide 

focuses on the mode of model organization used by Gwynne and Galea33 from the 

publication entitled “A Review of the Methodologies and Critical Appraisal of Computer 

Models Used in the Simulation of Evacuation from the Built Environment.”  Similar to 

the above subcategories, this guide focuses on the following categories: 

• Evacuation Model Type – such as optimization, risk assessment, etc. (following 

Gwynne’s model organization33) 
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• Enclosure Representation – how is the building represented? 

• Population Perspective – how does the model view the occupants? 

• Behavioral Perspective – what type of behavioral modeling mode is used? 

• Model Validation – how has the model been validated? 

• Model Implementation – what computer platforms will the model support? 

• Model Support – is the model currently supported by the developers? 

• Model Cost 

• Appropriateness to Task 

 
The SFPE handbook describes each category in greater detail and provides a helpful and 

complete list of questions that model users should ask before choosing an evacuation 

model. 

Evacuation Modeling Limitations 

Although evacuation modeling has advanced appreciably since 1980, there are 

still many obvious limitations to evacuation modeling and specific types of models.  

Some limitations include the data used by the model, the model capacity, simulation of 

human response and behavior, uncertainty in the models, and individual model 

limitations.  Each limitation is explained in further detail. 

 

Data 
Currently, many of the people movement algorithms in the models are based on 

data from evacuation drills or non-emergency movement observation.  It is unclear how 

different this type of movement is from actual emergency movement, of which the data is 

lacking.  Although Pauls34 does not assert a significant difference between drill data and 
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emergency movement data, other researchers stress the need for further study of 

movement during emergencies35.  Also, pre-movement or pre-evacuation times from 

evacuation drills are being incorporated into models, which also poses a potential 

problem with accuracy of results.  Like people movement, it is unclear how different drill 

and emergency response times are.  However, unlike emergency people movement, 

emergency pre-evacuation times can possibly be gathered by post-fire interviews. 

In some of the more sophisticated models, the user is given input choices upon 

which little or no data is available.  For instance, some models give the user a choice to 

rate the “patience” or “drive” of the occupants in the structure.  This seems like an 

impossible task for a building in the design phase.  It is difficult for the engineer to 

predict this kind of information as well as defend choosing one high rating over another. 

For behavioral models, a very important set of data missing from current models 

is human behavior and decision making under stress and/or fire conditions.  It is unclear 

how the smoke, heat, and perception of the emergency affects brain activity and decision 

making.  In current models that incorporate fire conditions, it is most likely that the 

model only calculates the risk to the occupant from incapacitation or death.  The most 

basic attempt is to use data from Purser26 and the Fractional Effective Dose (FED) model 

to eliminate occupants from the simulation once they have reached incapacitation.  A 

more sophisticated modeling technique used involves altering occupant movement under 

smoke conditions (i.e., crawling when smoke becomes dense) using data from Japan28 

and/or predicting whether or not occupants will walk through a smoke barrier or redirect 

using Bryan and Wood’s data2.  However, this data is faulted by age, the choice of lab 

participants (Jin used housewives, undergraduate students, and staff of his research 
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institute), and the validity of data captured by Bryan and Wood from personal accounts, 

particularly on the visibility distances through smoke.  Not only do these techniques 

simply skim the surface of human behavior under fire conditions, the data sources are 

substantially different from real fire scenarios and have not been replicated.  It is 

recognized that more work and experiments should be done in this area, however, human 

subjects testing with fire conditions is an impossibility.  Other ways to gather data need to 

be explored. 

  
Model capacity 
Another limitation of evacuation modeling is the capacity of the specific models 

to handle the entire building and contents for a design task.  It is not uncommon for the 

model and/or visualization software to have a limit on the number of floors, size of the 

floor plan, number of occupants, etc.  In this case, it is important to understand each 

model’s capacity limitations when choosing an appropriate model.  

 
Human response/behavior 
A limitation of evacuation modeling pertains to the modeling of human response 

and behavior to evacuation cues.  Many models, if not all of them, are not equipped for 

many of the response scenarios that occur during an emergency.   In an emergency, 

people’s responses are different depending on a number of factors that aren’t necessarily 

captured by evacuation models.  These factors are presented by Proulx3 and are explained 

below.  The first factor that affects an occupant’s response is their perception of the fire.  

If they do not feel threatened (or perceive a high sense of risk) by the emergency or the 

sound of the alarm (perhaps it provides false alarms frequently), the occupant is less 

likely to promptly begin evacuation.  This factor lacks sufficient data to model, but 
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becomes very important in evacuation movement36.  Another factor that affects 

emergency response is the occupant’s location inside the building relative to the fire.  If 

the occupant is closer to the fire conditions, they are more likely to perceive a higher 

threat and evacuate more quickly.  This is not simulated by current models.  Also, the 

presence of other occupants affects the evacuation response of an occupant.  A certain 

type of person may wait for the others around him/her to evacuate first before doing so37.  

Occupants may also form groups with which they converse and begin the milling 

process36 in order to construct an evacuation plan.  This allows for the transfer of 

information from one occupant to another about fire conditions, evacuation movement, 

and thoughts and fears.  This is simulated in a few select models in less detail as 

described above.  Another factor that plays a role in evacuation response is previous 

experience in other emergencies, which is difficult to model due to the lack of data.  

However, the role of the factor has been proven to be important in response36.  As Proulx 

states3, the occupant’s role in the building also affects how they respond to an emergency.  

For instance, if the occupant is a trained fire warden, they have certain tasks to complete 

before beginning their own evacuation.  On the other hand, if the occupant is a boss or 

superior of the company, they may also take on the role of a fire official to make sure 

their employees reach safety before beginning their own evacuation.   Familiarity of the 

building also plays a role in how the occupant responds to an emergency cue (i.e. alarm).  

In the case of delay time, if an occupant is not familiar with the alarm and/or building, 

they may wish to seek and consult with other occupants before making a decision on 

what to do next.  Also, an unfamiliar occupant may unknowingly evacuate via the way 

they came in, instead of traveling to a closer fire exit, which would increase their 
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evacuation time.  Lastly, factors such as alertness and commitment to a particular activity 

affect an occupant’s response to a fire emergency.  Both factors will cause a delay in 

evacuation time.  For example, if an occupant is intoxicated, it may take a longer time to 

arouse the occupant with an alarm system.  Also, if an occupant is committed to a certain 

activity (i.e. grocery shopping or gambling) and does not perceive the emergency as 

particularly serious, they may take a longer time to react and evacuate.   

 The models do implicitly attempt to capture some of this behavior by allowing the 

user to designate a response delay distribution across the entire population.  Or, in more 

sophisticated models, the user can suggest certain activities for the occupants to engage in 

and assign particular times to those activities.  Although, in this later example, the 

activities provided for the user to choose from do not capture many of those described 

above in the limitations section.  Even with these response time distributions or choice of 

certain activities, many of the human response factors discussed above do not have 

sufficient data to provide such options to current evacuation models.  It is important to 

realize that such factors exist.  The next step is understanding the circumstances that 

cause these factors to emerge and then assigning certain time limits and behaviors as 

adequate responses. 

 
 

Uncertainty 
Since there is a great deal of uncertainty and variability in the prediction of people 

movement and behavior, designers have expressed concerns about a lack of sufficient 

understanding of which of the inputs/variables make the most impact on the evacuation 

results9.   If such information was known, more emphasis in research of past experimental 

data could be put into the more influential inputs.  This is not to say that the other inputs 
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do not matter, but would be less significant on the evacuation results.  The engineers 

would be able to focus more on the influential inputs through research and simulation of 

a wide variety of potential inputs in order to completely bound the evacuation results.  

Work in this area is being performed currently by Arup for a NIST grant. 

 
Model quirks or characteristics 
As one may deduce, with current technology, there always seem to exist certain 

limitations or problems.  This is also true with many of the evacuation models that exist 

today.  Whether it is with the actual model or visualization software, it is important for 

the user to be aware of such limitations and make sure that these problems do not affect 

the evacuation results.  No examples are given here so as not to single out any one model. 

It is true that some models are more user-friendly than others.  As technology has 

increased, many of the models have resorted to a Windows based input screen, whereas 

some models still resort to user input via Dos prompts.  It is up to the user to decide 

which models they feel comfortable using. 

Lastly, in some models, buildings may be represented with less accuracy that 

others.  For instance, the models that use a network system move occupants from one 

node to another node, instead of one section of a node to another section of that same 

node.  It is up to the user to decide which level of accuracy is needed for the particular 

building.  It may be a very simple building with segregated rooms where a network 

model is quite appropriate.  For more complex buildings and spaces, more accuracy may 

be needed. 
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This chapter has aimed to serve as an overview of evacuation modeling.  The 

differences between conceptual and computer modeling has been explained.  Also, the 

early “players” in evacuation modeling have been introduced to serve as a foreshadowing 

of the current modeling technology.  It is quite interesting to see how the field of 

modeling has begun and how far it has come in the last 30 years.  Important modeling 

characteristics have been introduced and explained in order to point out significant 

difference between the current models.  These characteristics are used to describe the 

models in more detail in the next chapter.  Guidelines presented in the SFPE handbook1 

have also been introduced in order to give the model user a checklist of questions to 

answer before choosing the appropriate model.  Lastly, modeling limitations have been 

presented as a caution to model users.  These items should be taken into account before 

attempting to use and understand modeling results. 
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CHAPTER 2:  COMPREHENSIVE REVIEW OF PAST AND PRESENT 
EVACUATION MODELS 

 
Introduction 

After reviewing the human behavior and movement sections in the Society of Fire 

Protection Engineers (SFPE) Handbook (Section 3, Chapters 12-14)1,2,3, the National Fire 

Protection Association (NFPA) Handbook (Section 4, Chapter 2)11, and other seminal 

works in human behavior in fire, the need for a comprehensive review of past and current 

evacuation models was recognized.  There are three evacuation model reviews that have 

been written, which were significant in the organization and data gathering found in this 

chapter.  The most substantial review to date was performed by Gwynne and Galea33 at 

the University of Greenwich.  This report offers a review of 16 evacuation models and is 

referenced throughout this chapter.  Second, Combustion Science and Engineering 

released an article on a review of fire and evacuation models, as well as developed a 

website where this information is available and free to the public38,39.  Lastly, Friedman40 

also reviewed egress models, much in the same fashion as was performed by Gwynne 

and Galea.   

However, there is a need for an updated, unbiased, and more detailed review to 

aid evacuation model users in choosing the appropriate model for their particular project.  

The previous three reviews listed were written before newer models were developed, 

showing a need for a more updated review.  Also, the most influential review33, was 

written by an establishment that has its own successful egress model.  Because of this, it 

was suggested that a model review be written by an individual without preference to a 

certain model to relieve rumors of bias.  Lastly, the previous three model reviews can 

certainly be expanded as far as providing additional detailed information for each model.  
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Therefore, more explanation was given in this review to the details of interest to model 

users, the inner workings of each model, and each model’s validation methods and 

limitations. 

Another purpose served by this review is to aid current and aspiring model 

developers in understanding the latest state-of-the-art in evacuation modeling.  Lastly, 

this review aims to pinpoint limitations of various input variables due to a lack of data 

and limitations on the lack or weakness of validation studies for certain models.  These 

are two very important areas in evacuation prediction.   

 There is a process which was followed to conduct this evacuation model review.  

First, a list of relevant aspects and features of evacuation models that would be of interest 

to any model user was compiled.  These features were described in detail in Chapter 1 

under the Categorization of Evacuation Models section.  A bulleted list is provided here: 

• Purpose 

• Availability for public use 

• Modeling method; movement, partial-behavioral, behavior 

• Structure of model 

• Perspective of model and perspective of occupants 

• Occupant behavior 

• Occupant movement 

• Use of fire data 

• Output 

• Use of CAD drawings 

• Visualization capabilities 
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• Validation studies 

• Special Features 

• Limitations 

 
Once the list was deemed exhaustive, articles and previous evacuation model 

reviews were gathered for research into each model.  Each publication was read in order 

to provide data for all relevant features of each evacuation model.  In some cases, data 

was not available or found, and such is stated in the model review. 

This review covers a total of 28 computer models that focus on providing 

evacuation data from a specific building.  The models are organized in the review by 

modeling method; movement models, partial behavioral models, and behavioral models.  

A list of the models in the review is provided here, also in the order that they appear in 

the review: 

 
Movement models: 

FPETool, EVACNET4, Takahashi’s Fluid Model, PathFinder, TIMTEX, WAYOUT, 

Magnetic Model, EESCAPE, EgressPro, ENTROPY Model, and STEPs. 

 
Partial Behavioral models: 

PEDROUTE/PAXPORT, EXIT89, Simulex, GridFlow, and ALLSAFE. 

 
Behavioral models: 

CRISP, ASERI, BFIRES-2, buildingEXODUS, EGRESS, EXITT, VEgAS, E-SCAPE, 

BGRAF, EvacSim, Legion, and Myriad (uncategorized).  
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For each model, a special feature section is included in this review.  These are 

included as features of interest for model users who are searching for the appropriate 

model to simulate a certain type of building.  In the special features section, there are ten 

features of interest for each model.  It is of interest whether or not the model can simulate 

the first nine features listed and lastly, how the model simulates occupant route choice.  It 

should be stated, however, that some models attempt to simulate these evacuation 

features even without adequate data.  The specific features are listed here: 

• Counterflow  

• Manual exit block/obstacles 

• Fire conditions affect behavior? 

• Defining groups  

• Disabilities/slow occupant groups   

• Delays/pre-movement times  

• Elevator use 

• Toxicity of the occupants 

• Impatience/drive variables 

• Route choice of the occupants/occupant distribution  

 
For each model, the feature is listed and described only if it is apparent that the 

model has the capability of simulating it.  Also, for each model, the method of simulating 

route choice is listed and described. 

Sections 2.1 to 2.28 focus on the individual characteristics of each model that are 

important for model users to know and understand.  The level of detail included is only as 

high in quality as could be extracted from publications on the model and communication 
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with model developers.  Sections 2.28 is included for completeness for this model review, 

however because of its uniqueness, the model is not categorized with a particular 

movement method (even though it resides in the behavioral models section).    

Movement Models 
 

Section 2.1 Egress Section in FPETool23,41: 

Developer: H.E. Nelson, National Bureau of Standards, U.S. 

 

Purpose of the model:  The purpose of FPETool is to estimate the time needed for an 

occupant or group of occupants to exit an area.   

 

Availability to the public for use:  This model is available on the Fire Research 

Information website under the Fire Modeling Programs topic area through NIST:  

http://www.bfrl.nist.gov/fris/.   

 

Modeling method:  Movement model 

 

Structure of model:    N/A.  The distance of the route including the distance traveled 

over stairwells is input by the user to describe the building.   

 

Perspective of model:  The model views the occupants as a mass of people (global) 

flowing through doorways with a specified rate.  The occupants also have a global view 

of the building, since the most efficient exit paths are chosen for egress time calculations.   



50  

 

Occupant behavior:  None. 

 

Occupant movement:  The flow rates through doors are assumed to be one 

person/second/door leaf.  In the case that a door leaf is less than 34 inches wide, the flow 

rates may be less.  The model also incorporates effective widths into the exit path.  The 

user of the model inputs the following items into FPETool: 

• Travel speed on level routes (m/min) 

• Travel speed on stairs (vertical travel)  

• Flow rate through doors (people/min/exit door width) 

• Flow rate on stairs (people/min/m Weffective) 

• Total number of occupants using the evacuation routes 

• Whether disabled occupants are included in the simulation 

• The speed of the slowest evacuee 

• The number of exit door leaves available to the occupants 

• Total length of the route 

• Vertical distance moved on stairwell 

• Number of stairways used (total width) 

• Stairway width (mm) 

• Stairway tread depth 

 

Since the model can handle only one stairway width, if a building contains greater 

than one stairway with different widths, the user will need to enter an average width for 
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the stairways of the building.  This model does not incorporate queuing through various 

portions of the building, since the building is only represented by the travel route 

distance, the number of stairwells, the exit door width, and the geometry of the stair.  

Congestion occurs only at the doors or stairwells.  The equations below make up the 

calculations made by FPETool to provide egress times (as shown in Figure 2.1). 
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Figure 2.1:  FPETool egress equations (41, p.33 ) 

Equations 1, 5, and 6 (together) provide a first-order estimate of area evacuation times.   

 

Use of fire data:  None. 
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Output:  The output for the model is the following in minutes: 

1. Horizontal and stair travel time – this includes the time for a person to traverse all 

stair and horizontal paths without queuing.   

2. Time required to pass all occupants through the building exit doors – the time for 

the entire population to pass through the exit doors 

3. Time required to pass all occupants through the building stair exit doors. 

 

Import CAD drawings:  No.  The user enters the capacity of the nodes and the initial 

contents.  Building data is not necessarily supplied because the dynamic capacity (flow) 

and the traversal times specified in the input move people throughout the building at 

evacuation time progresses. 

 

Visualization capabilities:  None. 

 

Validation studies: None known of at this time. 

 

Special features: 

• Disabilities/slow occupant groups - The user can input the speed of the slowest 

evacuee as a percentage of an able evacuee’s speed. 

• Route choice of the occupants/occupant distribution – Most efficient 

 

 



54  

Limitations:  There are many assumptions made by the model.  These assumptions are 

the following:  the most efficient exit paths are chosen, no actions such as investigation, 

way-finding, etc. are incorporated, flow is ideal without congestion, and there is no 

adjustment to flow speed due to density.  Nelson notes that it is reasonable to expect 

evacuation times that are two to three times greater than the nominal evacuation time 

obtained from FPETool.   

_____________ 

Section 2.2 EVACNET417,42,43: 

Developers:  Kisko, Francis, and Nobel, University of Florida, U.S. 

 

Purpose of the model:  EVACNET4 can be used for any type of building, such as office 

buildings, hotels, skyscrapers, auditoriums, stadiums, retail establishments, restaurants, 

and schools.  The purpose of the model is to describe an optimal evacuation from a 

building, meaning that the model minimizes the time to evacuate the building.  

EVACNET4 replaces the previous version, EVACNET+. 

 

Availability to the public for use:  Yes, the model is available for public use.  To help 

pay for development, a license is $250.00. 

 

Modeling method:  Movement model 

 

Structure of model:    This is a coarse network model.  Figure 2.2 shows the nodes 

designations in the rectangles connected by arcs (arrows).  Examples of node types are 
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WP (workplaces or rooms), HA (hallway), SW (stairwell), LO (lobby), and DS 

(destination node or the outside).  The numbers assigned to each node and arc are 

provided by the user and are explained in the movement section of this review. 

 

 

Figure 2.2:  EVACNET4 building structure - nodes and arcs (42, p. 3) 

  

Perspective of model:  The model views the occupants as a mass of people (global), and 

the occupants have a global view of the building, since occupants will move in the most 

optimal way throughout the space.  Even though this movement may not be the shortest 

route, occupants are moved in a certain direction only to achieve occupant distributions 

that produce minimal evacuation time.  In other words, all exits will have a similar time 

of use during the evacuation. 

 

Occupant behavior:  None. 
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Occupant movement:  For each node, the user specifies its capacity and initial contents, 

in number of people.  For each arc, the user supplies an arc traversal time and arc flow 

capacity. The traversal time is the number of time periods it takes to traverse the 

passageway (represented by the arc), which is calculated by using the distance of the arc 

and the speed of the occupants. The arc flow capacity is the upper limit on the number of 

people that can traverse the passageway per time period, which is calculated using the 

width of the arc and the flow (persons/foot-minute) of the occupants through that space.  

The data (speed and flow) is provided by the user, meaning that the source of the 

movement data is left up to the user to decide.  And, once specified for the occupants of 

the simulation, the data (speed and flow) remain constant. 

 

Use of fire data: None. 

 

Output:  The output is organized and explained in Table 2.1. 
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Table 2.1:  EVACNET4 Output 

Parameter Description 
General overview Time to evacuate the building, time of uncongested 

evacuation, the congestion factor (building evacuation time 
divided by uncongested evacuation time), the average time for 
an evacuee to egress the building, the average number of 
evacuees per specified time period, the number of successful 
evacuees 

Destination node distribution Number of evacuees that passed through that exit to safety   
Total arc movement List of arcs and the number of people traveling through each 

one 
Identification of bottlenecks List of arcs that had bottlenecks (queues) and the 

corresponding time periods that the arc was a bottleneck   
Floor clearing time Time period that the last evacuee left that floor 
Node clearing time Time period that the last evacuee left the node 
Uncongested evacuation time 
by node 

Number of time periods that the node was uncongested 
 

Building evacuation profile Number of evacuees per time period  
Destination evacuation profile Number of evacuees per exit per time period 
Node contents profile Number of people waiting at the end of a time period for a 

specified node 
Arc movement profile Number of people moving at the end of a time period for a 

specific arc, respectively    
Bottleneck information for a 
specific arc 

Number of people waiting at a specific node  

Node contents snapshot Number of people at a specific node at a specified time period 
Non-evacuee allocation Number of people not evacuated by a particular time period 
 

Use of fire data:  None. 

 

Import CAD drawings:  No.  The user enters capacity of the nodes and the initial 

contents.  Building data is not necessarily supplied because the dynamic capacity (flow) 

and the traversal times specified in the input move people throughout the building as 

evacuation time progresses. 

 

Visualization capabilities:  None. 
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Validation studies: Johnson et al43 provides validation for EVACNET+ (a previous 

version of EVACNET4) from an unsuspected evacuation from the National Gallery of 

Victoria involving 1014 people.  Gwynne33 explains the biases in the write-up due to the 

fact that information which would not have been known before the evacuation was 

entered into the model, such as the information that one exit was not used, the under-use 

of another exit, etc).  Gwynne also notes that because EVACNET optimizes an 

evacuation, any overestimation by the model is a large error.  The results are shown 

below in Table 2.2: 

Table 2.2:  Results of validation study for EVACNET+ 

Exit Evacuation Time (s) EVACNET+ time (s) 
A 420 424 
B 420 424 
C 480 521 
D 480 512 

Total time 480 521 
 

Special features: 

• Elevator use – Yes.  The inputs required includes the "down" travel time, the "up" 

travel time, the time of the first "down" departure, and the elevator capacity. Given 

this information, EVACNET4 runs the elevator on the defined schedule for the 

duration of the evacuation. Passengers are carried only on "down" trips.  This is 

shown in Figure 2.3. 
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Figure 2.3:  EVACNET diagram incorporating elevator use (42, p. 66) 

 
• Route choice of the occupants/occupant distribution – Optimal route only 

 

Limitations:  The model’s array sizes can be accustomed to fit needs of building.  This 

simply requires a larger memory.  The text input files are arduous to assemble for a 

complex building. 

____________ 

Section 2.3 Takahashi’s Fluid Model44,45: 

Developers: Takahashi, Tanaka, and Kose, Ministry of Construction, Japan 

 

Purpose of the model:  The purpose of this model is to predict and evaluate the 

evacuation time of people in a fire, mainly from a low level hazard.  The assumption of 

this model is that people move like a fluid. 
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Availability to the public for use:  An email was received from one of the authors of the 

model, Takeyoshi Tanaka.  He stated that the model was published for general use about 

15 years ago from the Building Center of Japan and was used for a while in research and 

practical fire safety design of actual buildings.  However, because hand calculation 

methods have been widely used among building designers for the estimation of 

evacuation time lately, the model has not become as popular in use. 

 

Modeling method:  Movement model 

 

Structure of model:  This is a coarse network system.  The 6 space elements are room, 

path, stair, vestibule, hall, and refuge area.  The two “imaginary spaces” are link and 

crowding.   

  

Perspective of model:  The model views the occupants globally as a homogeneous group 

with the ability to move like a fluid with a constant speed in each space element.  The 

occupants view the building globally as well, since they are moved throughout the 

building through the most optimal route. 

 

Occupant behavior:  No behavior. 

 

Occupant movement:  Occupants are uniformly distributed in rooms and given delay 

times by the user.  Takahashi’s fluid program models the movement of the occupants 

throughout the room using two different approaches, depending on the obstacles in a 
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room.  The L-shape approach is used for rooms where obstacles are present, which allows 

the occupants to approach the exit in an L-shaped or indirect manner.  For rooms without 

obstacles, the occupants approach the exit directly using the centripetal approach, as 

shown in Figure 2.4.  

 

Figure 2.4:  Occupant movement in a room following the centripetal approach (44, p. 554) 

For both methods, the number of evacuees arriving to the exit after a time (t) is 

affected by the length and width of the room, the user specified walking speed, and the 

density of the evacuees in the room.   Any crowding at the exits from rooms is 

redistributed to achieve the minimum or optimal evacuation time from each space.  The 

fluid movement equations used for the simulation are applied to the entire population.  

The assignment of equations to the entire population of a model from another field of 

study that can be related to human behavior in a fire, in this case fluid flow, has been 

referred to as a functional analogy33.   The movement method of this model will be 

referred to as the functional analogy of fluid flow, with the underlying method of 

assessing the density of the space elements. 

  When moving from one space to another in the building (through a link), the 

movement is dependent upon the number of evacuees ready to move, the availability 

capacity of the space they would like to move into, the width of the opening, and the 

number of space elements combining in that link.  The model incorporates all of this into 
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overriding equations for the entire population to follow.  When the evacuees reach the 

hall, they use the exits that would minimize egress time, taking into account crowding of 

the exits, the number of evacuees reaching the exits, the distance to the exits, and the rate 

of egress (persons/second) at each exit.  

 

Output:  The output from the model is the total evacuation time and a visualization 

presentation.  The visualization shows the number of evacuees in each space element 

with five levels of density.  When crowding forms at the doors of each space element, for 

example, blackened arcs can be seen surrounding the doorway to signify higher density. 

 

Use of fire data:  None. 

 

Import CAD drawings:  No.  The user inputs the length and width of space elements.  

Not much more information is provided.   

 

Visualization capabilities:  2-D visualization of the levels of density on the floor plan, as 

explained in the output section.   

 

Validation studies: Validation studies of the fluid model were performed using 

measured evacuation times from the seven pavilions of the Tukuba International Expo in 

1985.  The egress times of the occupants in each pavilion were calculated using two 

different cases, 1) the L-shape approach is considered in the theater area, and 2) the 
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theater spaces consists of space units connected by paths (rooms and paths).  The results 

are shown below in Table 2.3: 

Table 2.3:  Validation results from the Tukuba International Expo 

Pavilion # Egress Times (s) Average (s) Calculation 1) Calculation 2) 
1 61, 71, 75, 60, 64 66.2 52 62 
2 174, 154 164 137 275 
3 71, 80, 77, 78, 79 77 50 76 
4 94, 111, 102 102.3 72 89 
5 70, 123, 84, 77 88.5 34 59 
6 160, 152, 166, 157 158.8 100 107 
7 148, 118, 130, 121, 131 129.6 70 88 

 

Special features: 

• Delays/pre-movement time – Yes, the delay time is input into the model. 

• Route choice of the occupants/occupant distribution – The optimal route. 

 

Limitations:  The model only provides estimates of the general movement pattern of the 

occupants. 

_____________ 

Section 2.4 PathFinder46,47,48: 

Developer:  RJA Group, U.S. 

 

Purpose of the model:  The purpose of developing this model is to provide an analytical 

egress simulation tool that could be coupled with an external fire model to form a portion 

of hazard analysis.  The model is used to find bottlenecks and queues in a design.  There 

is no specific building type specialty. 
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Availability to the public for use:  The model is a proprietary software program 

developed and used by the RJA Group. 

 

Modeling method:  Movement model 

 

Structure of model:  This is a fine network system.  The model provides a simulation of 

the evacuation to visually present the location of the occupants as a function of time. 

  

Perspective of model and occupant:  The model views the occupants as individuals.  

The model has the capability of tracking individuals’ movements and positions 

throughout the simulation.  The model views the population through a global view only 

to assess the density of certain areas of the building.  The occupants, on the other hand, 

have a global view of the building because of their route choices.  They can choose the 

shortest route to the exit or the shortest cue route.   

 

Occupant behavior:  No behavior. 

 

Occupant movement:  The occupants move toward the exits under the constraints of the 

SFPE Handbook1, which incorporates speed reductions based on the density of the space 

and the capacity of the doors and stairways.  The primary areas of analysis focus on 

movement in open spaces, on stairways, and through doorways.  The user specifies initial 

occupant loading by specifying the density in certain areas (by noting the occupancy of 

the room) or by giving discrete number of occupants. 
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Output:  Examples of the output are the number of people that have used an exit; 

minimum, maximum, and average time for people to exit from a given room (monitoring 

the first and last person to leave); the times a room, hall, or stair becomes empty; the time 

a floor becomes empty; and total evacuation time. 

 

Use of fire data:  None. 

 

Import CAD drawings:  Yes, CAD drawings can be imported into the model or the user 

can use PathFinder to layout a floor plan. 

 

Visualization capabilities:  2-D visualization 

 

Validation studies: No publications on validation studies were found. 

 

Special features: 

• Route choice of the occupants/occupant distribution – 2 choices: shortest distance or 

shortest cue 

 

Limitations:  None specified as to limitations on model capacity. 

_____________ 
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Section 2.5 TIMTEX32: 

Developer: S.S. Harrington, University of Maryland, U.S. 

 

Purpose of the model:  The TIMTEX model was developed to model evacuation from 

buildings 4 to 15 stories high with consideration of certain human factors, such as 

occupant decision on stair use. 

 

Availability to the public for use:  Since it was released as a Master’s thesis, this model 

is inherently available to the public. 

 

Modeling method:  This is a movement model. 

 

Structure of model:  This is a coarse network system.  Instead of acknowledging the 

entire floor plan, TIMTEX concentrates on movement from the corridor on the floor to 

the stairs and then to the exits.  The model mainly focuses on the corridor and stair 

sections of the building.   

  

Perspective of model:  The model views the occupants globally as a certain number of 

occupants per floor moving as a homogeneous mass to the exits.  The model sees all 

occupants as alert and able bodied.  The occupants view the building with an individual 

perspective because the user can choose the flow split of occupants to the stairs.  The 

occupants will not necessarily move to the closest stair.  Instead, the user can either claim 

that a stair is frequently used and TIMTEX will use the default percentage use of the 
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popular stair, which is a 64% increase, or the user can enter any kind of flow split they 

want for the floor plans.   In this case, it would be possible for the user to model a certain 

percentage of the population using the main exit, which may be the most familiar. 

 

Occupant behavior:  None. 

 

Occupant movement:  TIMTEX uses the equations specified in the SFPE Handbook1 to 

move occupants throughout the corridors and stair systems.  The speed and flow are 

dependent upon density through each component.  Also, the model uses the Handbook’s 

rules to handle all transition points (i.e., merging streams, where egress elements 

dimensions change, etc.).  Flow up stairs is 10% slower than down stairs, as specified by 

Pauls49.  If queuing occurs in the stairs, the model assumes that the upper floors dominate 

the flow.  There are no variations in the speed, dependent upon the conditions or types of 

occupants.  Instead, flow and density calculations are based on values from the Handbook 

(which have been averaged among occupant types). 

The user enters in either the building population per floor or the area of each 

floor, and the model will enter in the number of occupants for that occupancy type 

(building occupancy uses 212 ft2/person, as an example).  Again, it is up to the user to 

accept the flow split generated by TIMTEX or enter a new split.   

 

Output:  Total evacuation time and individual floor clearing times are included in the 

output and are shown in Figure 2.5.  
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Figure 2.5:  Window from output of TIMTEX (32, p. 55) 

 

Use of fire data:  None. 

 

Import CAD drawings:  No.  The user supplies the following data to the model:  the 

corridor length and width, the stair width, the stair door width, the landing length and 

width, the floor to floor height, and the riser/tread dimensions.  Boundary layers are 

automatically subtracted from the building components.  The user also supplies the 

number of stories and if a stair is frequently used.   

 

Visualization capabilities:  None. 

 

Validation studies: The model has been validated for buildings under 15 stories by 

comparing results to the work done by Pauls1,3. 
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Special features: 

• Route choice of the occupants/occupant distribution – User chooses the flow split of 

occupants on the floor.   

 

Limitations:  The model should be used for buildings 4-15 stories in height only, since 

the model developer has compared her results/output to Pauls’ Canadian fire drill 

evacuation data and GSA fire drill evacuation data.  The developer has found enough 

consistency at those building heights.  Also, this model does not actually move people 

throughout the floor plan. 

_____________ 

Section 2.6 WAYOUT39,50: 

Developer: V.O. Shestopal, Fire Modelling & Computing, AU 

 

Purpose of the model:  WAYOUT has been created to compute traffic flow in 

emergency situations from a multi-room or multi-story building.  In this model, only 

merging flows are considered. 

 

Availability to the public for use:  The model is available from Fire Modelling & 

Computing in Australia as part of FireWind (18 programs) and the price is negotiable. 

 

Modeling method:  Movement model 
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Structure of model:  This is a coarse network system.  The model labels each 

compartment of constant width with a number and refers to this compartment as a “twig.”  

If the compartment has a variable width, it is divided into multiple twigs.  For a building 

evacuation with multiple exits, it is up to the user to draw “watersheds” to divide the 

flows (on the basis of psychological or other considerations) and compute the route 

separately.  The method of labeling nodes in WAYOUT is shown in Figure 2.6. 

 

 

Figure 2.6:  Example of how nodes are labeled in EVACNET4 (50, p. 628) 

  

Perspective of model:  The model views the occupants globally as “packs.”  And, since 

the occupants have only one route to choose from, the occupants’ perspective will be 

labeled as global, also. 

 

Occupant behavior:  None. 
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Occupant movement:  The movement of the occupants is based on density vs. speed 

data collected by Predtechenskii and Milinskii31.  Density is defined as D=Nf/wL, where 

N is the number of people in the stream, f is the area of horizontal projection of a person, 

w is the width of the stream, and L is the length of the stream of people.  The maximum 

density of their results is 0.92 m2/m2, and WAYOUT uses the adult in mid-season dress 

(0.113 m2) to calculate f.  Density is monitored on each building section (Predtechenskii 

and Milinskii data distinguishes between travel on horizontal components, through 

doorways, down stairs and up stairs).  WAYOUT considers flows throughout the route 

from door to door of each compartment.   

 

Output:  The output from this model is the complete movement time and individual 

times when each twig is evacuated. 

 

Use of fire data:  None. 

 

Import CAD drawings:  No.  The user inputs geometrical configuration, including the 

length and width of twigs, width of doors, and the population numbers in each twig. 

 

Visualization capabilities:  2-D visualization of the evacuation tree is provided. 

 

Validation studies: An evacuation study was performed on the Milburn House in 

Newcastle, UK as a fire drill.  The results are provided in Table 2.4.  The number of 
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evacuees was monitored at each exit.  The fire drill and simulation results are provided 

below for this 7-story building: 

Table 2.4:  Milburn House validation results for EVACNET4 

 # of Evacuees Time of the gap in flow (s) Time of evacuation (s) 
  Tested Computed Tested Computed 

Exit 4 40 - - 60 40 – 99 
Exit 8 48 - - 156 164 

Exit 10 248 220 168 266 243 
 

The calculations shown in the table were made for those exits that housed a large number 

of occupants.  The developers note that the occupants may not be moving as fast as they 

may in an actual evacuation because of the fact that their movement was a drill.  This 

may be an explanation for the computed values providing a shorter evacuation time in 

most cases.  Some difficulties in this validation work were the incomplete response of all 

occupants involved, and minor discrepancies in the records of occupants passing through 

certain stairs and exit doors.  The developers note, though, that this comparison “seems to 

be satisfactory.” 

 

Special features: 

• Delays/pre-movement time – Yes, user enters start time for evacuation if the twig is a 

blind end.  This is so the user can incorporate time delays in receiving the alarm cue. 

• Route choice of the occupants/occupant distribution – Only 1-route 

 

Limitations:  Only merging flows are considered.  The model allows for up to 400 

“twigs.” 

_____________ 
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Section 2.7 Magnetic Model51: 

Developers: S. Okazaki & S. Matsushita, Fukui University, Japan 

 

Purpose of the model:  The purpose of this model is to visualize the movement of each 

pedestrian in a floor plan as an animation so that architects and designers can easily find 

and understand the problems of their design projects.  This model uses the functional 

analogy of the motion of a magnetic object in a magnetic field.   

 

Availability to the public for use:  Unknown 

 

Modeling method:  This is considered to be a movement model because of the use of 

magnetism to move occupants throughout the simulation.  Queuing “behavior” can be 

simulated on the basis of occupants in airports, railway stations, department stores, and 

office buildings, however, this is just a piece of the overall model.  The model can 

simulate groups, yet, it is unclear whether this is used to model affiliation or reduce 

computer calculation time33.  This model is on the borderline of movement and partial 

behavioral categorizations 

 

Structure of model:  This is a fine network system.  Each occupant is displayed at each 

0.1 second time frame at the appropriate location in the plan on the computer display.   

  

Perspective of model:  The model views the occupants individually, as noted above, 

during visual simulation.  Also, the occupants have three different methods of walking 
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throughout the building (showing an individual or local perspective of the building, 

depending upon the option chosen).  These options are: 

• Indicated route – a sequence of corner numbers (vertexes on the walls) is given by the 

user and the occupants walk along them 

• Shortest route 

• Wayfinding – an occupant does not know the route and he/she walks seeking the goal 

 

Occupant behavior:  Mainly functional analogy, with an implicit classification for the 

incorporation of observed queuing behaviors mentioned in the movement section. 

 

Occupant movement:  The initial input given for each occupant includes the following:  

the location of the starting point, the maximum walking velocity, time to start walking, 

orientation to walk, method to walk, and the destination.  If there is a large number of 

occupants, groups can be formed and the group will have a common destination, 

orientation, start time, and method to walk.  The velocity of each occupant in the group is 

decided by random values which are normally distributed and the positions of the 

occupants are decided by uniform random variables in specific areas set to the group. 

The movement of the occupants is analogous to the movement of a magnetized object in 

a magnetic field.  A positive magnetic pole is given to the occupants, obstacles (walls, 

columns, etc.), and handrails.  A negative magnetic pole is located at the goal or exit.  In 

the magnetic field of the building, the occupants move toward the goal and avoid 

collisions.  A maximum velocity is provided by the user, because if the occupant moved 
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to the goal simply by the force of the magnetic field, his/her velocity could increase 

without limit by acceleration, according to Coulomb’s law.   

The magnetic force that acts on the occupant from a magnetic pole is calculated by 

Coulomb’s Law, shown by Equation 2.1: 

F=(k*q1*q2/r3)*r       (2.1) 

 Where F is the magnetic force vector, k is a constant value, q1 is the intensity of 

the magnetic load of the occupant, q2 is the intensity of the magnetic pole, r is the vector 

from an occupant to a magnetic pole, and r is the length of r.   

Another force is used in the evacuation calculation, known as Acceleration, a.  

This force acts on an occupant to avoid collision with another occupant.  The total of all 

forces from the goals, walls, and other occupants on each occupant decides the velocity 

of each evacuee at each time.  If large values are given to the parameters of intensity of 

the magnetic loads of elements and the occupants, the intensities of the repulsive forces 

increase.  As a result, the evacuees maintain longer distances from each other and from 

obstacles, decreasing the density and the flow of the evacuation.  All individuals respond 

in the same way to the magnetic equations, as a functional analogy would.   

The Magnetic model also incorporates a complex queuing system for specialized 

spaces.  Three types of queuing behavior are used in the model, originating from 

observations made on the movement of occupants in airports, railway stations, 

department stores, and office building.  These three types of queuing systems are 1) 

queues in front of a counter, 2) queues in front of gates, and 3) queues in front of doors of 

vehicles.   
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Output:  The output includes total evacuation time and a visualization presentation. 

 

Use of fire data:  None. 

 

Import CAD drawings:  No.  The user supplies data on the walls and openings in the 

floor plan.  The walls are given as xy-coordinates on the plan of a building.  Data on the 

walls also includes handrails and other objects (obstacles).  Information is also given to 

the model on doors, exits, windows, counters, gates, and exits of vehicles (such as 

elevators and trains). 

 

Visualization capabilities:  2-D visualization of occupant movement and areas of 

crowding is provided. 

 

Validation studies: None specified  

 

Special features: 

• Defining groups – Yes, groups can be defined if a large number of occupants are 

included in the simulation.  Occupants are then entered as groups and occupant data is 

given for each group. 

• Disabilities/slow occupant groups – Yes, the user can adjust the maximum walking 

velocity of the group. 

• Delays/pre-movement time – Yes, the user can input the time to start the evacuation. 
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• Route choice of the occupants/occupant distribution – There are three choices, 

indicated route, shortest route, and wayfinding. 

 

Limitations:  None provided in documentation. 

_____________ 

Section 2.8 EESCAPE (Emergency Escape)39,52: 

Developer: E. Kendik, Cobau Ltd. Argentinierstr. Austria 

 

Purpose of the model:  The purpose of this model is to address the time sequence from 

the time at which people begin evacuation from the floors until they reach the outside or 

approved area of refuge in the building.  The program allows the user to change the 

dimensions of the building’s means of egress and the occupant load easily to assess the 

influence of the variations in the system. 

 

Availability to the public for use:  The model is operated by the organization (Cobau 

Ltd.) for the outside user. 

 

Modeling method:  This is a movement model. 

 

Structure of model:    This is a coarse network system.  The model seems to 

acknowledge only a corridor, stair, and exit arrangement. 
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Perspective of model:  The model views the occupants globally as a single group of 

occupants per floor moving as a homogeneous mass to the exit.  The occupants also view 

the building with a global perspective because there is only one exit to travel to. 

 

Occupant behavior:  No behavior is modeled. 

 

Occupant movement:  As mentioned earlier, the model considers the population to be a 

single group of a certain mean density on each section of the escape route.  The 

calculated density on each component of the escape route is used to calculate the speed of 

the occupant through the escape route (Kendik references the work of Pauls and 

Predtechenskii and Milinskii).  The partial flows from the floor, which are equivalent in 

number on each story of the building, evacuate and enter the staircase at the same time.  

If the partial flows from each floor interact with each other in the staircase, the model 

then uses calculation methods for occupant flow under (stair width is still adequate to 

handle merging flow) and above (congestion occurs) maximum flow on stairs.  The user 

inputs the number of persons using the escape route. 

 

Output:  The output from this model is the total evacuation time. 

 

Use of fire data:  None. 

 

Import CAD drawings:  No.  The user supplies the escape route configuration to the 

model, which is assumed to be identical on each floor of the building.  Also, the number 
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of floors is specified by the user.  The user enters the length and width of the corridor 

leading to the stairs and door width, the length and width of the stairway, and the greatest 

travel distance along the corridor. 

 

Visualization capabilities:  None. 

 

Validation studies: The model is calibrated against data from evacuation tests carried out 

at the University of Karlsruhe.  No further information is supplied. 

 

Special features: 

• Route choice of the occupants/occupant distribution – Only one choice is given to the 

occupants. 

 

Limitations:  Seems to be a simple 1-route configuration. 

_____________ 

Section 2.9 EgressPro39,53: 

Developer: P. Simenko, SimCo Consulting, AU 

 

Purpose of the model:  The purpose of this model is to predict egress times from a 

deterministic time-line analysis for a single user-selected room, corridor, and stair 

arrangement.  The model is a tool for assessing egress conditions during fire emergencies 

in buildings. 
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Availability to the public for use:  The model was available through SimCo Consulting, 

although the developer has said that the model is over 6 years old and he is no longer 

selling it. 

 

Modeling method:  This is a movement model. 

 

Structure of model:  This is a coarse network system.  The model acknowledges only a 

room, corridor, and stair arrangement. 

  

Perspective of model:  The model views the occupants globally as a certain number of 

occupants per floor moving as a homogeneous mass to the exit.  The occupants also view 

the building with a global perspective because there is only one exit to travel to. 

 

Occupant behavior:  No behavior is modeled. 

 

Occupant movement:  EgressPro models the process of egress movement by following 

the general concepts of traffic flow.  The flow of groups is based on the relationship 

between speed of movement and the population density in the space.  The occupant 

density (dependent upon the use of the space) can be chosen by the user from an input 

table and the program will multiply the density value by the room area, which determines 

the initial number of people in the room.  Or, the user may simply choose the number of 

occupant in the space.   
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Output:  “Stair/Corridor Egress Time” is calculated as the output.  This is the time 

interval from the time when the first occupant enters the stair to the time when the last 

occupant exits the final exit door. 

 

Use of fire data:  User input of a specific fire. 

 

Import CAD drawings:  No.  The user supplies data to the model, such as each 

room/space geometry and egress door size.  Also, the travel distance along the line of 

travel on the stair slope and the riser/tread geometry are entered by the user.   

 

Visualization capabilities:  None. 

 

Validation studies: The model’s Help file provides a case study that verifies EgressPro 

results.  Access to the help file was not available. 

 

Special features: 

• Fire conditions affect behavior?  Yes, the program calculates the time to alarm by 

calculating the time to detection of a t-squared fire.  The detector is assumed to be 

located in an area so that it is exposed to the maximum ceiling jet velocity and 

temperature. 

• Delays/pre-movement time – Yes, the pre-movement time is dependent upon the use 

of the building and the type of alarm present in the building.  Delay values are 

obtained from DD-240 guide.  From the write-up on the model, it seems that only 1 
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delay time is given for the entire population, instead of distributing a range 

throughout the population. 

• Route choice of the occupants/occupant distribution – Only one choice is given to the 

occupants. 

 

Limitations:  The model produces only a “time-line” calculation of movement 

throughout the room, corridor, and stair arrangement. 

_____________ 

 

Section 2.10 ENTROPY54,55: 

Developer: H.A. Donegan, University of Ulster, UK 

 

Purpose of the model:  The purpose of this model is to encompass egress uncertainty 

related to the building and provide a measure of complexity of the building structure.  

This is not a traditional egress model in that it does not calculate egress times for a 

certain population, but instead uses an entropy probability to simulate the expected 

information content, and in turn, the complexity of the floor plan.  This model is 

considered to be a macroscopic model, which focuses on evacuation routes and the 

population as a whole, instead of individual elements (microscopic). 

 

Availability to the public for use:  Unknown. 

 

Modeling method:  This is a movement model/partial behavioral model 



83  

 

Structure of model:    This is a coarse network system.  Each compartment (room, 

stairwell, or area that can be occupied) is labeled as a node.  Arcs are then drawn between 

the nodes on the floor plan. 

  

Perspective of model and occupant:  This model is not a traditional evacuation model 

with occupants traveling throughout the building from initial starting points in order to 

calculate an evacuation time.  This model uses the probabilities of acquiring knowledge 

(or not) to calculate the complexity of the space.  The model views the occupants (if at 

all) in more of a global manner.  There are not individual characteristics given to each 

person that would make them unique in an evacuation. 

The occupants have a semi-individual view of the building because of the fact that 

they can backtrack due to a lack of acquiring information.  They are simulated as having 

an unfamiliar view of the building.  On the other hand, in the basic model, the occupants 

only have one exit to choose from (all networks are trees). 

 

Occupant behavior:  The model is labeled as not simulating behavior. 

 

Occupant movement:  The concept of entropy is used in thermodynamics to describe a 

measure of disorganization of a physical system.  In 1948, the name or label of entropy 

was adopted by Shannon as a measure of uncertainty.  Shannon entropy is expressed by 

the following equation: 
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H(p(x) | x ∈ X) = -∑ p(x) log2p(x)  where the summation is over x and p(x) is the 

probability distribution on a finite set X.  The Shannon entropy (the expected information 

content) which is used by this Entropy model, is the highlighted equation above given 

that ∑ p(x) = 1. 

This model focuses on the concept of “acquiring knowledge with respect to 

egress.”  Throughout the simulation, knowledge is gained by achieving positive 

movement along an arc from one node to another.  This type of movement is used to 

simulate acquiring one packet of knowledge on one information step and is labeled as a 

positive instance.  If an arc is backtracked, knowledge is not gained, and this is labeled as 

a negative instance.  The probabilities of acquiring or not acquiring information are 

shown here as Equations (2.2): 
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In these equations, n+ is the number of positive instances and n- refers to the 

negative instances.  The total entropy of the system is given by Equation (2.3): 

−−++ −−= ppppH 22 log)(log)(     (2.3) 

Assumptions used in the model are the following: 

• Evacuees do not have previous knowledge of the building 

• Each evacuee is treated as the only occupant in the building, ignoring influence of 

other occupants 

• Multiple exits from any compartment are equally likely 

• No signage is used throughout the building 

• Evacuees do not experience panic 

• All evacuees are able-bodied 
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• All networks are trees 

• A backtrack path is equivalent to one positive and one negative instance 

• A forward path resembles a positive instance. 

• Each evacuee has a path memory. 

An example of the steps taken for the most basic model is shown here.  This 

example involves a single floor, single exit and the steps that the model takes to reach an 

output of entropy and complexity are listed: 

1. Selection of a node on the network which is not an exit 

2. For the arcs on the path that lead directly from the node to the exit, a single-headed 

arrow is drawn in the direction of the exit   

3. On all other remaining arcs, a double headed arrow is drawn. 

4. Count the number of double-headed arrows and this is the value for n- 

5. Count the number of single-headed arrows and this is the value for n+ 

6. Substitute the values in for n- and n+ to calculate the entropy value for that node 

7. Repeat steps 1-6 for each non-exit node 

8. Average all nodal entropy values together 

9. This results in the average entropy value for each node or the overall complexity 

value. 

The suggested improvements to the model, such as occupants with disabilities, 

buildings with greater than one exit, simulation of locked doors, etc. were listed but not 

explained as to how these would alter the simulation and results. 
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Output:  The output from the model is an average entropy value for each node, which is 

the overall complexity value for each floor. 

 

Use of fire data:  None. 

 

Import CAD drawings:  No.  Nodes and arcs are input into Entropy.   

 

Visualization capabilities:  None. 

 

Validation studies:  A validation study was performed which compared ENTROPY 

results of complexity to EVACNET+ results.  The study used a network of nodes and 

arcs to represent a building with one fixed exit and one exit which would vary positions.  

The comparison consisted of improvements shown by each model (ENTROPY would 

show a reduction in complexity and EVACNET+ would show a decrease in time period 

and an increase in flow of occupants to exits) with varying placement of the second exit.  

Differences in improvements were found for certain positions of the second exit between 

the two models. 

 

Special features: 

• Manual exit block/obstacles – No, but this was an area of improvement.  It is not clear 

if this feature has been added (by simulating locked doors). 

• Disabilities/slow occupant groups  – No, all evacuees are able-bodied, but this topic 

was listed as an area of improvement that the model can be extended to cater for. 
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• Route choice of the occupants/occupant distribution – An assumption used is that the 

building contains only one exit, but an improvement listed to the model was to 

increase the buildings to more than one exit (which gives multiple routes to the 

occupants). 

 

Limitations:  One limitation is the assumptions made by the model.  This is not a 

traditional evacuation model, but instead a model used to measure the complexity of the 

structure from an evacuation point of view. 

_____________ 

Section 2.11 STEPs56,57,58,59,60,61,62: 

Developer:  Mott MacDonald, UK 

 

Purpose of the model: The purpose of this model is to simulate occupants in a normal or 

emergency situation within different types of buildings, such as stadia or office buildings.   

 

Availability to the public for use:  The model is available for use from Mott McDonald. 

 

Modeling method:  This is a movement/partial behavioral model.  It contains pre-

movement abilities, occupant characteristics, patience factor, and family behavior. 

 

Structure of model:  This is a fine network system made up of a series of grid cells, in 

which only one occupant can occupy each cell.  The common grid cell size is 0.5m by 0.5 
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m.  Another “fine grid” option is available where more than one person can occupy a grid 

cell, but this option is still in test mode. 

  

Perspective of model:  The model views the occupants individually and allows the user 

to give individual traits to each person or groups of people in the simulation.  The 

occupants also have an individual view of the building, because the user can specify each 

occupant’s (or group’s) “target” or checkpoint (exit), allowing for the user to aid in the 

mapping of a defined route for certain groups of people.  Also, for each target, each 

occupant group is assigned an awareness factor between 0 and 1, specifying the fraction 

of that group which knows about the exit.  If a 0 is specified for the occupant group and 

target, that denotes that no one in the group knows about the target or exit, and the label 

of 1 would specify that everyone in the group knows about the target or exit.  The 

occupants choose the exit that they travel to according to the score assigned to each exit.  

This score is based on the following four factors: 1) the shortest distance to the exit, 2) 

familiarity with the exit, 3) the number of occupants around the exit, and 4) the number 

of exit lanes.   

 

Occupant behavior:  This type of behavior will be labeled as functional analogy, since 

the entire population is subjected to the same set of movement equations.  Also, decision-

making in the model is not dependent upon certain cues or circumstances of the 

evacuation, but rather movement and speed is mainly affected by the availability of the 

“next” grid cell.  This is the main reason why this model is not labeled as “implicit” 

behavior, but rather a functional analogy. 
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Occupant movement:  In high density situations or queuing, the movement speed is 

affected by the availability of the next grid cell.  In a grid cell, the individual has 8 

possible decisions surrounding the grid cell and the decision of where to go is based on 

which of the adjacent grid cells has the lowest potential.  When specifying an exit in 

STEPs, the program will calculate the Potential Table which will provide the shortest 

distance from each grid cell to the target.  A recursive algorithm will be used by the 

program to find the distance from each grid cell to the exit.  The potential for exit cells is 

0, and the program then jumps to each adjacent cell to calculate its potential.  If the 

program jumps to a cell using a diagonal move, STEPs will add (Grid Size value*(Sqrt. 

2)) to the cell’s current potential, and if the program jumps to a cell using a horizontal or 

vertical move, STEPS will add the Grid Size value to the cell’s current potential.   

When occupants are deciding which route to take and exit to use, they choose the 

path with the lowest score.  If multiple paths have the same score, the occupants 

randomly chose between them.  STEPs uses an algorithm to score each Target for each 

individual, and this algorithm is divided into 8 stages: 

• Time needed to reach the Target. 

• Time needed to queue at the Target. 

• Adjustment of the walking time to take into account the time that is not actually 

walked to reach the end of the queue. 

• Calculation of the real time needed to reach the end of the queue. 

• Adjustment of the queuing time to take into account the people that will get out while 

the person is walking. 
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• Calculation of the real time to queue. 

• Incorporate patience levels. 

• Calculation of the final score 

To calculate the time needed to reach the target, Twalk, the distance to the target 

(D, obtained from the potential table described above) is divided by the person’s walking 

speed (W, entered by the user).  This is shown in Equation (2.4). 

Twalk = D/W      (2.4) 

The time needed to queue at the target (Tqueue) divides the number of people that 

will reach the target before the current person (N, by comparing the “time needed to 

reach the target” of the current person with all others in the same plane) by the flow rate 

of the target (F, also specified by the user in p/s). This is shown in Equation (2.5) 

.  Tqueue = N/F      (2.5) 

All occupants with a lower Twalk are considered to be in front of the current 

person.  Since Twalk gives the total time to walk to the target if there was no queuing, the 

additional of Twalk and Tqueue would give a larger evacuation time than needed for the 

occupant to reach the exit.  The program makes adjustments to these values, naming them 

“real time to walk” and “real time to queue.”  The “real time to walk” is found by 

subtracting off the time to walk through the area where the queue has formed, resulting in 

the time to walk until reaching the end of the queue for that current person.  The queue 

time also has to be adjusted because while the person is walking to the queue, others are 

leaving through the exit, reducing the queue.  The “real time to queue” is calculated by 

subtracting the time it takes for those occupants to leave through the exit before the 

current person joins the queue.   Patience coefficients are also factored into the score and 
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influence how long the occupant will wait in the queue.  There are also walking and 

queuing coefficients that are not quite explained in the users manual that also play a role 

in the score for route choice.   

The user specifies many different attributes for the people, such as body width, 

depth, and height, patience, walking speed, and their people type/group.  Occupants can 

also be introduced into the simulation at a certain time and place, after the evacuation has 

begun.  When family groups are specified in STEPS, the family moves throughout the 

simulation to meet at a certain position in the building before evacuating. 

 

Output:  STEPs output includes the total evacuation time, numbers of occupants in 

certain areas, planes, paths, and the entire simulation and the number of people that have 

left these different fields vs. time. 

 

Use of fire data:  None. 

 

Import CAD drawings:  Yes, CAD drawings are input in DXF file format. 

 

Visualization capabilities:  3-D 

 

Validation studies63:  The case studies written about for STEPs involve a comparison of 

its simulations to the method of evacuation calculations outlined by NFPA 130.  This 

report outlines two examples that demonstrate STEPs’ applicability to station geometries.  

The first case, shown in Figure 2.7, involves a center-platform station in which the 
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platform is raised above the 

concourse (at grade level) as 

shown in the figure.  By using 

the NFPA calculations for 

Case 1, the total time to clear 

the platform is 190.7 seconds 

and the total time to evacuate 

the station is 239.9 seconds.  When the identical model of this station is simulated with 

STEPs, the mean time to clear the platform is 212.4 seconds and the mean evacuation 

time is 257.4 seconds.  This case shows a difference of 7.3 to 11.4% between NFPA 130 

and STEPs.  Also, STEPS is 

able to model the natural 

imbalance of exit use, while 

NFPA 130 calculations 

assumes that all exits are used 

optimally. 

Case 2 involves a more 

complex station with a side-platform.  As shown in Figure 2.8, the concourse is below 

grade level and the platform is below the level of the concourse.  Using NFPA 130, the 

total time to clear the platform is 179.8 seconds and the total evacuation of the station is 

369.8 seconds.  Also, when recalculating NFPA evacuation times using a different, more 

realistic split, the result is found to be 306.3 seconds.  When modeled in STEPS, a mean 

Figure 2.7:  Case Study 1 (63, p. 130-30) 

Figure 2.8:  Case Study 2 (63, p. 130-32) 
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platform clearing time of 181.4 seconds is achieved and a mean total evacuation time was 

313.2 seconds.  This shows a 0.9 – 2.3 % difference between STEPS and NFPA 130 

calculation methods.   

In both cases, STEPs has given the more conservative result.  This comparison 

has that STEPs can reproduce similar evacuation times when compared with NFPA 130.  

It is not clear what this type of validation exercise shows.  This comparison also more 

importantly shows that the optimal hand calculations may not always give the most 

accurate and realistic evacuation time for the building.   

 

Special features: 

• Manual exit block/obstacles – Yes, the user can enter blockages at specific points 

throughout the floor plan. 

• Defining groups – Yes. 

• Disabilities/slow occupant groups  – Yes. 

• Delays/pre-movement time – Yes, this is specified by the user. 

• Elevator use – Yes. 

• Impatience/drive variables – There is an impatience factor of 0 to 1 and represents 

how prepared the occupants are to queue at the target.  The patient people will wait 

longer before moving to another target.  This coefficient affects the queuing time 

calculation for the occupant.   

o 0.5 = unbiased level of patience 

o >0.5 = patient 

o <0.5 = impatient 
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• Route choice of the occupants/occupant distribution – The route choice is varied by 

the score of target or is user-defined. 

 

Limitations:  One of the limitations of this model is the fact that occupants move only 

according to availability of next grid cell.  There is no limit on the number of floors to 

use.  However, the real strain on the computer comes from the number of grid cells and 

the number of people specified in the model.  If the user has a particularly fast computer, 

there is no limit. 

Partial Behavioral Models 

 
Section 2.12 PEDROUTE and PAXPORT64,65,66,67,68,69,70: 

Developer:  Halcrow Fox Associates, UK 

 

Purpose of the model:  The purpose of this model is to simulate the passage of travelers 

through public transport stations.  PEDROUTE has been used to model approximately 

100 underground stations in London.  PAXPORT, which can model airports or railway 

terminals, has the capability of incorporating the movement of passengers in shopping 

and waiting areas in the stations.  PAXPORT can model aircraft, train, bus, and passenger 

movements.  The models can be used to show where capacity problems are likely within 

the stations, and test improvements.   
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Availability to the public for use:  PEDROUTE can be purchased from Halcrow Fox 

Associates, as well as yearly maintenance.  Or, Halcrow Fox will build a model for the 

client directly and test changes in-house.  PAXPORT is not commercially available. 

 

Modeling method:  This is a partial behavioral model.  It relies on speed/flow curves 

which have been established from past observations of stations in normal use.  Also, 

attention is paid to usage of facilities, which is modeled in the form of occupant delays. 

 

Structure of model:    This is a coarse network system.  The station plans are broken 

down into different “blocks” which represent stairs, escalators, platforms, ticket halls, etc.  

Each block has a different speed/flow curve associated with it to describe the movement 

of the passengers.  These speed/flow curves have been established from past surveys at 

underground stations. 

  

Perspective of model:  The model views the occupants globally because instead of 

individually recognizing each occupant, the occupant becomes one of 16 different group 

types.    Each group type is categorized by flight type (domestic flight, long haul, etc.) 

and purpose (business and leisure) and is assumed to have particular characteristics.  The 

occupants view the building with a global perspective because passengers either travel 

through the station on the basis of the quickest journey time (Stochastic assignment) or 

the passenger flows are balanced on all routes in order to minimize the total time for all 

routes (optimization or equilibrium assignment).  The developers suggest that occupants 
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can be forced to follow exit signs as well, which may be considered as an individual 

perspective. 

 

Occupant behavior:  Implicit behavior is modeled. 

 

Occupant movement:  Occupant movement is described by speed/flow curves of each 

block obtained by previously observed movement in stations.  Also, the model attempts 

to represent the delays caused by behaviors of usage of certain facilities in the station.  

Each group type is categorized by the flight type and purpose of the trip.  The user 

identifies initial walking speeds and group size as input. 

Each group type requires the user to supply data such as the following: 

• Arrival times 

• Processes followed by the passenger (i.e., check-in/security and passport control) for 

both departing and arriving passengers 

• The possibility of escorts (with departing passengers) and greeters (with arriving 

passengers) 

• The proportion of free time of the passenger spent in lounges, seating areas, 

refreshment areas, leisure, etc. 

• The proportion of passengers carrying baggage or using baggage carts 

• The possibility of using certain facilities, even those who visit the terminal for 

shopping reasons only 

• Passengers can be forced to follow  signage as an option 

These traits are distributed throughout the group type.   



97  

 

Output:  Different output forms are available to the user.  The user can view the Fruin 

“Level of Service” for any of the blocks in the station.  Other output available are details 

of peak occupancy and average delay per passenger.  The model can produce journey 

time savings from improvements made to the station plans. 

 

Use of fire data:  None. 

 

Import CAD drawings:  Both models require a graphical input of the station layout, and 

this layout can be imported from CAD plans.  Also, all 1-way movement areas need to be 

input.  The user identifies the block types on a floor plan, such as passageways, moving 

walkways, stairs, escalator, platforms, service desks, lifts, and concourses, and also 

defines the coverage of the blocks by tracing over the CAD layout within the program.  

This defines their area (length and width) and their connections to each other.   

 

Visualization capabilities:  2-D or 3-D simulation.  Data of flow, service levels, 

occupancy and delay can be displayed for the entire terminal or sections.   

 

Validation studies:  For the PAXPORT model, simulations were run as representations 

of North Terminal at London’s Gatwick Airport.  However, the results of this study were 

not found. 
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Special features: 

• Defining groups – Yes. 

• Disabilities/slow occupant groups  – Yes. 

• Delays/pre-movement time – Yes. 

• Route choice of the occupants/occupant distribution – Quickest route, Optimization, 

or follow exit signs. 

 

Limitations:  No individual consideration.   

_____________ 

Section 2.13 EXIT8971,72,73,74,75,76: 

Developer:  R.F. Fahy, NFPA, U.S. 

 

Purpose of the model:  EXIT89 was originally developed as the evacuation model for 

Hazard I to simulate large populations in buildings (high-rises).  The developer claims 

that the model is capable of the following things: 

• Handle large populations 

• Recalculate exit paths after nodes become blocked by smoke 

• Track individual occupants as they move throughout the building 

• Vary travel speed as a function of population density. 

 

Availability to the public for use:  The program has not been released as of yet by 

NFPA.  The model can be obtained through special arrangement with Rita Fahy.  

Currently, the model is not publicly for sale.   
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Modeling method:  This is a partial behavior model.  It relies on the density vs. speed 

data from Predtechenskii and Milinskii for different building components, such as 

horizontal components, doorways, up stairs, and down stairs.  It also uses conditional 

movement, depending upon the presence and density of smoke in the evacuation path. 

 

Structure of model:    This is a coarse network system.  The floor plan is divided up into 

nodes and arcs, specified by the user of the program.  The nodes require the following 

input from the user: the node name, the usable floor area, the height of the ceiling, 

maximum capacity of the node (number of people), number of people at the node when 

evacuation begins, the number of people at the node who are disabled, an ID that notes 

whether the node leads to the outside or is part of the stairway, amount of time the people 

at that node will delay before evacuating, and the node that occupants at that room will 

travel to if the user is defining the exit route.  For each arc, the input required is the 

distance from the first node to the opening/restriction between the two nodes, the width 

of the opening, and the rest of the distance from the opening to the second node. 

  

Perspective of model:  The model views the occupants individually because the output 

of the model tracks the individuals’ positions throughout the evacuation.  Also, the 

occupants have an individual view of the building because the route choice can consist of 

either the shortest route or a user-defined route for certain nodes.  There is a fine line here 

because the individual occupants are not given a route, instead all occupants located 

initially at a certain node will travel the user-defined route.  On the other hand, if an exit 
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is blocked manually or by smoke conditions, the occupant then chooses an alternate route 

based on the floor they are on, not a global view of the building.  This way, the occupant 

may take a longer way out76.   

 

Occupant behavior:  Implicit behavior is modeled. 

 

Occupant movement:  The model emulates the “shortest route” algorithm that identifies 

the exit of the network and then fans out from the exit in an attempt to identify the 

shortest routes to all other nodes.  EXIT89 calculates the shortest routes on each floor to 

the stairs or outside.  This is done so that if a node on the floor is blocked by smoke, only 

the routes on that floor and the floor above will need to be recalculated.  It also allows the 

occupants to maintain an individual perspective of the building.   

Walking speed throughout the model is a function of density, based on the 

observations of Predtechenskii and Milinskii31.  EXIT89 allows the user to choose 

between three different body sizes labeled American (0.0906 m2), Soviet (0.1130 m2), 

and Austrian (0.1458 m2).  The calculations used in EXIT89 use the specific body size to 

solve for the density of a stream of occupants.  This equation is shown here: 

D=Nf/wL (m2/m2) where N is the number of people in the stream, f is the area of 

horizontal projection of a person, w is the width of the stream, and L is the length of the 

stream.  Predtechenskii and Milinskii report a maximum density of 0.92 m2/m2.  The user 

can also specify whether the occupants will move in emergency or normal conditions, 

and the difference in calculation is shown below. 
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EXIT89 uses the velocity correlations for horizontal paths, down stairs and 

upstairs, depending upon the density calculated in each movement situation, as given by 

Predtechenskii and Milinskii31. 

Horizontal Paths: 

57217434380112 234 +−+−= DDDDV   (m/min)   (2.6) 

for density:  92.00 ≤< D  

Down Stairs (↓): 

↓↓ =VmV  (m/min)       (2.7) 

where )224.061.5sin(44.0775.0 39.0
−⋅+= ↓

−

↓
↓ Dem D  

Up Stairs (↑): 

↑↑ =VmV  (m/min)       (2.8) 

where ↑↑ ⋅+= ↑ Dem D 7.15sin09.0785.0 45.3    for ;6.00 << ↑D  

where )57.185.7sin(10.0785.0 +−= ↑↑ Dm  for 92.06.0 ≤≤ ↑D  

For emergency movement, equations (2.6) to (2.7) are adjusted by equation (2.9): 

        (2.9)  

Where  µe = 1.49 – 0.36D  for horizontal paths and through openings   

  µe = 1.21  for descending stairs 

  µe = 1.26  for ascending stairs 

EXIT89 uses tables of velocities (based on occupant densities) for normal, 

emergency, and comfortable movement along horizontal paths, openings, and stairways. 

 

v v e e µ = 
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Output:  The output consists of a complex occupant movement table that tracks the 

position and node movement of each occupant throughout the entire simulation.  Also, 

the total evacuation time and the number of occupants trapped are provided in the output.  

Stair and floor clearing times are also included. 

 

Use of fire data:  Importing fire data from CFAST77. 

 

Import CAD drawings:  No.  Building data is specified through the node and arc inputs. 

 

Visualization capabilities:  No visualization 

 

Validation studies:  A validation study involves comparing results from a fire drill 

involving 100 occupants from a 9-story building.  Both the emergency and normal 

evacuation speeds were used in two different simulations of the building.  An error of 

20% was noted from the emergency run (5.6 minutes from EXIT89 and 7 minutes actual 

evacuation time), and the normal run overestimated the evacuation time by 43%.   

The second validation study was performed using a 7-story office building in 

Newcastle-on-Tyne in the UK.  The fire brigade captured this data, and during the fire 

drill, challenged the occupants by blocking access to one of the stairways.  The fire 

brigade captured information from different exits as well as surveyed occupants on their 

initial location, exit used, and delay times before beginning evacuation.  During the fire 

drill, the occupants used the most direct route possible out of the building, sometimes 

ignoring closer exits and/or climbing stairs to get there.  Fahy used EXIT89 to first send 
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all occupants to the closest exit, and second to use the user-defined route option to mimic 

the occupant paths during the drill.  The results are found in Table 2.5 below. 

Table 2.5: EXIT89 validation study results from the 7-story office building 

 Observed Predicted – Shortest Route Predicted – User Defined 
 People Last Exit People Last Exit People Last Exit 

Exit 1 2 45.9 s 2 35.0 2 35.0 
2 6 48.0 6 26.0 6 26.0 
3 6 90.0 107 148.0 6 36.0 
4 40 105.0 124 153.0 51 104.0 
5 0 - 7 72.0 7 103.0 
6 23 115.0 27 109.0 26 95.0 
7 0 - 0 - - - 
8 48 190.0 6 60.0 30 120.0 
9 8 90.0 11 54.0 11 54.0 

10 248 220.0 91 107.0 242 162.0 
       

Total Exited 381 286.0 381 153.0 381 162.0 
 

The predicted results from the shortest route simulation provided a shorter 

evacuation and much different flow split than the actual/observed data.  Fahy states that 

this is due to the unusual use of exits and the overwhelming use of Exit 10 by the 

occupants of the building.  After running a user-defined simulation, the flow distributions 

seemed more reasonable, but the overall evacuation time of the prediction still provided 

results of approximately 2 minutes under the observed time.  Fahy suggests that the 

reason for this discrepancy is that EXIT89 was not equipped with pre-movement or delay 

time capabilities at the time of this validation work.     

Lastly, Fahy simulated a fire drill conducted in a major department store by the 

University of Ulster in the UK.  495 occupants were involved, many of whom were video 

taped and interviewed about their evacuation.  Fahy used the travel speed that would 

provide the longest and most conservative evacuation times (normal evacuation speed), 

due to the lack of cues indicated an emergency.  Also, the shortest route option was 
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selected for the occupants because of the presence of staff during the evacuation.  The 

model simulation incorporated delay times for occupants recorded on videotape, as well 

as mean delays times for each department and additional random delays for each 

occupant.  Table 2.6 below shows the results for the observed and simulated evacuations 

from the department store: 

Table 2.6:  EXIT89 validation study results from the department store 

 Observed Predicted 
Exit # People First (s) Last (s) # People First (s) Last (s) 

1 33 23 83 45 28 64 
2 52 31 165 85 43 71 
3 32 36 100 16 22 49 
4 49 1 104 80 33 83 
5 77 17 95 36 39 52 
6 41 21 153 26 37 49 
7 2 - - - - - 
8 23 33 78 23 47 85 
9 23 26 119 27 42 111 

10 7 50 78 27 37 106 
11 6 46 60 5 45 54 
12 58 32 119 13 49 83 
13 45 14 85 49 31 104 
14 29 34 102 63 37 74 

Total 495   495   
 

As shown, the observed evacuation ended in 2 minutes, 45 seconds and the 

simulation ended in 1 minute 51 seconds.  Fahy states that there was good agreement 

between the observed and EXIT89 results, and also noted large discrepancies for Exits 2 

and 6.  Fahy explained these discrepancies as delays prompted by the staff involving the 

deactivation of the door alarm, checking shopping baskets of evacuees, and performing 

final sweeps of the area for stray occupants.   
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Special features: 

• Counterflow – Yes, the user specifies what percentage of the stairwell is blocked and 

at what time within the simulation that this occurs.  If the obstruction or counterflow 

disappears after some time, the user can set the node back to its original area. 

• Manual exit block/obstacles – Yes, the user enters the name of the blocked node and 

the time from the start of the evacuation that the blockage occurs (in seconds).  

Multiple nodes can be blocked at one time.   

• Fire conditions affect behavior?  Yes, the user can enter the output from CFAST.  

EXIT89 uses the smoke densities and depth of the smoke layer from CFAST to 

calculate the “psychological impact of smoke, S.”  This is done with the following 

equation: 

S = 2*OD*(D/H)   where OD is the optical density of the smoke layer, D is the depth 

of the upper layer, and H is the height of the ceiling.  This is the same method as is 

used in EXITT to calculate S.  If S > 0.5, the occupant is stopped and if S > 0.4, the 

occupant is prevented from entering the room.  Both cases allow for enough clear air 

in the lower layer to crawl.  EXIT89 does not handle crawling, so a value of S > 0.5 is 

used to block the node, which traps everyone currently at that node as a result. 

The smoke alarm will operate at S=0.0015 and the depth of the upper layer > 0.5 feet.  

EXIT89 assumes that the notification of all occupants occurs when the level for 

smoke alarm activation is reached at any node.  At this time, movement will begin 

after pre-movement delays have passed.   
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• Disabilities/slow occupant groups  – Yes, the user specifies the number of disabled 

occupants per node and then the percentage of “able-bodied” speed at which they will 

walk. 

• Delays/pre-movement time – Yes, the user can either specify a delay time per node or 

an overall distribution of pre-movement times.  In the latter case, the user inputs the 

percentage of occupants who will be assigned additional delays, and the minimum 

and maximum value for delay (seconds) for the uniform distribution. 

• Route choice of the occupants/occupant distribution – Shortest distance or a user-

defined route 

 

Limitations:  The limitation of the model is 89 nodes per floor and up to 10 stairways for 

the building.  The size of the building and the number of occupants is limited by the 

storage capacity of the computer used.  Once a person enters a stairwell, they will remain 

in that stairwell throughout the entire evacuation (unless stairway is blocked).  EXIT89 is 

set to allow 1000 5-second time steps, 10,000 links, 20,000 occupants and 10,000 

building locations.  This is hard-wired into the program, but is easily adjusted. 

_____________ 

Section 2.14 Simulex78,79,80,81,82,83,84,85: 

Developer:  P.Thompson, IES, UK 

 

Purpose of the model:  Simulex is an evacuation model with the capability of simulating 

a large amount of people from geometrically complex buildings.   
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Availability to the public for use:  The program is available from IES, Integrated 

Environmental Solutions, Ltd in the UK.  Academic licenses are also available for a 

lower fee.   

 

Modeling method:  This is a partial behavior model.  It relies on inter-person distances 

to specify walking speed of the occupants.  Also, the model allows for overtaking, body 

rotation, sideways stepping, and small degrees of back-stepping.   

 

Structure of model:    This is a fine network system.  The floor plan and staircase are 

divided up into a grid of 0.2 by 0.2 m blocks (grid cells).  The model contains an 

algorithm that will calculate the distance from each block to the nearest exit, and labels 

this information on a distance map.  This distance map is shown in Figure 2.9 for the 

floor plan and staircase. 

 

 

Figure 2.9: Example of visualization of the distance map in Simulex 
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Perspective of model:  The model views the occupants individually.  The output of the 

model tracks the individuals’ positions throughout the evacuation, as shown during the 

visualization.  Also, the occupants have an individual view of the building because the 

route choice can consist of either the shortest route calculated by the default distance map 

or a user-defined route obtained by assigning an alternate distance map to an individual 

or group of occupants.  The alternate distance map can block certain exits in order to 

force or guide an occupant to take a certain route throughout the building.   

 

Occupant behavior:  Implicit behavior is modeled. 

 

Occupant movement:  From the Simulex website86:  “The algorithms in Simulex which 

model fluctuations in walking speed, side-stepping, body-twisting, overtaking etc. are 

based on a combination of the results of many video-based analyses of individual 

movement and the additional results of a number of academic researchers. It is the only 

computer program to both accurately model the co-ordinate position of each person to a 

fraction of a millimetre and also the relationship between inter-person distance and 

changes in walking speed.” 

As mentioned earlier, the distance maps are used to direct occupants to the closest 

available exit, where each person moves toward an exit by taking the direction that is at 

right angles to the constant-distance contours from the exit.  The user can create up to 10 

different distance maps in the simulation. 
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The occupants walking speed is a function of inter-person distance.  An example 

of the data used for this movement is shown in Figure 2.10.   

 

 

Figure 2.10: Example of the velocity vs. inter-person distance used for the movement algorithm in 

Simulex (79, p. 3) 

The walking speed of an occupant is dependent upon the proximity (or distance 

away) from the people ahead.  The inter-person distance is defined as the distance 

between the centers of the bodies of two individuals.  The best-fit equation (2.10) for the 

graph above is shown here: 
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v Vu=    where   d td>  

Where:  v is the impeded walking velocity (m/s), Vu is the unimpeded (normal) walking 

velocity (m/s), d is the inter-person distance (m), td is the threshold distance (1.6 m), and 

b is the body depth (torso radius).   
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The walking velocity on stairs is restricted to 0.6 times the normal unimpeded velocity 

assigned to each occupant characteristic/type.   

In order to calculate the velocity of the occupants (or groups of occupants) on 

certain building components, the occupant type must be selected by the user from the 

following list.  The occupant type/characteristics then correspond to a particular body 

size (or distribution of body sizes) and unimpeded walking speed, which is used in the 

velocity equation 2.10.  The velocities shown in Table 2.7 are frequently followed by a 

(+/-) value.  This indicates that a range of velocities are distributed to that specific 

occupant type.  For instance, for an “all male” group, velocities can range from 1.15 to 

1.55 m/s.  The chart of occupant characteristics is shown in Table 2.7. 

Table 2.7:  Corresponding body sizes and initial velocity for various occupant types in Simulex 

Occupant 
Characteristic/

Population 

% 
Median 

% 
Male 

% 
Female 

% 
Child 

% 
Elderly 

Body Size 
(m2) 

**Initial 
Velocity 

m/s 
 All Elderly 0 0 0 0 100 0.113 0.8  

+- 0.3 
All Male 0 100 0 0 0 0.130 1.35  

+- 0.2 
All Female 0 0 100 0 0 0.101 1.15 

 +- 0.2 
All Children 0 0 0 100 0 0.070 0.9 

 +- 0.3 
All 1.0 m/s 100 0 0 0 0 0.118 1.0 
All 1.2 m/s 100 0 0 0 0 0.130 1.2 
All 1.3 m/s 100 0 0 0 0 0.118 1.3 
All 1.4 m/s 100 0 0 0 0 0.118 1.4 
Office Staff 0 60 40 0 0 Multiple Range 
Commuters 0 50 40 10 0 Multiple Range 
Shoppers 0 35 40 15 10 Multiple Range 
School 

Population 
0 3 7 90 0 Multiple Range 

 

The body sizes, shown in Table 2.8 and labeled in Figure 2.11, are calculated 

using an elliptical body size and the equation for the area of an ellipse.  The length of the 
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Torso Circle 

Shoulder 
Circle 

Body 
slightly 
twisted 

ellipse (the torso diameter added to 2 shoulder radii) is multiplied time the width of the 

ellipse (the torso diameter) which is then multiplied by Pi/4.  This gives the specified 

body size in m2.  The table below also reiterates that each body type is assigned an 

unimpeded walking speed, and some of these vary during distribution among the group. 

For instance, the adult male body type has an unimpeded velocity of 1.35 m/s which can 

vary by +/- 0.2 m/s when distributed among the population group.  

Table 2.8: Body sizes for various occupant types in Simulex 

Body Type Torso 
Radius 
Rt(m) 

Shoulder 
Radius 
Rs(m) 

Unimpeded 
mean velocity 

Vm(m/s) 

Variation in 
velocity  
+/-(m/s) 

Median 0.15 0.10 1.3 0.0 
Adult Male 0.16 0.10 1.35 0.2 

Adult Female 0.14 0.09 1.15 0.2 
Child 0.12 0.07 0.9 0.3 

Elderly 0.15 0.09 0.8 0.3 
NFPA-1 m/s 0.15 0.10 1.0 0.0 
SFPE-1.4 m/s 0.15 0.10 1.4 0.0 
SFV-1.2m/s 0.16 0.10 1.2 0.0 
SFV-1.2m/s 

(+jacket) 
0.235 0.10 1.2 0.0 

 

 

 

 

 

 

 

 

Simulex also attempts to simulate overtaking, body rotation, side-stepping, and 

small degrees of back-stepping as it moves occupants throughout the building.   

Figure 2.11: Diagram of bodies used in the Simulex model 
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Output:  The output consists of a 2-D visualization of the evacuation.  Also, the 

following is provided as output by Simulex: 

• General overview of the building input: including number of floors in the building, 

number of created staircases, number of exits in the building, number of created links, 

and the number of occupants evacuating from the building.   

• Floor input: initial number of occupants placed on that floor, link positions on the 

floor plan and connections to the corresponding staircases, and positions of the exits 

on that floor (if any). 

• Stair input: number of occupants initially located in the stair and the link positions 

and corresponding connections to the floor plans. 

• Overall evacuation time of all occupants reaching the exits 

• Number of people passing through all exits over 5-second intervals 

• Number of people through each exit (1 and 2) over 5-second intervals 

• Number of people through each link created over 5-second time intervals 

• Total number of occupants through each exit, based on the listing of the movement of 

each individual per time period. 

• Exit clearing times (obtained from analysis of output) 

 

Use of fire data:  No. 

 

Import CAD drawings:  Yes, CAD drawings can be imported into the program.  The 

program does not, however, read stair information.  This must be provided by the user, 
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such as distance and width.  Also, links are specified in the program to link the floor plan 

with the stair section, as well as the floor plan to the exit to the outside (or area of safety). 

 

Visualization capabilities:  2-D visualization. 

 

Validation studies:  A validation study has been completed from a supermarket as well 

as an examination of the flow rates through exits generated by Simulex85.  Although the 

model developers did not have actual data from the supermarket, they compared Simulex 

results to that of simple hand calculations (with a velocity of 1.19 m/s) of optimal 

movement for populations of 1097 and 1919 people.  These occupant population values 

resembled an occupant density of 7.0 m2/person and 4.0 m2/person respectively.  Simulex 

produced evacuation times, 58.1 seconds for 7.0 m2/person and 105.1 seconds for 4.0 

m2/person, that were significantly longer than the hand calculations, which produced 

values of 35 seconds and 51.3 seconds.  It is unclear as to what this shows as to the 

accuracy of the model.  For the simulation of flow rates, Simulex used a distribution of 

exit widths ranging from 0.7 to 3.0 m for a population of 100 and an occupant density of 

4 persons/m2.  “The model was found to produce flow rates which were in good 

agreement with previously published data”33.  The model also showed that the exits 

became jammed with widths smaller than 1.1 m.   

Evacuation times and occupant movement were also observed in three university 

buildings and the modeled in Simulex to compare results.  Human behavior and 

movement of the occupants were recorded with video cameras and the total evacuation 

time, pre-movement times, and other evacuation behavior were noted.  The three 
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buildings consisted of a 1-story central lecture theater, an 8-story commerce building 

(with lecture halls, seminar rooms, computer labs, offices, etc.), and a 5-story law 

building (equipped with the same type rooms as the commerce building) on the 

University of Canterbury, Christchurch campus in New Zealand.  Each of the observed 

evacuations took place between 10 a.m. and 2 p.m. when most of the occupants were 

present.  The buildings were equipped with different levels of alarm, such as pre-recorded 

PA, live directive PA, or a siren alarm.  The total evacuation times, presented in Table 

2.9, specified in the table below were measured from initiation of alarm until no 

occupants were detected in the buildings: 

Table 2.9: Validation study results for the Simulex model 

Building Observed Total 
Evacuation Time (s)  

Predicted Travel 
Time (s) 

Predicted Total 
Evacuation Time (s) 

Lecture Theater 90 93 131 
Law 170 161 188 

Commerce 220 178 202 
 

The predicted total evacuation times were obtained by adding the predicted travel times 

(since Simulex did not model pre-movement delays) to the observed pre-movement 

delays.  Simulex used the following assumptions to model the three buildings: 

• The occupant type used for the simulations were “office type” which specifies the 

walking speed and body size to be 40% male, 30% female, and 30% average (this 

distribution was used by Simulex at the time of the validation study) 

• The default distance map was used, which assumes the shortest path chosen by 

occupants 

• Pre-movement times were not simulated by Simulex and were dealt with separately to 

the computer modeling. 
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This report87 also discusses simulations run by Simulex using an estimated 

(instead of observed) occupant load derived from the Life Safety Code Handbook88 for 

assembly space as well as pre-movement delays as suggested by the Fire Safety 

Engineering in Buildings89 in order to compare with observed results.  The validation 

paper also goes on to comment on the conservative values presented in the literature, 

however that discussion goes beyond the scope of this review87. 

The results of the study show that the simulated evacuation times were similar to 

the observed results (as shown in Table 2.9) when Simulex used the observed pre-

movement times and occupant loads.  Even though it seemed that Simulex provided a 

conservative time for the lecture theater, it underestimated the evacuation time for the law 

and commerce buildings.  Olssen and Regan stated that Simulex can be used “with 

confidence to simulate travel times for buildings” discussed previously87.    

 

Special features: 

• Manual exit block/obstacles – Yes, the user can create an alternate distance map for 

an individual, group, or several groups in which certain exits are blocked from the 

population using the distance map.   

• Fire conditions affect behavior?  No, the developers are currently working on 

importing CFAST data into their evacuation model. 

• Defining groups – Yes, groups can be defined and assigned to have a certain occupant 

characteristic, distance map, and distribution of pre-movement times. 

• Disabilities/slow occupant groups – Yes, the user can assign lower velocities to 

individuals or groups in a simulation. 
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• Delays/pre-movement time – Yes, the user can choose either a triangular, random, or 

normal distribution for each group of occupants.   

• Route choice of the occupants/occupant distribution – Shortest distance or user-

defined route. 

 

Limitations:  The only limit to the model is the capacity of the computer used to run the 

simulations.  However, occupants get “stuck” in the links of the buildings during certain 

simulations.  The user manual offers solutions to this problem. 

_____________ 

Section 2.15 GridFlow90,91: 

Developer:  D. Purser & M. Bensilum, BRE, UK 

 

Purpose of the model:  The purpose of this model is to represent individual occupants in 

building spaces on a grid network.  Pre-movement time and pre-movement-travel 

interactions are considered central to the evacuation using GridFlow. Purser considers 

this model to be as informative as other sophisticated models, but uses “simple, 

transparent, and easily verifiable behavioral inputs, derived from empirical data or 

specified and justified by the user”90. 

 

Availability to the public for use:  This model was developed by David Purser at BRE 

in the UK because of the need for an in-house model that can handle pre-movement and 

movement times and the interaction between them.  Purser claims that it has been 
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developed so that it can now be publicly available (because its ease in use), and is 

currently sold as part of a modeling package through BRE. 

 

Modeling method:  GridFlow is a 

partial behavior model because it 

relies on the density of the population 

to control the movement of the 

population and uses pre-movement 

time distributions observed by Purser.  

Occupants are also labeled with FED 

susceptibility and their travel speeds 

are affected according to the FIC due to irritant smoke – as defined by the user.   

 

Structure of model:    This is a fine network system.  The model overlays a grid of 0.5 

by 0.5 m over the floor plan as shown in Figure 2.12.  A distance map is also issued to 

the floor plan to map the distance from every cell on the floor to all exits.  This distance 

map is generated using a series of recursive algorithms to determine the direct distance to 

the exit from any point on the floor plan, while also working around obstacles present on 

the floor. 

 

Perspective of model and occupant:  The model views the occupants as individuals by 

giving each occupant certain characteristics, such as an xy position in the scenario as the 

evacuation progresses, a starting position in the simulation, a destination or exit goal, pre-

Figure 2.12: GridFlow visualization of the distance 
mapping (90)
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movement time, unimpeded walking speed, and FED susceptibility.  The occupants also 

have an individual view of the building during the evacuation because the occupants can 

either move to their nearest exit, be randomly distributed to an exit, or follow a user-

defined route.    

 

Occupant behavior:  Implicit behavior. 

 

Occupant movement:  The occupants move toward the exits under the constraints of the 

Nelson and Mowrer chapter of the SFPE handbook1, which incorporates speed reductions 

based on the density of the space and the capacity of the doors and stairways.  The 

unimpeded walking speed for each occupant can be specified as a single number or a 

distribution can be specified for the population.  The default mean, taken from Nelson 

and Mowrer, is 1.19 m/s with a S.D. of 0.2 m/s and a minimum value of 0.3 m/s.  Any 

specific number or distribution can be input by the user.   

Any amount of occupant groups or individuals can be defined by the user.  Each 

individual or occupant group can have a set of characteristics.  The characteristics were 

laid out in the Perspective section above.  To reiterate, the characteristics of the occupant 

are: 

• xy coordinates of each occupant in time with the simulation 

• Starting position in the simulation 

• Destination/exit 

• Pre-movement time 

• Unimpeded walking speed 
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• FED susceptibility (discrete value or distribution) 

Under smoke conditions, the occupants’ movement speed can vary according to 

their FIC for the irritant smoke.  Also, depending upon their susceptibility, the occupants 

will be given a graphical hatched pattern in the scenario when their FED reaches 0.75.  

When they become incapacitated, FED=1, their 2-D image will turn black and they will 

stop movement.  

Also, overtaking of occupants can occur. 

GridFlow offers multiple options for how merging flows are simulated1.  The first 

option is the “free-flow” option, where flows are determined by the personal movement 

algorithms alone.  When several inlets compete, the physical arrangement of the routes, 

widths of the links, and the crowd densities at the inlet and outlet decide the precedence.  

In the “controlled” flow option, additional rules are imposed on the competition.  For 

example, when a stair with two inlets (flow from staircase above and current floor) is 

near or at maximum capacity, the outlet flow would balance to half from each inlet.  

Lastly, there is an option for assigning weights to certain links manually, so the user can 

control the dominance factor.   

 

Output:  Output data can be exported from the model into an Excel spreadsheet.  The 

range of output include a details about the population in every space at every logging 

interval after each run and summarized data from a series of batched runs.  The output 

also provides detailed aspects of the building and occupants (distributions of pre-

movement, exit time, etc.).   
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Use of fire data:  No, but the model allows the user to come close to this.  A spreadsheet 

can be established for every space in the building with 3 columns; time, speed factor, and 

FED dose.  The time column is equivalent to the time monitored in the evacuation.  The 

speed factor gives the ability of the user to decrease the speed by a fraction as the 

evacuation time increases, to simulate the influence of irritant smoke.  If a 0.9 factor is 

input by the use at t=60 seconds, the occupants in the specific space will decrease their 

individual speed by 10%.  The last column, the FED dose, allows the user to input 

specific FED doses at different time intervals in the simulation.  For instance, if 0.05 is 

input at 60 seconds and another 0.05 is input after 80 seconds, the individuals in that 

space will obtain an FED of 0.1 by 80 seconds.  Within the model, the user then adjusts 

the FED susceptibility of each occupant or occupant group, which affects whether the 

person become incapacitated or can escape the building space without problem. 

 

Import CAD drawings:  Yes, CAD drawings can be imported into the model via 

another BRE program, Josephine.    Or, the floor plan can be drawn using a graphical 

user interface (GUI) within GridFlow.  The user specifies links on the floor plan that lead 

to the outside or another space in the building.  The user is prompted to input the link 

width and maximum flow (persons/second) through the link.   

 

Visualization capabilities:  2-D and 3-D capabilities (with Josephine). 

 

Validation studies: The model developer states that GridFlow has undergone many runs 

of simple buildings and multi-enclosure spaces for the purpose of four aspects of 
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validation:  Component testing (routine checking of major software), functional 

validation (checking model capabilities and that these are compatible with intentions), 

qualitative testing (comparing predicted human behavior with expectations), and 

quantitative verification (comparison of model predictions with experimental data).  The 

developers have performed component testing and quantitative verification, which 

involved simulations from simple and complex building compared against empirical data 

from the SFPE Handbook1 and other sources.  Functional validation has also been 

performed and limitations of the model have been identified (but not included in the 

Purser report).  Also, human behavior has been validated by using actual pre-movement 

data to simulate a scenario and by comparing the model’s evacuation behavior and time 

to the observed evacuation and Handbook data. 

Purser discusses simulations used to examine the effects of delay time, travel 

time, and exit flow capacity for various occupancies and layouts.  He outlines the results 

of a hypothetical building with 3 different numbers of occupants.  In this work, Purser 

could understand graphically whether the evacuation was driven by pre-movement time, 

travel distributions, or exit flow capacity, depending upon the number of occupants in the 

building.   

Lastly, a GridFlow simulation was described that was similar to an actual 

evacuation incident, the “Sprucefield” evacuation.  This included 190 occupants 

evacuating from a food hall.  GridFlow modeled that 99% of the occupants would 

evacuate in 130 seconds with their similar case, when the actual time was 140 seconds.  

Purser notes that GridFlow provided reasonable results and they plan to perform direct 

simulations on the Sprucefield case, among others. 
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Special features: 

• Counterflow – Yes. 

• Manual exit block/obstacles – Yes, because the user can specify the destination or 

exit choices for each individual or occupant group, certain exits can be “hidden” (or 

not given as a choice) from an occupant group as if it does not exist. 

• Fire conditions affect behavior?  Fire conditions are implicitly incorporated.  The user 

imports a spreadsheet (created by the user) with speed factors and FED doses with 

time for each building space. 

• Defining groups – Yes. 

• Disabilities/slow occupant groups – Yes.  Groups can be defined in which the user 

can enter a specific unimpeded walking speed and distribution of pre-movement 

times. 

• Delays/pre-movement time – Yes, pre-movement times can be specified as a discrete 

value or in the form of distributions that have been obtained from direct measurement 

during “monitored evacuations” or fire drills.  These monitored evacuations have 

taken place over a span of 10 years and were taken from a range of different building 

occupancies. 

• Toxicity of the occupants – Yes. 

• Route choice of the occupants/occupant distribution – There are three choices; 

shortest distance, random, or user-defined 
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Limitations:  Supports occupant populations up to 5000 (as of year 2000) and more 

behavioral capabilities are under development. 

_____________ 

Section 2.16 ALLSAFE39,92,93,94: 

InterConsult Group ASA, Norway 

 

Purpose of the model:  The purpose of this model is to determine whether or not 

occupants are at risk depending upon input data for the building, the building use, the 

occupants, and the design fire scenario. 

 

Availability to the public for use:  This model is available through in-house consultancy 

from InterConsult. 

 

Modeling method:  This is considered as a partial behavioral model. 

 

Structure of model:  This is a coarse network system.  The building is input into the 

model through a series of nodes.  For each node, the user specifies the minimum 

clearance width, walking distance to the next node, initial number of occupants at node, 

and the area of the node.  The model simulates only one exit per node structure, but can 

simulate multiple node structures in parallel.  Because of this, the occupants in each node 

structure head to only one exit. 
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Perspective of model and occupant:  The model seems to view the occupants globally 

because of the statement saying that ALLSAFE assigns the behavioral characteristics to 

groups of occupants or the worst-case scenario group.  Also, the times presented in the 

output are assigned to the entire population, instead of each individual. 

The occupants’ perspective of the floor plan and building is also global since they 

only have one exit to choose from. 

 

Occupant behavior:  Implicit.  ALLSAFE assigns behavioural characteristics to groups 

of the population considered to be the worst-case of the evacuation scenario.  The model 

includes such input data as background noise, social and economic barriers among the 

occupants, language, the fire protection system measures, and the fire scenarios.  These 

input data affect the evacuation time by adding or subtracting times (as obtained from the 

database within the model).  The model also incorporates time delays and time 

improvements due to voice alarm systems, sprinklers, compartmentation, etc.  The model 

calculates these from tables of data.  An example of suggested time effects from different 

variables is included in Table 2.10.  These effects were gathered from literatures and/or 

by using Delphi-panels. 
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Table 2.10:  Building/Occupant characteristics and the corresponding time effects (94, p. 676) 

Building/Occupant Characteristics ∆Tdet* 
(min) 

∆Trec 
(min) 

∆Tres 
(min) 

∆Tmove 
(min) 

Only one available exit   2.5  
Bad layout/geometry of occupancy area    5 
Bad layout/geometry of escape routes    2 

Unfamiliarity to building   5 5 
Not alert (sleeping and/or drunk) 5 5   

Social affiliation (family)   2  
Social role (customer, visitors, worker, etc.)  5   

Unclear visual access of exits from occupancy area   1  
*Where “det” refers to detection, “rec” refers to recognition, and “res” refers to response. 

 

Occupant movement:  ALLSAFE has been developed to calculate evacuation scenarios 

where the occupants are not aware of the fire until later in the situation.  The main 

calculation is estimating delay time of the occupants during the evacuation.  The model 

also includes a function of estimating the walking time of the occupants.  ALLSAFE 

defines the “minimum time of movement” or “unimpeded time” (no behavioral delays) 

and this time is subject to flow calculations.  The developer admits that these calculations 

are simplified and also recommends the use of more advanced flow models to determine 

the minimum movement time whenever movement is critical.  After determining the 

minimum movement time, an ALLSAFE database is used to add delays and subtract 

reduction in evacuation times due to different kinds of safety measures, such as alarm 

systems, staff guidance, unfamiliarity, immobility, social affiliation, signage, etc.  The 

final result obtained from the model is the “necessary time to evacuate.”   

The model developers state that the input data affects all aspects of the evacuation 

process, based on the study of recognized literature on the interaction of behaviour of 

evacuation and the fire in actual fire incidents.  The developers also state that assigned 

delay or pre-movement times are based on real life evacuation experience.  From the 
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write-up on ALLSAFE, it seems that the functions of the model based on actual incidents 

were determined through studies made by SINTEF on large fire incidents.  No further 

information is given as to the kinds of incidents studied or the evacuation knowledge 

gained from these studies.   

 

Output:  The data obtained from the output is the following (for the entire population): 

• Time to fire detection 

• Time to react to the fire detection by the occupants 

• Time to interpret the situation by the occupants 

• Time to decide where to escape by the occupants 

• Time to evacuate a room or corridor 

• Time to evacuate the building 

 

Use of fire data:  The fire scenario can be calculated by fire models, such as FAST 

(listed by the ALLSAFE write-up) or default values for the scenario can be chosen from 

ALLSAFE. 

 

Import CAD drawings:  No, this building is input by specifying nodes within the node 

structure with the following information:  minimum clearance width, walking distance to 

next node, initial number of occupants in node, and the area of the node. 
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Visualization capabilities:  Visualization of the evacuation can be accomplished by 

using AllsafePC.  However, since the model considers the population as global, the 

developer referred to other advanced flow models in order to visualize evacuation.   

 

Validation studies:  Attempts have been made to compare ALLSAFE with other models, 

such as Simulex.  The model developers consider the model to be better validated by the 

use of expert judgments which are used in tabulated values (based on accepted literature 

on behavior and evacuation times). 

 

Special features: 

• Fire conditions affect behavior?  Fire scenarios are input into the evacuation from 

either a fire model or from default values in ALLSAFE. 

• Defining groups – Yes, the model only recognizes groups. 

• Disabilities/slow occupant groups – This does not seem like an option. 

• Delays/pre-movement time –  Yes, delays such as time to fire detection, time to react 

to the detection, time to interpret the situation, and time to decide where to escape are 

modeled. 

• Route choice of the occupants/occupant distribution – Only one route is available to 

the occupants for each node structure. 

 

Limitations:  Only one exit per node structure. 
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Behavioral Models 

 
Section 2.17 CRISP339,95,96,97,98: 

Developer: J. Fraser-Mitchell, BRE, UK 

The stand-alone evacuation model is the focus of this write-up. 

Purpose of the model:  The purpose of this model is to simulate entire fire scenarios 

incorporating a Monte Carlo technique.  There is also an option to simulate an evacuation 

using the external or “stand-alone” evacuation model, which does not incorporate the 

zone fire model effects or the toxicity effects to the occupants.  In this mode, the model 

will run in fire drill mode, but the Monte Carlo technique can still be used. 

 

Availability to the public for use:  CRISP is used only by BRE for in-house 

consultancy.      

 

Modeling method:  This is a behavioral model. 

 

Structure of model:  This is a fine network system.  The model uses a 0.5 by 0.5 m grid 

over the entire floor plan that is used to move occupants around the building.  This grid 

size can be larger, but the developers warn that the larger the grid size, the lower the 

accuracy of the evacuation results.  The occupants follow a contour map that is spread 

throughout the floor plan. 

  

Perspective of model and occupant:  The model views the occupants as individuals by 

giving the occupants certain behavioral roles, and in turn, certain behavioral activities 
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that will take place during the evacuation, in a probabilistic fashion.  The user also 

specifies the occupant’s walking speed and height (distributions), as well as probabilities 

for being asleep and located in certain places throughout the building. 

The occupants’ view of the building is also individual because although the model 

defaults to move the occupants to the nearest exit, the user can alter the shortest route by 

indicating a high “door difficulty” for a certain exit.  Also, door difficulties change and 

increase with the presence of smoke. 

 

Occupant behavior:  Rule-based or conditional behavior.  The population is assigned 

occupational and role data, on the basis of probabilities.  The occupation data determines 

the location probabilities, sleeping probabilities, head height, and movement speed of 

each group.  The role data dictates actions (behaviors of the group) and associated 

probabilities of each behavior.  Behavior is performed in the model in the form of 

actions, which are each associated with a delay time, degree of difficulty, and urgency 

level.  Actions do not have to continue until they are complete, but may be interrupted by 

conditions within the model.  In this case, another action will take place.  Some example 

actions to choose from in the model are search rooms, rescue, investigate, escape, 

complete work, trapped, unconscious, asleep, etc.  An example of simulated behavior of a 

fire fighter is explained here.   

 

Depending upon the conditions – the fire fighters will start off ‘safe’ which 

will prompt them to investigate (which has a 100% chance of occurring).  

This will lead them to go begin traveling to the room of origin.  Under the 
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investigation action, there are three different conditions that will prompt 

another action (and order of the conditions matters).  If there is a target to 

rescue (injured/disabled occupant), they will rescue them.  The model will 

take the fire fighter to the disabled person and have them escape together.  

If the target has been assisted during the rescue, the fire fighter will 

continue investigation to the fire floor.  (As you can see, these actions can 

go back and forth.)  If the fire fighter has seen fire or has completed 

investigation to the fire floor (reaching the fire floor and remaining there 

for the delay time), then the fire fighter will escape96.  

 

Occupant movement:  The movement of the occupants throughout the building is based 

on local crowd density.  Only one occupant can occupy a grid cell at the same time, 

which is comprised of a 0.25 m2 area (or a cell sized 0.5 by 0.5 m).   When the occupant 

approaches a crowded area, he/she makes the decision on which grid cell to move to 

based on the simple algorithm “collision avoidance” or local density.  The process is 

shown in Figure 2.13. 
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Collision Avoidance

 

Figure 2.13: Graphic of collision avoidance in CRISP (96) 

 

This is a slide taken from a BRE presentation made by Jeremy Fraser-Mitchell96.  

The solid blue line shows the preferred direction of the green occupant, but that cell 

already contains the maximum allowable number of people (3 people in a 0.75 m2 space 

or 3 - 0.5 x 0.5 m spaces).  Two other options are those at 45 degree angles to the green 

occupant’s position and are scored according to the speed of the occupant, which is a 

result of the density of his cell and the next potential cell.  A score is calculated for each 

of the three possible cells.  The preferred solid blue line has a score equal to the 

calculated speed of the occupant, and the dotted lines have a score equal to 0.7 * speed of 

the occupant.  An example calculation is performed for the scenario above giving an 

example maximum unimpeded speed of the green occupant as 1.0 m/s.  For the cell 

following the solid blue line, the green occupant will have a speed 20% (1-(4/5)) of the 

maximum speed because there are a total of 4 other occupants (5 including the green 

occupant) occupying the current and potential cells.  If the green occupant had 2 other 

occupants in his cell, his speed toward the solid blue line would equal 0, because both 
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current and potential cells would be at maximum density.  As a result, the score for a 

move along the blue solid line would be calculated by:  1.0 m/s * 0.2 = 0.2.  In order to 

move to the upper diagonal, the score would be 0.7 * (1.0 m/s * 0.6) = 0.42.  In the upper 

diagonal case, there were 2 others in both the current and potential cell, other than the 

green man, causing the speed be 60% (1 – (2/5)) of the maximum value.  Lastly, the 

lower diagonal score is 0.7 * (1.0 m/s * 0.8) = 0.56.  In the lower diagonal case, there is 

only one other occupant in the current and potential cells, other than the green occupant, 

so the speed is decreased to 80% of its maximum value.  The highest score of 0.56 is 

given to the lower diagonal, so the bottom diagonal cell is chosen.  

The choice of an occupant’s route is influenced by both distance and the degree of 

difficulty specified for the doors and windows by the user.  Occupants can, however, 

stray from the minimum distance path to avoid high crowded areas.  Also, a specified 

behavior may lead the occupants to a specific part of the building before evacuation will 

begin. 

 

Output:  The output consists of detailed information about each person in the simulation 

at every time step.  Also included is route information, fire conditions in certain rooms in 

the building, summary of every Monte Carlo run, evacuation time, and a pictorial output 

(at any time throughout the simulation). 

 

Use of fire data:  CRISP3 has its own zone model. 
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Import CAD drawings:  Yes, CAD drawings can be imported into the model.  The user 

must specify the heights of the floor plan and ceilings at different points on each floor 

plan.  If CAD plans are not used, the user must create a build file which specifies the 

building geometry by inputting: 

• x,y coordinates of the building layout, such as rooms, stairs, vents 

• Height of ceiling and vents 

• Connections between rooms and between stairs 

The user also specifies the type and location of detection system (in the detection input 

file) and if the stand-alone evacuation model in used, the occupants are alerted at the start 

of the simulation if no delay time is added.  Also, the x,y coordinates of any obstacles on 

each floor must be listed in a separate obstacle input file. 

 

Visualization capabilities:  2-D and 3-D capabilities (Josephine) 

 

Validation studies:  CRISP’s use has been frequently documented by BRE in such 

projects as office buildings, a large exhibition hall, and an airport terminal.  These were 

done in order to conclude ASET vs. RSET conditions, main factors in the evacuation 

(exit routes, width of doors, etc.), and worst scenarios, to name a few.   

An evacuation of a 3-story office building95, housing 202 civil service staff, was 

performed in 1996, and subsequently modeled in CRISP to develop and improve the 

model for use in office buildings.  Similar to WAYOUT, questionnaires were 

administered to the staff after the drill to obtain information on workplace, location at 

time of alarm, and any emergency roles and actions taken when responding to alarm.  
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Respondents consisted of 22 designated emergency staff, one wheelchair user, and 118 

staff with no emergency responsibility.  In the actual evacuation of the building, all staff, 

except the wheelchair user and two assistors, evacuated the building in 90 seconds.  From 

this and the use of action sequences from the questionnaire, CRISP was used to model the 

scenario.  At 90 seconds, all but approximately 25 occupants had evacuated the building.  

Differences in evacuation times (the total time given by CRISP was 240 seconds) may 

result from differences in the “investigate” action in the simulation.  The responsible 

officers in a real situation may have worked together in a more time efficient manner to 

search all rooms, instead of following the CRISP algorithm ensuring that all rooms are 

searched.  In this scenario, it was the actions of the investigation team that prolonged the 

evacuation time and prompted CRISP developers to take another look at action 

algorithms.   

 

Special features: 

• Counterflow – Yes, this feature was recently incorporated. 

• Manual exit block/obstacles – Yes, by inputting an increase in the door difficulty. 

• Fire conditions affect behavior?  Yes, CRISP has its own zone fire model, but if the 

model is used as an external fire model (in fire drill mode), there is not fire or smoke 

for the occupants to respond to.   In fire drill mode, fire is extinguished immediately 

and the alarms sound at t=0. 

• Defining groups – Yes. 
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• Disabilities/slow occupant groups – Yes, and the user can specify to have them 

“rescued” by another group of occupants (emergency personnel with a defined 

“rescue” action). 

• Delays/pre-movement time – Yes, these can be input by specifying a mean and 

standard deviation for occupant activity.  For instance, if the action of “reacting” is 

given a 60 second delay with a specific standard deviation, the occupants will “react” 

for approximately 60 seconds, which results in the occupants remaining in place.  

Once the “reacting” time delay is completed, they will follow their next user-defined 

action, which is usually “escape.” 

• Elevator use – No, however, this feature is currently being worked on. 

• Toxicity of the occupants – Yes, if the model is NOT simulating in fire drill mode (in 

the external evacuation model). When FED=1, the occupant is assumed to be dead. 

• Route choice of the occupants/occupant distribution – Globally, the potential leads to 

shortest route.  This can be overridden by local information and events. 

 

Limitations:  Complex input files and all behavioral activities must be input by the user.  

Limitations of the program involve up to 1000 rooms, up to 20 floors, and 15,000 

occupants maximum.  Also, the maximum grid network is 0.5 x 0.5 m grid. 

_____________ 
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Section 2.18 ASERI39,99,100,101,102: 

Developer: V. Schneider, I.S.T. Integrierte Sicherheits-Technik GmbH, Germany 

 

Purpose of the model:  The purpose of the model is to simulate egress movement in 

complex geometrical environments, such as railway and underground stations, airports, 

theatres, sports arenas, trade fairs, etc. 

 

Availability to the public for use:  This model is available through I.S.T. Integrierte 

Sicherheits-Technik GmbH. Company. 

 

Modeling method:  This is a behavioral model. 

 

Structure of model:  This is a fine network system.  The floor plan defines rooms, 

corridors, stairs, and refuge areas by the size and position of the doors and passageways.  

The model defines the instantaneous positions of every person by the coordinates which 

are related to a point on the floor plan or staircase.  This a method allows for a 3-D 

representation of the building and the local modeling of people movement throughout.   

  

Perspective of model and occupant:  The model views occupants as individuals by 

characterizing them by a set of parameters (both fixed and conditional to the fire 

environment).  These parameters are age, sex, fitness, incapability, social 

interdependencies, former experience, special knowledge about the building, response to 
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smoke and toxic products, and the amount of information available during the evacuation 

(location of fire, availability of egress routes).   

The occupant’s perspective of the building is also individual.  Each person has a 

goal/exit, which is either the nearest exit or is prescribed by the user.  The route choice is 

then influenced by the external impact from conditions of the building or the behavior of 

the other evacuees around them.  Because of this, occupants can alter their behavior away 

from the original route (nearest or user-defined) in avoidance of smoke conditions or 

occupant congestion. 

 

Occupant behavior:  Rule-based or conditional behavior.  First actions and perceiving 

cues can be modeled by either assigning individual alarm and reaction times or by 

incorporating intermediate stop positions.  These positions are areas of the building that 

the occupant move to, wait, and then begin egress after a certain time interval.  ASERI 

uses a matrix of estimated delay times that depends on the initial activity shown in the 

first column and on the corresponding action or behavior in the first row.  Table 2.11 is 

shown below. 

Table 2.11:  Matrix of ASERI delay times (99)  

 Awareness Response Time Prepare (Dress) Information 
Watching TV 0 – 30 s 4 – 8 s 5 - 120 s 0 – 30 s 

Showering 60 – TS s 4 – 10 s 30 – 300 s 0 – 60 s 
Social activity 0 – TS s 4 – 10 s 5 – 240 s 0 – 60 s 

Sleeping 10 – TS s 6 – 14 s 20 – 300 s 0 – 60 s 
Reading/Writing 0 – TS s 4 – 8 s 5 – 120 s 0 – 45 s 

Smoking 0 – 300 s 4 – 8 s 10 – 120 s 0 – 45 s 
 

The purpose of this matrix is to model the sequence of first actions.  “TS” is the 

time for the staff to check certain areas/rooms of the building, which depends on the 
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communication or information events.  Each corresponding behaviour/action is explained 

below: 

• “Awareness” is the time interval beginning with the perception of the first cue to the 

time that the person becomes aware of the evacuation situation 

• “Response Time” is the average time interval to respond to the corresponding cue.  

The model uses average times used by Levin which are 6 seconds for awake 

individuals and 10 seconds for sleeping occupants. 

• “Prepare” is the time interval allowing the occupant to dress and look for valuables.  

This action depends on the weather and the geographical location. 

• “Information” represents the time delay for occupants to seek for information and 

“inform others” of the event. 

Individual responses to hazards in the building (actual or suspected) depend on 

individual specified parameters, external conditions, available information, and social 

relations among the occupants.  Most of these parameters vary with the changing 

environment of the evacuation.  ASERI uses Monte Carlo simulation techniques to 

analyze the outcome of a building evacuation by stochastically altering individual 

responses while leaving the initial and boundary conditions identical.  By performing this 

type of simulation, mean egress times as well as corresponding variances and confidence 

limits can be obtained.  Such stochastic variables include individual egress route choice 

and movement, the initial distribution of occupants throughout the building, and 

individual parameters (size, walking speed, and reaction times). 
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Occupant movement:  The movement of the occupants is defined by an individual 

walking speed and the orientation of the corresponding velocity vector, resulting from the 

person’s current position and intended exit/goal.  Also, obstacles and other occupants 

affect movement.  ASERI takes note of individual body size by incorporating shoulder 

and chest width into the model.  From this, minimum inter-person distance and boundary 

layer from walls and obstacles are used to move people throughout the building.  

Shoulder and chest width, certain behavioral conditions, and walking speeds are entered 

as distributions or individual input, which affect the mobility of the occupants.  Different 

groups can be generated from these inputs, including those occupants who are disabled 

(require lower walking speed or require a larger body size to account for a wheelchair).  

ASERI allows the user to input persons with increased space requirement, such as 

occupants carrying children, briefcases, or wheelchair mobile.  Because of these 

calculations, ASERI can model congestion, queuing, clustering, and merging of flows of 

occupants.   

Individual movement of the occupants is driven by their global (exit or refuge 

area) and local (room exits, corners, etc.) goals.  The local goals of the occupant change 

dynamically with the environment and crowd conditions.  There is no grid in the model 

upon which the occupants move through.  Instead the individual local goals of the 

occupants trigger movement, depending upon the geometry of the building (interior 

doors, obstacles, corners, etc.).  The developer has explained the movement model as a 

sequential one with appropriate priority rules for movement.   

Toxic effects of the smoke components slow walking speed, alter behavioral 

responses, and change designated route plans.  Individual incapacitation of the occupants 
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is calculated by using the FED model by Purser.  This includes monitoring the dose of 

CO, HCN, CO2, low O2, and high temperature.  Any obscuring effects of smoke are 

described by the visibility of particular spaces in the building and affect walking speed 

based on data from Jin28, and turn back behavior probability based on data from Bryan 

and Wood2.   

 

Output:  The output involves evacuation times plus detailed information on the structure 

and bottleneck/congestion situations that lead to egress delays.  Because of the use of the 

Monte Carlo technique in specifying behavioral responses of the occupants, mean egress 

times along with their corresponding variances and confidence limits are obtained. 

 

Use of fire data:  ASERI is used 

in conjunction with the field model 

KOBRA-3D that simulates the fire 

and smoke spread throughout the 

space.  Individual incapacitation 

can be calculated based on the 

FED model by Purser.  ASERI 

includes dose-effect relations for CO, HCN, 

CO2, low O2 and heat.  Also modeled are the effects of smoke movement on visibility, 

speed, and exit route choice.  Or, it seems like the user can enter time-dependent 

temperatures and concentrations of smoke, CO, CO2, O2, and HCN for each unit in the 

building.  The smoke concentrations are expressed in terms of visibility. 

Figure 2.14:  ASERI visualization of a 
simulation (99, p. 45) 
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Import CAD drawings:  A pre-processor will be available for licensees by the end of 

the year that converts standard CAD formats into ASERI input. 

 

Visualization capabilities:  2-D or 

3-D visualization of the movement 

of the evacuees, as shown in Figure 

2.14 and 2.15. 

 

Validation studies:  The first 

validation test of this discussion 

involves an unannounced 

evacuation from a theater in the 

City of Tampere in 1995, as shown 

in Figure 2.15.  The theater 

contained over 600 occupants.  The data from this evacuation was used to assess 

evacuation models as well as to understand the sensitivity of the basic input parameters of 

the model.  The simulation of the 3rd floor auditorium was restricted to half of the 

building due to the symmetry of the space, as shown in the ASERI diagram shown in 

Figure 2.15.  The actual pre-movement time of the theater occupants was used in the 

simulation as a random delay time.  Also, a distribution of the individual mobility of the 

occupants was incorporated to produce a range of walking speeds from 0.7 to 1.5 m/s and 

Figure 2.15: ASERI visualization of the theater 
simulation (101, p. 7) 
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a body size range of 0.12 to 0.22 m2.  It was known from the original evacuation that 

persons with restricted mobility were present.   

Figure 2.16 shows the results from the actual evacuation and the simulation from 

ASERI.   

 

Figure 2.16: Results from the ASERI validation studies of the theater (101, p. 6) 

The first row shows the actual results from the evacuation drill of the theater building, 

including the evacuation time from the auditorium only (2nd column).  The second row 

shows the results for the simulation of the drill as observed for the theater, and the third, 

fourth, and fifth rows are changes to the model’s inputs as part of a sensitivity analysis of 

the model itself.  The second and third rows show the effect of inputting different egress 

behavior (normal vs. danger).  The second and fourth rows show the effects of inputting 

different individual mobility (inhomogeneous group vs. homogeneous group with 

unrestricted mobility – able occupants).  And lastly the second and fifth rows show the 

difference in inputting the number of occupants into the simulation (82% of the 

occupancy which was present at the time of the drill vs. 100% occupancy).  The 

developer notes that the strongest effects on the egress time produced by the model were 

due to a change in mobility of the occupants.  Also, the first two rows which contained 
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the observed and simulated evacuation from the theater show very close results in all 

three evacuation times.   

Monitored evacuation drills were conducted for three high-rise and three school 

buildings by the German Federal Office of Construction for the Forschungsstelle fur 

Brandschutztechnik in cooperation with the local fire brigades.  These evacuation drills 

were used to validate ASERI as well as used to calibrate with the Predtechenskii and 

Milinskii method31.  After performing a range of simulations which involved changing of 

mobility parameters and the presence of smoke barriers in the building and comparing 

these to the observed evacuation drills, the developers stated that, “performing the 

numerical simulation with an appropriate distribution of mobility parameters yields 

realistic results, as already demonstrated by the investigation of other evacuation drills.”  

For the tallest building, a 21-story office building with 1400 occupants, the calculated 

total evacuation times ranged between 616 and 648 s, with a mean value of 627 s, while 

the measured evacuation time for the structure was 629 s.  More information on this 

validation case study is provided in ASERI references. 

The final case study to be discussed in this section involved the evacuation from a 

hotel conducted by the Norwegian SINTEF organization.  The input information 

provided to the model for this case study involved the building layout, means of egress, 

geometrical staircase information, location and the sequence of the fire incident, and the 

communication events put in place by the evacuation plan.  The evacuation case that 

follows the evacuation plan is called the “schedule case” and actual observation of the 

drill is referred to as the “actual case.”  Also, information about the occupants was 

available such as the gender, age, room number, and activity engaged in before 
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evacuation began.  The staff was not included in the egress movement during the 

simulation, but was modeled to perform actions during the alarming sequence.  Also, 

delay and response times associated with certain occupant actions were included in the 

simulation.  The occupant total was 104, and since the available egress routes were many, 

the evacuation was not influenced by crowding.  As mentioned earlier, runs were 

performed in ASERI to resemble 1) immediate evacuation of all occupants at the start of 

the fire alarm, 2) the scheduled case, and 3) the actual case.  According to the developers, 

the actual case was very much in agreement with the observation of the monitored hotel 

drill.  The only difference is that “the number of occupants not leaving the guest rooms or 

returning into the room was much larger than predicted by the simulation.”  The 

developers relate this discrepancy to the fact that the information available was 

ambiguous in the drill, resulting in guests ignoring the alarm.  

Other validation studies can be found in the referenced ASERI publications. 

 

Special features: 

• Manual exit block/obstacles – Yes, if smoke is very heavy.   

• Fire conditions affect behavior?  Yes, the output of KOBRA-3D can be transferred to 

ASERI through a cut and paste method. 

• Defining groups – Yes, because of the ability to assign each individual certain 

mobility parameters (body size, walking speed, and behavioral conditions) as well as 

providing a distribution of these for a specified group. 

• Disabilities/slow occupant groups – Yes, walking speed and increased body size can 

be specified. 
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• Delays/pre-movement time – Delays are achieved either by assigning alarm and 

reaction times or introducing intermediate stop positions. 

• Toxicity of the occupants – Yes. 

• Route choice of the occupants/occupant distribution – Route choice is either shortest 

distance or user-defined.  Routes then become altered due to the building 

environment and the occupants’ behavior during the evacuation (conditional). 

 

Limitations:  The number of specified levels (floors), units, passages, and obstacles is 

limited by computer memory.   

_____________ 

Section 2.19 BFIRES-216,103: 

Developer: F. Stahl, NBS, U.S. 

 

Purpose of the model:  The purpose of this model is to simulate an occupant moving 

throughout a building as a result of decisions he makes during a period of time.  The 

computer program is described by the developer as “modular” in form.  To explain, each 

subroutine has a specific function as its purpose, and these functions fall into the 

categories of perception, cognition, and action (all relative to the environment).  The 

subroutines are linked through the main program.    

BFIRES simulates a building fire as a chain of “time frames” and for each time 

frame, the model generates a behavioral response for every occupant in the building. 

 

Availability to the public for use:  Unknown. 
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Modeling method:  This is a behavioral model. 

 

Structure of model:  This is a fine network system.  The floor plan is overlaid with an 

orthogonal grid.  The spatial plan (walls, boundaries, etc) are laid out on the grid, and 

occupants are only permitted to occupy grid points (the intersection of the two grid lines 

is identified by an x,y point).   

  

Perspective of model and occupant:  This model recognizes individuals.  The following 

information is provided by the user for each individual: 

• Interruption limit 

• Bystander limit 

• Familiarity with the exits in the building 

• Initial mobility status 

• Probability of opening a closed door 

• Probability of closing a door 

• Initial location within the floor plan. 

The model also keeps track of the position (x,y coordinates) of the occupants throughout 

the simulation. 

The occupants also have an individual view of the building because the occupant 

travels a particular route resulting from a “chain” of movement decisions made by the 

occupant.  Each decision is a result of the occupant interpreting gathered information 

from the environment. 
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Occupant behavior:  The model attempts conditional behavior.  As mentioned earlier, 

BFIRES simulates a building fire event as a chain of “time frames,” and during each time 

frame, a behavioral response is generated for each occupant in the building.  As shown in 

the diagram, the generated responses for each individual are based upon their information 

processing.  Also, building occupants act in compliance with their perceptions of the 

changing environment.  At t1, an occupant prepares a behavioral response by gathering 

information on the state of the environment at that specific point in time (perception of 

the situation).  Secondly in the process, the occupant interprets the information by 

relating it to his/her egress goals which guide the overall behavior.  This interpretation is 

accomplished in the following way: 

• Comparing current with previous distances between the occupant, fire threat, and exit 

goal 

• Comparing knowledge about the threat and goal locations of the current occupant 

with the nearby occupants. 

• Taking into account locations of physical barriers (walls and doors) and other 

occupants 

Lastly, the occupant evaluates alternative responses from the “response library” and 

selects an action as the response for t1.  An example of a behavioral response is to move 

in a direction that would minimize distance to the exit, resulting from knowledge of both 

the fire threat and the location of the safe exit.  This is noted in Figure 2.17. 
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Figure 2.17:  Behavioral cycle for each occupant in the BFIRES model (16, p. 51) 

Each of the processes; perception, interpretation, and response processes, call 

upon computer subroutines.  Each subroutine produces an aspect of the human behavior.  

The two types of subroutines consist of those which simulate perception and information 

gathering and subroutines which simulate information processing and decision-making.  

An explanation of each type is provided below: 

1)  Subroutines GROUP, OTHERS, AGREE 

This subroutine consists of programs that establish the social environment as the event 

progresses.  GROUP uses the subroutines OTHERS and AGREE to inform the occupant 
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whether any other occupants occupy the same space as the current occupant, whether any 

others in the space have information unknown to the current occupant, whether others in 

the space are injured, and whether all occupants can agree on an effective exit route.  

Route choice depends upon an occupant’s perception of the situation, familiarity with the 

building, lack of information about fire incident, etc. 

2) Subroutine BYSTND 

This subroutine will be called if an occupant is occupying a space with an injured or 

disabled occupant.  BYSTND determines probabilistically if the occupant ignores, 

approaches, or stays to assist the disabled occupant. 

3) Subroutine JAMMED 

This subroutine enables the occupant to assess the degree of crowding of the 

area/location he/she wishes to enter.  If the occupant looks ahead to the next space, he/she 

counts the number of occupants already there.  If this number is larger than the pre-set 

crowding tolerance, this route is rejected from the choices of movement. 

4) Subroutine KPOSS 

This subroutine allows the occupant to “see” or scan each potential move and determine 

if it is physically possible to pass through.  This allows the occupant to avoid paths 

constrained by walls or other physical barriers. 

5) Subroutine INTRPT 

This subroutine probabilistically determines whether an occupant’s behavior will be 

interrupted during a time frame, either by remaining in place or backtracking. 

6) Subroutine BACKUP 



150  

This allows the occupant to retrace his/her steps back toward the initial starting position.  

Once at this point, the occupant resumes the decision-making process. 

7) Subroutines ASSIGN, DOORS1, and DOORS2 

This model can assign a bias to the occupant’s decision-making behavior.  This is meant 

to assign probabilities to decisions made throughout the simulation, which may be more 

likely than others. DOORS1 controls the probability of the occupant opening a closed 

door during the evacuation.  DOORS2 controls the behavior of whether or not the 

occupant will close the door behind him/her once passing through. 

8) Subroutine EQUALZ 

This is used to satisfy the condition of “no bias” or equalizing the probability values of 

available alternative moves. 

9) Subroutine TBIAS 

This routine establishes probabilities for moves which favor maximizing an occupant’s 

distance from threat, such as fire or smoke. 

10) Subroutine EBIAS 

This subroutine uses probabilities that favor moves that minimize an occupant’s distance 

from an exit. 

11) Subroutine HBIAS 

This subroutine biases an occupant’s moves toward helping disabled or injured 

occupants. 

12) Subroutine EVAL 

This subroutine offers two alternative methods for an occupant to evacuate his/her current 

safety status.  Previously, an occupant achieves a positive evaluation of this situation if an 
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occupant perceives his/her safety status to improve.  The two alternate methods involve 

1)  evaluation is constructed on the basis of the straight-line distance measured from the 

occupant’s current location to threats, exits, or both, or 2) evaluation is constructed on the 

basis of egress progress (measured in time spent in a threatening environment).   

 

Occupant movement:  Before running the program, the user inputs the number of 

desired replications, the time length of each replication (in time frames), the total number 

of occupants in the simulation, and a seed number for the random number generator.  The 

program also requires the maximum number of occupants permitted in a single spatial 

location at any given time. 

Although the model description does not expand upon the actual movement of the 

occupants in the building, it seems that the occupant either remains at the grid coordinate 

or moves to another grid coordinate in a time frame.  The BFIRES manual states that 

egress time is measured in the number of time frames it takes for the occupant to move 

from the initial position to the exit.  The developer explains that the “problem of 

calibrating the program has not been dealt with in any detail, [but] preliminary simulation 

experiments do suggest that a “time-frame” could be construed within the range of 5-10 

seconds of real-time”103. 

Also, as stated above, the user provides the maximum number of occupants 

permitted in a single space in the building, which aids in deciding whether or not the 

occupant moves into that space, remains where he/she is, or moves to another position 

outside of the space.  This could possibly reflect a maximum density of the space as 

chosen by the user. 
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Output:  The following output is provided by the model for each occupant at each time 

frame: 

• Location at beginning of frame 

• Whether or not occupant experienced an interruption or bystander intervention  

• Current exit/goal  

• Selection of all probability values for move alternatives 

• Final location 

The TRACE output allows the user to track the movement of any occupant over a period 

of time.  Also, TOTALS output keeps track of individual events for each occupant. 

 

Use of fire data:  The user inputs the following conditions in order to simulate fire 

effects:  the x,y coordinates of the initial fire location, fire diffusion rate factor, and 

occupant’s smoke tolerance factor. 

 

Import CAD drawings:  No, this is an older model.  The input needed by the user is the 

following: 

• Location of walls, barriers, exits, and doors (in terms of x,y coordinates) 

• Boundaries of room subdivisions 

• Information about the doors, such as location, manual or automatic close, and initially 

opened or closed 

• Exit goal locations that are available for each spatial subdivision 

• Initial location of the fire  
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• Number of exits available 

• Number of spatial crowding subdivisions in the floor plan 

• Number of doors in the floor plan 

• Physical crowding threshold for each space in the building 

 

Visualization capabilities:  None. 

 

Validation studies:  None noted.   

 

Special features: 

• Manual exit block/obstacles – Yes, for each occupant.  The occupant can have a 

probability of 0 that he/she cannot open the door. 

• Fire conditions affect behavior?  Yes, fire conditions are input by the user. 

• Disabilities/slow occupant groups – Yes, the user specifies each occupant’s initial 

mobility or disability.  This is suspected to mostly affect assistance and rescue 

behavior of the mobile occupants. 

• Delays/pre-movement time – Yes, the model accounts for behaviors occurring before 

exiting the building. 

• Toxicity of the occupants – Yes, per specified smoke tolerance factor. 

• Route choice of the occupants/occupant distribution – Route choice is dependant 

upon occupant characteristics and environmental conditions. 

 



154  

Limitations:  A limitation of the model is very specific inputs for EACH occupant.  It 

probably gets difficult to model a large number of people.  Also, it is not clear what the 

limit is for modeling a certain number of occupants.  This is a much older model. 

_____________ 

Section 2.20 buildingEXODUS33,39,104,105,106,107: 

Developer: E. Galea and FSEG Group, University of Greenwich, UK 

 

Purpose of the model:  The purpose of this model is to simulate the evacuation of a 

large number of people from a variety of enclosures.  The modeling suite consists of 

airEXODUS, buildingEXODUS, maritimeEXODUS, railEXODUS, and vrEXODUS 

(Virtual reality graphics program).  buildingEXODUS attempts to consider “people-

people, people-fire, and people-structure interactions.”  The model consists of six 

submodels, as shown in Figure 2.18, that interact with one another to pass information 

about the evacuation simulation, and these are Occupant, Movement, Behavior, Toxicity, 

Hazard and Geometry submodels.   

 

 

Figure 2.18:  EXODUS submodel interaction (33, p. 46) 
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Availability to the public for use:  As of August 2002, buildingEXODUS version 3.01 

is available for use through the University of Greenwich (FSEG).    

 

Modeling method:  This is a behavioral model. 

 

Structure of model:  This is a fine network system.  The model uses a 2-D spatial grid to 

map out the geometry of the structure, locate exits, obstacles, etc.  The grid is made up of 

“nodes” and “arcs.”  Each node represents a small amount of space on the floor plan and 

the arcs connect the nodes together on the floor.  Individuals use the arcs to travel from 

node to node throughout the building.  This information is stored in the Geometry 

submodel.  Also, throughout the simulation, each node has dynamic environmental 

conditions associated with it, including levels of toxic gases, smoke concentration, and 

temperature. 

  

Perspective of model and occupant:  The model views the occupants as individuals by 

giving each occupant certain characteristics.  The Occupant submodel’s purpose is to 

describe the individual and contains such information as gender, age, maximum running 

speed, maximum walking speed, response time, agility, patience, drive, etc.  The 

Occupant submodel also maintains such information as the distance traveled by the 

occupant throughout the simulation, the person’s locations, and exposure to toxic gases.  

Some of these attributes are static, and some of these change with the conditions in the 

building. 
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The occupants’ view of the building is primarily individual, but includes a global 

level as well.  An occupant’s escape strategy or route, determined by the Behavioral 

submodel, is a product of his/her interactions with the building, other occupants, and the 

fire hazard in the situation.  The behavioral submodel focuses on two distinct levels – a 

local and global, as noted by the developers of the model.  The local level (selection of a 

detour route) determines the occupant’s response to the current or local situation and the 

global (which is specified by the user but can be overridden by the local level) level 

keeps track of the overall strategy of the occupant (such as to use the most familiar exit to 

leave the building).  After the Behavioral model has made a decision, it passes this 

information onto the Movement submodel to move the occupant. 

 

Occupant behavior:  Rule-based or conditional behavior. 

 

Occupant movement:  The Movement submodel controls the physical movement of the 

occupant from the current position to the next.  Or, if a delay time was initiated by the 

user, the model holds the occupant in position.  The movement model can also 

incorporate overtaking, side stepping, and other actions.  The Movement submodel 

determines the speed at which the occupant will move, and checks with the Occupant 

submodel to make sure the occupant has the capability of performing specific maneuvers 

during evacuation (i.e., jumping over obstacles).  The user can set one of six levels of 

walking speed for each individual occupant, randomly generated for the population, or 

group-defined.  Those six levels are: 

• Fast walk – default speed of 1.5 m/s 



157  

• Walk – 90% of fast walk 

• Leap – 80% of fast walk 

• Crawl – 20% of fast walk 

• Stairs-up (based on Fruin data30 and dependent upon age and gender) 

• Stairs-down (“) 

The occupant “slows” due to other occupants occupying the grid cells in front of 

him/her.  When moving to a grid cell that another occupant also wishes to occupy, the 

conflict resolution input assigns a certain delay time to each occupant in “conflict.”  Also, 

the drive variable also affects which occupant will actually occupy the grid cell.  If one of 

the occupants is assigned a higher drive value than the other, that occupant will obtain the 

next grid cell.  However, if both occupants are assigned the same drive value, the 

decision is random.  In short, the evacuation time of movement from grid cell to grid cell 

is made up of actual movement at unimpeded speed plus any conflict delays that occur 

along the way.   

At the global level of the occupants’ view of the building, the evacuation strategy 

is defined by the user.  The default route is determined by the potential map (marking 0 

as the exit and all other nodes as higher number the further away the node is from the 

exit), which leads people to the nearest available exit.  If an exit is labeled as familiar or 

more attractive, this default potential map and route changes.  The occupants always 

move onto a node with a lower potential than the one they are presently occupying.  If an 

exit is more attractive, the potential for that exit is lowered.  As mentioned earlier, the 

global level information is followed until an event occurs on the local level.  At the local 

level, two behavioral options are available to the user, normal and extreme behavior.  In 
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normal behavior, the occupants’ movements are determined by the potential map, and 

they strive to lower their potential.  If the option to lower potential is not there, the 

occupant will move onto a node with equivalent potential.  If this option is not available, 

the occupant will wait.  In extreme conditions, occupants may act in a more extreme 

manner by taking a more indirect route.  In this case, the occupants do not mind accepting 

a higher potential for a short time during the alternative route.  These actions also tie in 

with the patience option in the Occupant submodel.   

On the stairwells, the occupants view all nodes on the stairs as equally attractive, 

but if an occupant is within 5 nodes of the edge of the staircase, he/she will move to the 

edge as an attempt to use the handrails.  Occupant travel speeds on stairs are based on 

work done by Fruin.  Exiting is based on two factors, the exit width and flow rate per unit 

width.  These values determine the maximum amount of occupants allowed to exit at the 

same time and the number of nodes assigned to the exit.  The user specifies an upper and 

lower limit of flow rate at each exit.   

The user can manipulate all aspects of the Occupant submodel, for instance, the 

mobility and agility attributes can be modified so that disabled or slow moving occupants 

can be simulated.   

The Toxicity submodel determines the effects of the toxic products on the 

occupants in the building.  The effects on the occupants are given to the Behavioral 

submodel which transfers the information to the Movement submodel.  To determine the 

effects of the fire hazard, including the newly added radiative effects, on the occupant, 

EXODUS uses the Fractional Effective Dose (FED) model developed by David Purser, 

BRE26.  The FED model assumes that the effects of certain fire hazards are related to a 
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dose over time.  As the FED approaches 1, the occupant’s mobility, agility, and travel 

speeds can be reduced.  The FED model considers the effects of radiation, temperature, 

HCN, CO, CO2, and low O2 to estimate the time to incapacitation.  Also, other effects to 

occupants are staggered and slowed movement, based on data from Jin28.  Occupants may 

choose to travel a different route when faced with a barrier of smoke, depending upon 

their individual characteristics2. 

 

Output:  In order to interpret the results, data analysis tools have been developed to use 

once the simulation have been completed.  These tools allow for the output files to be 

searched and for specific data to be extracted.  The program is labeled as “askEXODUS.”   

 

Use of fire data:  Yes, the Hazard submodel determines the thermal and toxic 

environment.  buildingEXODUS can accept data from other fire models or experimental 

data.  A software link is established between buildingEXODUS and CFAST, a zone fire 

model developed at NIST.   

 

Import CAD drawings:  Yes, CAD drawings can be imported into the model.  In 

addition, the user can also input the geometry of the building via the geometry library or 

by interactively using the tools provided in buildingEXODUS.  This information is stored 

in the Geometry submodel.   

 

Visualization capabilities:  2-D (low detail and person shape) and 3-D capabilities 

(Virtual reality interface). 
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Validation studies:  According to developer, the model has undergone several forms of 

qualitative and quantitative validation.  The model developer claims that this includes 

direction comparison of model predictions with past experimental data, comparison of 

“blind” model predictions with experimental data, and comparing the nature of human 

behavior with expectations of the model.  Although many of the validation studies are 

performed on airEXODUS using experimental trials from the aviation industry, the 

developers claim that both airEXODUS and buildingEXODUS are based on the same 

principles.   

For validation of the airEXODUS model, the model results were compared 

against Cranfield Trident Three experiments (an example of past experiments).  Here, 

people evacuated from Trident Three aircraft cabin sections and the model correctly 

predicted the trends in evacuation times, according to Gwynne et al.  AirEXODUS results 

are also compared against certification trials of aircrafts, specifically the B767-304ER.  

These trials are performed only once and after running several runs of the model, it was 

shown that the performance of the certification trial was near optimal by the passengers 

and crew.  Therefore, the optimal EXODUS predictions were compared to the trial and 

were within 2% of the measured trial evacuation time.   

Validations studies of buildingEXODUS108,109 using the following buildings:  

seven pavilions of the Tukuba International Expo in 1985, the Stapelfeldt experiments 

(evacuation of police cadets from a school gymnasium), and the Milburn House, 

Newcastle-Upon-Tyne, UK.  Reasonable agreement was found, when looking past 



161  

deficiencies in the data.  The developer notes “excellent agreement between 

buildingEXODUS predictions and observed evacuation times.” 

 

Special features: 

• Manual exit block/obstacles  – Yes. 

• Fire conditions affect behavior?  Yes, from the Hazard submodel and CFAST. 

• Defining groups – Yes. 

• Disabilities/slow occupant groups – Yes. 

• Delays/pre-movement time – Yes, these are user defined. 

• Toxicity of the occupants – Yes. 

• Impatience/drive variables – Yes. 

• Route choice of the occupants/occupant distribution – Globally, the potential leads to 

shortest route and can be overridden by local information and events. 

 

Limitations:  If users decide to purchase the level 1 option, the website notes that “Level 

1 can handle multiple floors and unlimited population sizes, includes the movie player 

facility and the data analysis tool askEXODUS.  Limitations are dictated by the 

capabilities of the host computer.  This version does not include a toxicity sub-model and 

posses a limited capability hazard sub-model.”  The Level 2 option involves “As level 1 

but includes a toxicity model that allows the inclusion of the fire hazards of smoke, heat 

and toxic gases within the simulation. An ability to import history files from CFAST 

V4.01 in order to define the fire atmosphere. This level includes the movie player, data 

analysis tool askEXODUS and an ability to produce output capable of being read by the 
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post-processor virtual reality software vrEXODUS.  Level 2 encompasses the full 

capability of buildingEXODUS.” 

_____________ 

Section 2.21 EGRESS39,110,111,112: 

Developer: N. Ketchell, AEA Technology, UK 

 

Purpose of the model:  The purpose of this model is to determine the evacuation of 

crowds in a variety of situations, such as theaters, office buildings, railway stations, and 

ships. 

 

Availability to the public for use:  EGRESS is available only on a consultancy basis 

and the software is not offered for sale. 

 

Modeling method:  This is a behavioral model  

 

Structure of model:  This is a fine network system.  The floor plan of a building is 

covered in cells that are equivalent in size to the minimum area occupied by an occupant.  

Instead of being square, like most grid cells, the cell is hexagonal in shape, as shown in 

Figure 2.19.  The hexagon has a height equal to h and an area of √3h2/2. EGRESS holds a 

default of 5 people per square meter, which equals a grid spacing of 0.5 m.  This can be 

modified if occupants are expected to be carrying large objects, etc. 
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Figure 2.19:  Example of cells on an egress plan (112, p. 2) 

  

Perspective of model and occupant:  The model views the occupants as individuals.  

The movements of each occupant are carefully monitored throughout the simulation.  

Each individual also has certain goals and a specified time period to complete that goal. 

The occupants’ perspective of the floor plan is also individual.  EGRESS contains 

a route finding algorithm that defines the shortest distance from each cell on the floor 

plan to each specified region or exit.  Then, the behavioral modeling aids in choosing 

which objective the occupants moves toward. 

 

Occupant behavior:  The occupant behavior is conditional.  As long as the objective is 

still possible within the time frame allotted, the individual continues to pursue the goal. 

The method of behavioral modelling has become simpler since the previous 

method was found to cause major issues in the number of decisions made by each 

occupant.  EGRESS provides groups of occupants with itineraries throughout the 

evacuation in order to alter objectives/goals, as shown in Figure 2.20.  Each objective 

(example is movement towards the fire for an emergency personnel worker) on the 

itineraries is assigned a time period in which each individual of the group will attempt to 
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reach it.  If during the time period, the preferred 

objective is still possible, each person continues to 

pursue it.  If the objective is no longer possible, the 

next objective down the list is attempted.  The 

itinerary includes the appropriate delay times for 

responding and intermediate delays for decision 

making to pursue other options.  Other ways of 

altering behaviour are assigning regions which are 

accompanied by a delay time when crossing them, 

regions which decrease walking speed when passing them, and regions which alter the 

evacuation route assessment.  EGRESS can also incorporate assessing the fractional toxic 

doses received by the occupants in the evacuation, but the developers state that these are 

infrequently used due to their degree of speculation in the process of modelling such 

actions.   

 

Occupant movement: 

Route finding 

People move from cell to cell based on the “throw of a weighted die.”  The 

weights/probabilities of the die are calibrated against the speed and flow, as a function of 

the density, of the occupants to move them throughout the building.  For certain cases, 

the model can vary these probabilities for the cells to reflect changes in the evacuation 

event, such as a region becoming blocked by smoke.  EGRESS contains a route finding 

algorithm that calculates the shortest distance from each cell to each exit.  With the 

Figure 2.20: Behavioral modeling 
in EGRESS (112, p. 9) 
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behavioral modeling in EGRESS, the individual on any cell chooses which exit to move 

towards.  Multiple travel routes are specified within the model by assigning each cell a 

potential number for each of the exits (or attractors as used by EGRESS).  From these 

index numbers given to each cell, which one of the 6 adjacent cells surrounding the 

current hexagonal cell is closer, further away, or the same distance from the exit can be 

determined by comparison among the adjacent cells.  Cells can be open spaces, occupied 

by a person, a portion of a wall or blockage, or an exit/region. 

A hexagonal grid is used in EGRESS due to the fact that the error in the direct 

movement speed is 13.5% for the worst case direction, when compared with a 30% error 

for square grids. 

Movement algorithm 

The unimpeded mean speed of travel in a given direction is derived from the 

probabilities of moving in certain directions toward the goal/exit.  These probabilities are 

set based on experimental information.  The four probabilities consist of 1)  the 

probability of moving one cell closer to the goal (P1), 2) the probability of moving one 

cell further away from the goal (P-1), 3) the probability of moving to a cell that is the 

same distance away from the goal (P+0), and 4) the probability of staying in the same 

place (P0).  The mean speed toward an exit is given by the following equation (2.11): 
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In equation (2.11), v is the velocity, h is the height of the grid cell, ∆t is the time 

step, and P1 and -1 are the probabilities established in the previous paragraph.  This 

calculation assumes that movement in direction 1 is directly towards the exit, but again, 

the error is 13.5%, as noted earlier.  EGRESS allows the user to input the unimpeded 
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speed of a particular group as a percentage of the default movement speed, in order to 

simulate injured or disabled occupants.  The default movement speed in EGRESS is 0.9 

m/s, along with various other parameters of standard deviations for the velocity and 

times, based on work of Predtechenskii and Milinskii31. 

Flow in crowds 

EGRESS models crowd movement based on the collision rule.  The simplest 

method of applying this rule is to leave an occupant in their current cell if the proposed 

move is blocked by another occupant.  EGRESS uses this similar rule, except that a 

random alternative adjacent cell is tried and if unoccupied, the person moves into that 

cell.  The first option calculates the speed as a function of density proportional to (1-D) 

and the second alternative option calculates a speed as a function of density proportional 

to (1-D/5).  This EGRESS method of calculating flow as a function of density compares 

well with Predtechenskii and Milinskii walkways, Pauls, and Fruin data.  Also based on 

work by Predtechenskii and Milinskii, EGRESS adds additional “haste factors” for speed 

movement of 1.5 for emergency movement and 0.6 for unconcerned crowd movement. 

 

Output:  Visualization of congestion points, bottlenecks, merging flows, etc.  The 

visualization tracks the position of each individual throughout the simulation. 

 

Use of fire data:  EGRESS provides a way for the user to input fire scenario data.  The 

plans for the building, which are already drawn, can be edited at different times and the 

results can be saved to the “scenario file.” 
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Import CAD drawings:  The structure of the building to be modeled can be designed on 

screen, as well as the position of the occupants. 

 

Visualization capabilities:  2-D visualization is possible. 

 

Validation studies:  In the 2002 EGRESS publication, four specific validation examples 

are featured.  The four validation examples were the following: 

• A series of competitive evacuation drills were performed using a Trident aircraft.  

Competitiveness stemmed from the fact that the first 30 evacuees received a monetary 

reward.  The occupants either evacuated via the main exit (Type 2) with varying door 

width or through the overwing exit (Type 3). 

• A double-decker bus was evacuated, and the evacuees were aware that a trial was 

being completed.  Smoke capsules were used and the driver ordered the evacuees to 

leave the bus. 

• Two theaters were evacuated during the Tukuba Exp in 1985.  These seated 424 and 

500 people. 
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The results are shown in Table 2.12: 

Table 2.12:  Validation results for the EGRESS model 

Evacuation Time (seconds) Validation Case 
Observed EGRESS 

Variation 

Trident (main) 24 33 +38% 
Using EGRESS default emergency speed 22 -8% 

Trident (overwing) 53 25 -53% 
Bus 83 65 -22% 

SU Pavilion 66 86 +30% 
SH Pavilion 160 133 -17% 

 

The range of error is approximately ±20-30%, except where specific features were not 

modeled, according to the developer.  Also, crowding was well modeled.  Lastly, the 

Trident aircraft example provided a better result when EGRESS was equipped with the 

emergency speed, since the experiment was competitive in nature.  

One thing should be noted is the length of the evacuation times in each 

comparison.  They range from 0.5 to under 3 minutes.  With short evacuation times, a 

difference of 9 seconds, such as shown in the Trident (main) case, will give a 38% 

variation.   This is calculated by taking the different in the evacuation times and dividing 

the difference by the observed evacuation speed.  If that observed speed is a lower 

number, even a small difference, such as 9 seconds, will show a significant percentage in 

variation.   The author added this paragraph to put the last column’s (Variation) values 

into context. 

 

Special features: 

• Counterflow – Yes, the model can specify emergency personnel to move towards the 

fire as a goal. 
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• Manual exit block/obstacles – Yes, the user can add obstructions to the building. 

• Fire conditions affect behavior?  Input by the user in a scenario file allows the user to 

simulate fire conditions.  The drawn building plans are edited at different times with 

hazard information. 

• Defining groups – Yes, the model only recognizes groups with different goals and 

movement speeds. 

• Disabilities/slow occupant groups – Yes, the user can input a percentage to be used 

from the default unimpeded walking speed. 

• Delays/pre-movement time – Yes, both response delays and decision making delays 

are simulated. 

• Toxicity of the occupants – Yes, but infrequently used. 

• Route choice of the occupants/occupant distribution – Shortest route, which can be 

altered due to behavioral aspects of the evacuation. 

 

Limitations:  The model developers state that there are few practical limits on the size of 

the simulations because the model can handle several thousand occupants and plan areas 

of many km2.   

_____________ 

Section 2.22 EXITT113,114: 

Developer: B.M. Levin, NBS, U.S. 

 

Purpose of the model:  The purpose of this model is to simulate occupant decisions and 

actions in fire emergencies in small residential buildings.  The decision rules used by the 
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model were designed to resemble decisions made by occupants during a fire emergency.  

These decision rules are based on: 

• Judgment by the author 

• Case studies of residential fires 

• A limited number of controlled experiments 

 

Availability to the public for use:  This model is available for public use through the 

NFPA. 

 

Modeling method:  This is a behavioral model. 

 

Structure of model:  This is a coarse network system.  The building is made up of nodes 

used to represent rooms, exits, and secondary locations within a room, and the arcs are 

the distances between the nodes.   

  

Perspective of model and occupant:  The model views occupants as individuals by 

assigning each individual characteristics as well as tracking their movements throughout 

the simulation.  The occupant characteristics input into EXITT are age, sex, normal travel 

speed, whether or not the occupant needs assistance during the evacuation, whether or not 

the person is asleep, room location, and difficulty of waking up, if the person is sleeping. 

The occupants also have an individual view of the building, due to their choice in 

exit path.  The occupants’ moves throughout the building are based on a shortest path 

algorithm included in EXITT.  During each action of the occupant, the route taken to the 
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destination is via the shortest path.  This algorithm assigns penalties to certain paths due 

to heavy smoke or having to leave via windows.  In certain circumstances, the occupant 

is left to choose the exit with the lowest number of penalties or demerits.  Demerits work 

in the following way:  each meter traveled is assigned 1 demerit, leaving through a 

window is assigned 100 demerits, and traveling through “bad” smoke is given 200 

demerits.  In some situations, all routes can become blocked, which will leave occupants 

trapped in the residence. 

 

Occupant behavior:  Rule-based or conditional behavior.  One way that occupants make 

decisions is based on the optical density of the smoke in the upper layer using the 

equation for psychological impact of smoke, S (equivalent to the equation used in 

EXIT89).  S = 2*OD*(D/H) where OD is the optical density of the upper layer, D is the 

depth of the upper layer, and H is the height of the room.  The following decision rules 

are incorporated into the model: 

• Occupants do not move to a node where S>0.5 (or into a room where S>0.4) unless 

the (H-D) is at least 1.2 meters (the occupant can crawl) 

• Occupants increase their travel speed by 30% after they encounter smoke of S>0.1 

• Occupants stop investigating if they are in a room where S>0.05.  They will stop 

investigating before entering a room where S>0.1 

• If the occupant is in a room where S>0.1, he/she will respond more quickly and 

believe the fire is more serious. 

• Penalties and demerits are assigned to a route where S>0.4 
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The occupants are assigned certain characteristics for a simulation and those are 

age, sex, normal walking speed, whether or not the occupants have special needs, 

whether or not the person is sleeping, room location, and difficulty of waking up. 

There are two types of occupants within the model, those fully capable when 

awake and those who are in need of assistance to evacuate the building.  Decision rules 

apply only to the first group, and the latter group only follows those decisions and 

movements made by their rescuers.   

Capable occupants become aware of the fire through cues, such as the sound of a 

smoke detector, odor of smoke, visible smoke, and visible flame.  The model follows a 

basic equation for if and when an occupant will begin responding to a cue, and suggests 

the work of Nober115 is the formulation of this equation.  Equation 2.12 is the cue 

equation, which assumes that the occupant’s response is a function of the sum of impacts 

from sensory cues: 

T = 70 – 4(C-20) and C = (A-N) + X1 + X2 + X3 + X4 (2.12) 

 Where T is the delay time before beginning the first action, C is the sum of 

sensory impacts on the occupant, A is the sound intensity of the smoke detector as heard 

by the occupant, N is the background noise, X1 is the impact of an occupant seeing flame, 

X2 is the impact of the occupant smelling smoke, X3 is the impact of an occupant seeing 

smoke, and X4=0 if occupant is sleeping and 15 if the occupant is awake.  X1 and X3 = 0 

if the occupant is asleep.   

EXITT normally assigns investigation as the first action of the occupant.  

Exceptions to this include if an occupant has completed investigation, if there is bad 

smoke in the room, if the occupant has been alerted by another who has seen bad smoke, 
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or if the occupant is an adult female with an infant that needs help.  The occupants have 

other alternative actions in the case that the exceptions apply (in this specific order) 

which are help an occupant in the same room, help an occupant in a different room, 

investigate, and egress.  Occupants over age 10 act in the same way as an adult would.   

Any delay time, decision time, and time to perform actions depend on the 

occupant characteristics, fire environment, and the impact of the fire cues onto the 

occupants.   

An addition to the model includes the option for users to override the decision 

rules and study the effect of alternative decisions. 

 

Occupant movement:  As mentioned earlier, a normal walking speed is assigned to each 

occupant by the user, and throughout the simulation, speeds are altered in the following 

way: 

• 30% faster than normal if the occupant considers the fire to be serious 

• 50% of normal speed if the occupant assists another, and 30% faster than this 

adjusted value if the occupant considers the situation to be serious. 

• 60% of normal speed of the smoke is bad (S>0.4) and the (H-D) (depth of lower 

layer) is less than 1.5 m 

 

Output:  The output includes the number of occupants out of the building, those trapped, 

and the total evacuation time.  The actions of individual occupants at all time periods 

throughout the simulation are also included in the output. 
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Use of fire data:  EXITT is designed to import output from FAST to simulate smoke 

throughout the building.  This assumes a 2-layer smoke distribution.  EXITT also accepts 

input of smoke density in the upper layer and the height of the two layers in each room at 

each time period.   

 

Import CAD drawings:  No, CAD drawings of the building cannot be imported into 

EXITT.   The building is described by providing the number of rooms, nodes, and exits, 

the height of each room, the room location of each node, whether the exit was a door, 

window, etc., and the distances between the nodes.  If a window cannot be used for 

evacuation, it is not included into the model.   

 

Visualization capabilities:  The movement of the occupants can be displayed graphically 

on the computer screen. 

 

Validation studies:  None noted. 

 

Special features: 

• Manual exit block/obstacles – Yes, if smoke is very heavy (which can be input by the 

user) 

• Fire conditions affect behavior?  Yes, these can be imported from FAST or user-

defined (OD and smoke layer heights) per time period. 

• Defining groups – Yes, capable and needs assistance. 

• Disabilities/slow occupant groups – Yes. 
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• Delays/pre-movement time – Delays are associated with the activities during a 

preparation and response time. 

• Route choice of the occupants/occupant distribution – Route choice is dependent on a 

list of information, many of it conditional to the environment, during the evacuation 

as well as the familiarity with the building.   

 

Limitations:  This model is used only for residential buildings.  Occupants respond to 

smoke conditions only, not toxicity or heat.  Also, many of decision rules are based on 

author judgment. 

_______ 

Section 2.23 VEgAS116,117,118: 
Developer: G.K. Still, Crowd Dynamics Ltd., UK 

 

Purpose of the model:  The purpose of this model is to simulate human behavioral 

response under stress conditions and through the fire environment, monitoring toxicity 

levels and physical containment.  All occupants and components of the building operate 

in “real-time” in a “virtual reality (VR) world.” 

 

Availability to the public for use:  Unknown.  Myriad (described in Section 2.28), a 

macroscopic evacuation model, has seemed to replace the use of the model by Crowd 

Dynamics, Ltd. 

 

Modeling method:  This is a behavioral model  
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Structure of model:  This is a fine network system.   

  

Perspective of model and occupant:  The model views the occupants as individuals.  

Each occupant or “human character” is programmed to respond to the following: 

• Proximity to fire/smoke/temperature 

• Time from the initial alarm 

• Proximity to the exit 

• Behavior of their neighbors 

Each occupant has intelligence and a number of choices during the evacuation. 

According to Gwynne and Galea33, the user specifies a defined route to the exit, 

instead of modeling wayfinding capability.  The route is dynamically affected by the fire 

environment, as shown in the VEGAS diagram. 

 

Occupant behavior and movement:  The occupant behavior is artificial intelligence, 

which involves simulating the individual thought processes.  The behavior/movement 

processes are shown in Figure 2.21. 
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Figure 2.21:  The VEgAS model (116, p. 42) 

The model can use such input as the products of combustion in the building 

spaces (fixtures, finishes, and furnishings), the fire growth rate, the effect of opening and 

closing doors, the effect of smoke, toxicity to the occupants, and smoke extraction 

systems to simulate the evacuation.  Each occupant is programmed to respond to the 

proximity to the fire environment (fire, smoke, and temperature), the time from initial 

alarm, proximity to the exit, and the behavior of his/her neighbors.  VEGAS uses a series 

of programmable events (by the user) to trigger the occupant respond/ignore cycle.   
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Within VEGAS, behavior is simulated as a chaotic process.  The theory of “anti-

chaos” is used to outline the order in which chaotic systems can develop.  The developer 

uses the example of bird colonies to explain further.  When part of a closer-packed group, 

bird colonies display group characteristics of ordered societies, and yet have random 

behaviors individually.  The developer notes that “the ‘order of chaos’ theory explains the 

behavior as the net effects of complex decision making processes having a finite 

probabilistic outcome for the group as a whole.”  According to Gwynne, the model 

applies behavior rules dependent upon 1) an objective/goal, 2) a set of constraints (the 

occupants attempt to maintain a minimum distance between themselves and others), and 

3) a motivation (the occupants attempt to maintain unimpeded velocity).   

VEGAS also uses “proximity logic” to modify behavior.  Instead of calculating 

movement speed based on density, the model simulates movement speed based on 

“proximity logic,” which is the location of the occupant with respect to other objects in 

the simulation.  Also, when a group of occupants move toward an exit, the occupants who 

have encountered that group will “flock” in the same direction, known as the flocking 

algorithm.  The model also includes an effective width model.   

The exact method for applying both techniques was not expanded upon. 

 

Output:  Virtual reality simulation of the evacuation. 

 

Use of fire data:  VEGAS models fire effects, but it is unclear how the fire information 

is input into the model (it seems that this information can be fed in from a CFD fire 

model). 
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Import CAD drawings:  The user can import DXF files (obtained from CAD) directly 

into VEGAS/VR environment. 

 

Visualization capabilities:  3-D visualization is possible. 

 

Validation studies: None found. 

 

Special features: 

• Manual exit block/obstacles – Yes, the user can add obstructions to the building. 

• Fire conditions affect behavior?  Yes, fire conditions can be simulated but it is 

unclear how the effects are input into the model. 

• Defining groups – Yes, group behavior is modeled. 

• Delays/pre-movement time – Yes, the assumption is that delays are incorporated in 

the individual checks made (proximity check, health check) as well as the ability for 

the occupant to investigate the situation before evacuating. 

• Toxicity of the occupants – Yes. 

• Route choice of the occupants/occupant distribution – User-defined. 

 

Limitations:  Some of the behavioral factors have not been calibrated with real life data. 

_____ 
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Section 2.24 E-SCAPE119: 

Developer: E. Reisser-Weston, Weston Martin Bragg Ltd, UK 

 

Purpose of the model:  The purpose of this model is to view evacuation in real time, 

identify bottlenecks in the building configuration, and to gain a probabilistic view of the 

emergency scenario by running the model several times.  This model has been complied 

from studies carried out on emergency evacuation from over 30 years ago. 

 

Availability to the public for use:  The availability of the model is unknown at this 

time.   

 

Modeling method:  This is a behavioral model. 

 

Structure of model:  This is a coarse network system.  Each room or area in a room is 

represented by a node, and the arcs connect these as well as represent the distances 

between the nodes. 

  

Perspective of model and occupant:  This model seems to view the occupants with an 

individual perspective.  It is unclear whether or not the user inputs individual 

characteristics of the occupants, but it seems that the model recognizes individual 

responses to the evacuation environment, according to their Performing Shaping Factors 

(PSFs). 
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The occupants have an individual view of the building, because their choice of 

egress route is affected by the evacuation environment and PSFs.  The occupants’ choice 

of route to the exit is affected by the distance of the occupant to the exit, the frequency of 

use of the exit during normal situations, and the signage of the route. 

 

Occupant behavior:  The model attempts conditional behavior.  The model incorporates 

the method of Hierarchical Task Analysis (HTA), which involves sorting evacuation into 

individual tasks and then decomposing these tasks into sub-tasks until the appropriate 

level of analysis has been reached.  Factors of the environment determine the probability 

of an individual carrying out certain tasks during the evacuation.  E-SCAPE recognizes 

the following four factors that shape an evacuation (these are known as Performing 

Shaping Factors – PSF): 

1. Structural PSF:  The organization of the work environment, such as physical 

characteristics, rules, hierarchies 

2. Effective PSF:  The emotional, cultural, and social factors that affect decision-making 

during an evacuation 

3. Informational PSF:  The information available to occupants from direct collection or 

its communication 

4. Task and Resource Characteristics PSF:  The tasks being carried out by the occupants 

that may in turn affect their ability to react to certain cues/stimuli. 

The developers claim that these factors were successful in describing the factors in an 

evacuation after searching through case studies and experiments in egress.  Possible tasks 
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during an evacuation are plotted in a hierarchical chart, and an example of this is 

provided in Figure 2.22.   

 

 

Figure 2.22:  Examples of possible evacuation tasks for the E-Scape model (119, p. 3) 

The decision on whether or not to evacuate depends on how serious the occupant 

perceives the threat and the warning/fire cue.  If the occupant believes the warning to be 

genuine, this results in the immediate action of acting.  On the other hand, if the cue is 

considered to be unimportant, the occupant will wait.   

To analyze the diagram further, once the decision has been made to act, the 

decision to carry out the preparation activity depends on the PSFs in the environment.  

For example, an occupant is more likely to “Deal with the danger” if 1) the location of 

the stimulus is known (informational), 2) the individual is male (effective), 3) the 

occupant has an organizational responsibility to the building (structural), and procedures 

are provided for such instances (task and resource characteristic).  E-SCAPE accounts for 

Emergency 
Behavior 

1)  Act 2) Investigate 3)  Wait 

Prepare Egress Indirect 
Info. 

Direct 
Info. 

Deal with 
Danger 

Assist 
Others 

Inform 
Others 

Dress/Gather 
valuables 



183  

the effect of performing these actions by varying the time it takes to initiate the 

evacuation, not the actual action.  This is done to reduce the processing power of the 

simulation, but may take away from the accuracy of the egress times.  Gwynne states that 

“it is not obvious as to how the individual can then have any effect on the environment 

within such a system, or whether the success or failure of actions is accounted for”33.   

By defining the building type, a hospital for example, will prompt certain 

structural, effective, informational, and task and resource characteristic PSFs, which then 

affect the responses of the occupants and the routes chosen to evacuate the building.   

The delay time of space within E-SCAPE is affected by the number of people in a 

node, since the model assumes that group conformity occurs at certain limits.  Also, delay 

time is also affected by the movement of others, the building type, smoke, and training.  

With the movement of others, the probability of evacuation increases as more people 

leave the room.  Depending upon the building type, organizational responsibility may 

encourage occupants to tell others to leave, which in turn decreases the affect of group 

conformity.  The presence of smoke acts in decreasing delay time and will act as an 

additional cue in the evacuation.  Lastly, special training and fire drills have a different 

effect on the occupants.  If the occupants have experiences both special training and fire 

drills, these two effects cancel each other out and the delay time remains unaffected.  If 

only special training is received, delay time is reduced, and if only fire drills are 

experienced, delay time is increased. 

 

Occupant movement:  The occupant route choice is affected by the distance of the 

occupant to the exit, the frequency of use for the exit during normal hours, and the 
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signage along the route.  Depending upon the level of use of the exit, E-scape assigns a 

weighting which effects evacuation from the building.  The weightings of each exit are 

then multiplied by the distance of the occupant to the exit, which determines the overall 

weighting for the exit for each occupant.   

These delay times and exit choice behaviors were combined with a dynamic 

movement model120 to produce an evacuation model.  Through the use of Pauls’ model, 

people are moved throughout the building. 

The user defines the dimensions of the building through nodes and arcs, the 

position of the occupants in the structure, and describes the type of structure and exit 

choice factors.   

 

Output:  The output includes the visualization of the evacuation, identification of 

bottlenecks, and if the model is run a number of times, a probabilistic picture of the 

evacuation scenario. 

 

Use of fire data:  Environmental conditions of the building are input by the user via the 

environmental conditions window.  The user can specify if there is smoke in the building 

and if it spreads to the floor, entire building, or remains in the room of origin. 

 

Import CAD drawings:  No, nodes and arcs are input into E-scape. 

 

Visualization capabilities:  Yes, 2-D visualization is possible 
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Validation studies:  None noted.  The example of the offshore platform shows only that 

E-scape can represent the geometry. 

 

Special features: 

• Fire conditions affect behavior?  Yes, fire conditions are input by the user. 

• Defining groups – Yes. 

• Delays/pre-movement time – Yes, delays are incorporated by the model because it 

varies the time it takes to initiate evacuation. 

• Route choice of the occupants/occupant distribution – The route choice is dependent 

upon distance to exit, frequency of use of exit, and signage. 

 

Limitations:  Still some questions left unanswered about model. 

_____________ 

Section 2.25 BGRAF121,122,123,124: 

Developer: F. Ozel, University of Michigan, U.S. 

 

Purpose of the model:  The purpose of the model is to simulate cognitive processes 

during evacuation with the use of a graphical user interface.  The developer recognizes 

the model BFIRES-2, of which this model seems to be very similar. 

 

Availability to the public for use:  The model is not publicly available at this time.  The 

developer is working on putting together a CAD-based version of the model, and states 

that when that is finished, the model might become available. 
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Modeling method:  This is a behavioral model. 

 

Structure of model:  This is a fine network system.  Each node, similar to BFIRES, 

represents an x,y point on the floor plan.  The preference levels are given to spaces/nodes 

that affect the movement of the occupant throughout the situation.  “Paths” are the 

lines/distances that connect the nodes to one another. 

  

Perspective of model and occupant:  This model recognizes individuals.  The model 

also keeps track of the position (x,y coordinates) of the occupants throughout the 

simulation.  The properties of the occupants are both physical (walking speed, mobility, 

alertness, smoke tolerance, and initial location) as well as psychological.  Examples of 

these psychological properties are the goals that the occupant sets for himself/herself and 

the probability of these occurring, the threshold of stress, and the familiarity. 

The occupants also have an individual view of the building because the occupant 

travels a particular route resulting from a sequence of actions that depend on the 

preference levels, environment, and the other occupants in the evacuation. 

 

Occupant behavior:  The model attempts conditional behavior.  The model incorporates 

an episodic structure which is similar to BFIRES.  Each episode is identified by a specific 

goal of each occupant.  When the current goal changes, a new episode begins.  The 

decision process consists of choosing the next goal, which triggers a new set of actions 

for the occupant to choose from.  There are also such things as goal modifiers, which are 
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physical, social, or individual factors that can prompt a change in the current goal.  

Following all descriptions of the concepts is a diagram of the BGRAF system (Figure 

2.23). 

Each portion of Figure 2.23 is described below: 

Action library:  This “library” contains likely actions of occupants during an evacuation.  

Action sequences are defined by the goal they serve.  Examples of actions are stay in 

place, go to the door, go to the fire, go to the alarm, go to the exit, go to the window, go 

to an impaired person, turn back, open a door, ventilate a room, etc. 

Goal modifier library:  This “library” includes the factors that influence or trigger a 

change in goal.  The developer notes that these are obtained from studies of actual fires, 

but no references are included.  Once an occupant reaches the threshold called 

“information buildup factor,” the current goal is changed.  Examples of goal modifiers 

are alarms, smoke detectors, usual noises, firefighter arrival, an impaired person, and 

smoke tolerance. 

Goal generator:  The model is provided with goals and their probability of occurring.  

Then, each goal is assigned an action set from the action library.  An example provided 

by the model developer is that if a goal of firefighting was chosen, actions such as go to 

fire area, fight the fire, etc. may be assigned to this goal.  The same action can be 

assigned to more than one goal. 

Fire event:  The user introduces information about the fire environment into the model.  

The information involves the location of the fire and the spread of smoke throughout the 

space.  Subevents are scheduled into the model, such as spread of smoke to a location at 

the fire floor, spread of smoke to another floor, alarm goes off, fire fighters arrive, etc.  
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While these events are scheduled, local spread rates are entered interactively during the 

simulation.  The developer describes the simulation as interactive, allowing the user to 

point to areas on the screen and provide different values for the environment.   

Physical environment:  The user also enters into the model a description of the building 

and the fire protection aspects, such as location of alarms, status of doors, etc.  The 

building configuration is also sketched interactively and the output is graphical. 

Route modifier library:  The model assigns preference levels to spaces along different 

routes in the building.  The criteria existing for these preference levels are the following:  

high priority is given to spaces with “architectural and functional differentiation” because 

of the belief that occupants have created stronger mental images of these areas; simple 

paths (instead of complex) are associated with a high probability of making a rational 

decision; higher preference is given to exits with perceptual access; and priority is 

indifferent to the introduction of exit signs. 

People characteristics:  Cognitive properties, such as preference levels, are assigned to 

each occupant group.  Other characteristics include walking speed, asleep or awake at 

time of fire, and smoke tolerance.  

Goal Initiator:  This is the central unit that checks the goal modifiers to see if a goal 

change is needed for each individual at each time frame.  If so, the next goal is chosen 

stochastically.  Then, the goal is passed to the action generator. 

Action Generator:  The individual person is moved by this generator according to the 

action.  The effect of the individual action on the fire event, building, and other individual 

is transferred to the goal modifiers.   
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Figure 2.23: Conceptual Structure of the BGRAF Model (123, p. 200) 

 

Occupant movement:  The user determines the total time that the simulation will run.  

The movement is not explained in detail, other than that the user specifies a specific 

walking speed of the individual, occupant mobility status, alertness of the occupant, 

smoke tolerance, and the occupant’s initial location in the building.  It is not clear how 

congestion is modeled. 
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Output:  The following output is provided by the model: 

• Evacuation time 

• Initial distance from exit 

• Number of people that successfully escaped the fire 

• Length of exposure to smoke 

• Action statistics and order actions 

Tabular output summarizes the goals pursued by the occupants and the actions that each 

occupant has taken.  Also output are the distances traveled, exits used, and current 

locations of each occupant. 

 

Use of fire data:  The model can accept such user input as the start time of the fire, the 

area of origin, and the fire spread rate.  Or, data can be imported from FAST.  The fire 

spread is calculated and simulated for every time frame.  Also, occupant decisions, such 

as opening or closing a door, affect fire and smoke spread throughout the building.   

 

Import CAD drawings:  The CAD-based version of BGRAF is in development.  

Currently, the user can sketch out the building geometry using the interactive interface of 

the model. 

 

Visualization capabilities:  It seems like this is an option because of the mention of an 

interactive simulation and high resolution output graphics. 

 



191  

Validation studies:  A validation attempt was performed on BGRAF with the use of data 

from a Nursing home fire.  Although 91 occupants were on the fire floor, the developers 

obtained only 22 occupants from which they gained information.  These 22 occupants 

also were not able to supply exit times, so the validation was focused on behavioral 

activities and decisions.  From the 10 runs performed on the nursing home, the model 

identified the correct proportions of occupant activities 80% of the time with a 5% level 

of significance.   

 

Special features: 

• Fire conditions affect behavior?  Yes, fire conditions are input by the user or from 

FAST 

• Defining groups – Yes, the preference level can be assigned by occupant group. 

• Disabilities/slow occupant groups – Yes, the walking speed depends on the physical 

status of the occupant (ambulatory vs. disabled). 

• Delays/pre-movement time – Yes, the model accounts for behaviors occurring before 

exiting the building. 

• Toxicity of the occupants – Yes, per specified smoke tolerance factor, similar to 

BFIRES. 

• Route choice of the occupants/occupant distribution – Route choice is dependant 

upon occupant characteristics and environmental conditions. 

 

Limitations:  No mention of processing time or capacity of model.   

_____________ 
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Section 2.26 EvacSim125,126: 

Developer: L. Poon, at the Victoria University of Technology, AU 

 

Purpose of the model:  The purpose of this model is to simulate a variety of complex 

human behavioral activities, deterministically, probabilistically, or both.  The model is 

capable of modeling a large population, but at the same time considers human behavior at 

the individual level.  An occupant can be modeled to interact with the fire environment 

and/or other occupants, depending upon the occupant’s specified level of severity. 

 

Availability to the public for use:  This model is not released publicly, but instead is 

used internally at the present time. 

 

Modeling method:  This is a behavioral model. 

 

Structure of model:  This is a fine network system.  Originally the grid structure was 

based on zones of the building because it was designed to interface with a zone fire 

model.  However, the user has the ability to refine the grid structure to match the intended 

resolution of the analysis.  The developer stated that the user can “divvy up the zones [on 

the floor plan] into smaller zones”126 and the only limit to this is the memory of the 

computer running the simulation. 
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Perspective of model and occupant:  The model views the occupants as individuals 

because each is given an occupant profile which records the person’s physical attribute 

and his/her building knowledge attribute.  Typical occupant profiles are wardens, 

residents, visitors, and disabled.  Occupants are also individually tracked by the output of 

the model. 

The occupant’s view of the building is also an individual perspective.  An 

occupant’s exit choice is based on the following factors: 

• The orthogonal distance between the occupants and exit (based on L-shape approach) 

• Length of the cue at the exit 

• Whether or not the exit is locked 

• The familiarity of the occupant with the exit 

• The familiarity of the occupant with the floor plan 

• Whether or not the exit is a designated exit (equipped with EXIT signs) 

• Whether or not the exit is blocked by the effects of fire 

• Action of the occupants (evacuating or seeking fire source, seeking another occupant, 

etc.) 

Many of these factors are local considerations to route choice.  Any additional 

distances traveled by the occupant (during actions, for example) are calculated from the 

exit points to the destination points to acquire minimum distances.   

 

Occupant behavior:  Rule-based or conditional behavior.  Human behaviour is 

simulated by EvacSim.  The input data for modeling human behaviour is organized in the 

following categories, shown in Figure 2.24: 
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• Severity scale – Each level; typically low, medium and high, correspond to a range of 

occupant responses 

• Physical scale – This scale is made up of a range of physical cues perceived by the 

occupant, such as smoke obscuration level and temperature.  Each scale is divided 

into subranges and these ranges correspond to a particular severity level.  For 

instance, air temperatures between 80°F and 100°F are low severity, temperatures 

between 100°F and 120°F are medium, and temperatures between 120°F and above 

are high severity.   

Occupant responses are 

distributed probabilistically on 

the basis of the occupant’s 

severity level.  Also, each 

response contains a series of 

activities that are 

probabilistically assigned.  Typical responses consist of Seek, Warn, and Protect, and 

typical activities for the Seek response include Investigate fire source, Search for others, 

Get fire extinguisher, etc.  Physical attributes of the occupant consist of the horizontal 

and stair maximum velocities, and the area occupied by the person.  If more than one 

response is assigned to an occupant profile, responses are weighted (to determine which 

one is chosen on a probabilistic basis) and also assigned repeatability (they can occur 

more than once).  The activities can also be given these attributes as well as a preparation 

time and response time.  If no weightings are given, the occupant will follow the line of 

activities as entered. 

Figure 2.24:  Individual occupant responses and actions     
(125, p. 684) 
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There is also an option of assigning familiarity of the building using either “exit 

familiarity” or “floor layout familiarity.”  In the first option, the occupant will only use a 

familiar exit unless they are blocked, and in the second, all exits are assumed to be 

familiar.  Building knowledge can also be shared among the occupants in the space, as 

well as fire knowledge. 

At the exit points of the building, the model follows the flow rate information, 

which is a function of density, specified in the SFPE chapter1 for doorways. 

There is no real limit to the definition of a character’s/occupant’s profile and the 

corresponding response profile.  All responses and activities are input by the user. 

 

Occupant movement:  Occupants in the simulation are static until they receive the 

appropriate cue to begin an activity (this activity does not have to cause movement).  The 

travel speed of the occupants throughout the building is affected by the occupant density.  

EvacSim uses a variable bilinear travel speed model, similar to the invariable model 

proposed by Nelson and Mowrer1, based on Fruin30, Pauls127, and Predtechenskii and 

Milinskii31.  Travel speed for disabled occupants also use the same speed model, but 

incorporate a different horizontal and stair maximum velocities.    

Occupant movement within the enclosure adopts the Takahashi’s L-shaped 

approach44.  This approach describes movement in an orthogonal path towards an exit 

due to obstacles that may be present in the space.   

 

Output:  The output includes lines describing actions of the occupants at all times when 

an action/movement occurs.  A typical line of output lists the simulation time, floor level, 
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enclosure number, occupant number, occupant location in global coordinates, population 

severity level, and a description of the event. 

 

Use of fire data:  Changes to the environment in EvacSim can be entered by the user as 

input into the model.  The user can specify the time, the room number, and the 

environmental conditions.  There is no limit to the amount of information that the user 

can enter.  The conditions to be entered are usual zone model outputs, such as 

temperature and layer height. 

 

Import CAD drawings:  No, CAD drawings of the building cannot be imported into 

EvacSim.  Instead, the wall, floor, and ceiling boundaries are defined as well as the 

openings in any of the boundaries (doors and windows).   

 

Visualization capabilities:  No visualization capabilities. 

 

Validation studies:  The validation of EvacSim is ongoing.  One study was performed in 

the mid 1980s, in an attempt to use real data from a 12-story, partially-occupied building. 

Because of the sparse amount of occupants, the evaluation of validity was limited to 

behavioral activity, not evacuation times.  The developer explained that the validation of 

EvacSim was a lengthy process and was being completed in stages. 

 

Special features: 

• Manual exit block/obstacles – Yes, doors can be simulated to be locked. 
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• Fire conditions affect behavior?  Yes, and fire conditions are user-specified.  The user 

specifies the time, room number, and environmental conditions (layer height, 

temperature, etc.) to be captured in the simulation.  There is no limit to the length or 

detail of the input. 

• Defining groups – Yes. 

• Disabilities/slow occupant groups – Yes. 

• Delays/pre-movement time – Delays are associated with the activities, preparation 

and response times. 

• Elevator use – Yes, these may be used by occupants with disabilities.  The following 

actions are taken on by an elevator during a simulation: 

o Call – request to use the elevator 

o Ascend – elevator travels to request 

o Load – occupants get into the elevator 

o Wait – doors close 

o Descend – elevator travels to discharge level 

o Unload – occupants get out of the elevator 

o Free – elevator is idle 

• Use of emergency management modeling – The EvacSim model can take into 

account either a warden system or emergency warning system.  The actions of fire 

wardens during an evacuation are determined by the user.  Also, the wardens can be 

assigned the unique action of a “room-to-room” search on their floor level.  On the 

fire floor, wardens relay the message to “leave immediately” to the occupants.  On the 

other levels, the wardens hold their occupants until receiving instructions from the 
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master warden to begin evacuation (this is the phased evacuation mode).  The floors, 

instead of wardens, can be equipped with an emergency warning system, and the 

occupant’s decision to evacuate will depend on his/her defined cues (such as the 

information broadcast over the system). 

• Route choice of the occupants/occupant distribution – Route choice is dependent on a 

list of information, many of it conditional to the environment, during the evacuation 

as well as the familiarity with the building.   

 

Limitations:  EvacSim needs more development and a complete validation.  According 

to the developer, the model is not presently modeling some behavior related to 

residences, and he would like to integrate a fire model. 

_____________ 

Section 2.27 Legion128: 

Developer: Legion International, Ltd., UK 

 

Purpose of the model:  The purpose of this model is to predict crowd behavior by 

simulating how individual groups of people behave in public places.  Aside from the 

occupant input for each person, additional input can be provided to the model such as 

local queuing systems, service rates (the time it takes to serve one person at a ticket 

booth), obstructions (furniture, columns), typical distribution of people along train 

platforms, train capacities, etc. 
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Availability to the public for use:  This model is available through Legion International 

Ltd. 

 

Modeling method:  This is a behavioral model. 

 

Structure of model:  Unknown. 

  

Perspective of model and occupant:  The model views the occupants as individuals.  

Each individual in the model is considered to be a virtual person and is simulated 

accordingly.    

The occupant’s view of the building is also an individual perspective.  This virtual 

person moves in a realistic manner.  This person also recognizes objects such as stairs, 

escalators, signs, queues, etc. and adjusts their behavior accordingly. 

 

Occupant behavior:  Rule-based or conditional behavior.  Legion includes various 

social, physical, and behavioral characteristics for the virtual people.  The social 

characteristics include gender, age, and culture which Legion states shape typical 

movement preferences.  The physical characteristics addressed are body size.  And, the 

behavioral characteristics include memory, willingness to adapt, and preferences for 

unimpeded walking speeds, personal space, and acceleration.  These characteristics make 

up a profile for each person and are based on observed distributions of actual pedestrians.   
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Occupant movement:  Occupant movement is based on empirical research performed on 

the study of crowd movement and behavior.  Research teams have taken and studied 

video footage crowd behavior.  Legion128 claims to have overturned key assumptions on 

behavior and movement in crowds.  They state that “people's circulation through a space 

is determined not only by their density but also by the specific features of the local 

geometry”128.  Movement is affected not only by input variables chosen for each 

individual person, but also by factors such as knowledge of the environment and the 

person’s state of readiness.  These correspond to occupants’ interaction with signage and 

information points throughout the building. 

 

Output:  Bitmap and video files and the ability to choose the data output that is of 

interest; graphs or detailed metrics for individual and crowd experiences.  Examples of 

the output are the following: 

• Usage maps that show areas of congestions and regions where counterflow impedes 

movement 

• Graphs of times to exit for certain groups, time spent by individuals in high-density 

areas, graphs of levels of “frustration” experienced 

• Dynamic simulations 

 

Use of fire data:  Unknown. 

 

Import CAD drawings:  Yes, CAD drawings are imported into the model.  Also, the 

user can easily change spatial configurations in the building by using the Legion 
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software.  The user also inputs the following onto the CAD drawing in Legion; entrances, 

exits and route options, facilities (gates, waiting areas), scheduled events (train 

announcements, service times), and the arrival profile of the people and their desired 

destinations.   

 

Visualization capabilities:  2-D capabilities. 

 

Validation studies:  Not found. 

 

Special features: 

• Route choice of the occupants/occupant distribution – Route choice is based on user 

input variables for each occupant such as signage and other path assumptions.  Routes 

are used by specifying an origin-destination matrix which simulates the variations in 

demands over a period of time.   

_____________ 

Section 2.28 Myriad117,118: 

Developer: G.K. Still, Crowd Dynamics, Ltd, UK 

 

Purpose of the model:  The purpose of this model is to assess the spatial dynamics 

required for a successful evacuation.  Myriad is also used to ensure compliance to codes 

and insurance assessment.  This is a macroscopic model, and because of this, Still states 

that the output does not depend on assumptions about the population incorporated in the 

model.  This collection of techniques supersedes the VEgAS and Legion systems. 
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Availability to the public for use:  This model is used by Crowd Dynamics for the 

client. 

 

Ideas and Applications:  Myriad117 is said to predict where congestion will occur in the 

building and its severity (via Level of Service30 degrees), flow rates, queues, travel 

distances, and times in order to “optimize” design.  When questioning the developer 

about the Myriad system, Still118 identified three basic steps used in the analysis process 

using Myriad.  First, Myriad measures the distance, width, ease of use, and directional 

changes from all points within the building space to the exits.  This is the analysis that 

ensures compliance to the codes.  Colors throughout the building’s egress routes are used 

to show evacuation aspects of the building, for instance, travel distance of various 

distances.  The building can be assessed with and without furniture, which can ultimately 

affect travel distances from certain areas of the space.  The occupant can enter the 

number of occupants within the building/space and Myriad will produce simulations, 

each beginning occupants at different places, in order to test building travel distances.   

 Second, Myriad identifies the various flow paths, interaction paths, and 

congestion areas.  These are ultimately factored into the “delays” in the egress process.  

The interactions and congestion paths within the model are also identified by certain 

colors throughout the building in this analysis.  Tables 2.13 – 2.16 below show the 

corresponding colors for each Level of Service (taken from Fuin’s30 data) for each 

building components (walkways, stairs, queues, and platforms).  The visualization 

software allows the client to view the density of the spaces in the building throughout the 
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simulation.  As another example of the capabilities of Myriad, through the use of 

hesitation maps, Myriad can highlight areas where occupants may hesitate, change routes, 

or require more information to direct them to a destination.   

Table 2.13: Fruin data and corresponding colors for density on walkways used by the Myriad model 
(www.crowddynamics.com) 

Area (sq m) Flow rate  

LoS A > 3.24  < 23 pmm  

LoS B 3.24 to 2.32   33 pmm  

LoS C 2.32 to 1.39   49 pmm  

LoS D 1.39 to 0.93   66 pmm  

LoS E 0.93 to 0.46   82 pmm  

LoS E < 0.46  < 82 pmm  

 

Table 2.14: Fruin data and corresponding colors for density on stairs (www.crowddynamics.com) 

Area (sq m) Flow rate  

LoS A > 1.85  < 17 pmm  

LoS B 1.85 to 1.39   23 pmm  

LoS C 1.39 to 0.93   33 pmm  

LoS D 0.93 to 0.65   43 pmm  

LoS E 0.65 to 0.37   56 pmm  

LoS E < 0.37  < 56 pmm  
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Table 2.15: Fruin data and corresponding colors for density in queues (www.crowddynamics.com) 

                       Area (Sq. Metres) 
LoS A   > 1.21 Free circulation   

LoS B 1.21 to 0.93 Restricted circulation   

LoS C 0.93 to 0.65 Comfort zone   

LoS D 0.65 to 0.28 No-touch zone   

LoS E 0.28 to 0.19 The Body ellipse   

 
Table 2.16: Fruin data and corresponding colors for density on platforms 
(www.crowddynamics.com) 

Danger Level 3.59 people per m2   
Jam Capacity  2.15 people per m2   
Desirable Max 1.08 people per m2   

 

Lastly, Myriad can be used in conjunction with Simulex to test egress rates.  This 

is shown in figures 2.25 and 2.26 and allows the user to visualize movement throughout 

the building. 

 

 

Figures 2.25 and 2.26: Simulex and Myriad visualization output for the same building (courtesy of 
www.crowddynamics.com) 
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 In certain situations, Myriad can be used to identify the most used spaces as well 

as identify potential wasted spaces.  This model can be applied to the design and 

management of many different occupancies, such as car parks, road networks, people and 

traffic, offices, sports stadia, malls, rail stations, and other complex spaces.  The key 

elements of Myriad as identified by Still are the following117: 

• The speed that operators can produce results 

• Ability to test different scenarios 

• Ability to evaluate compliance with relevant building codes for both normal and 

emergency use. 

 

Output:  Myriad assesses escape routes, times, number of interactions (delays), and 

determines the exit capacity based on the existing building geometry.   

 

Import CAD drawings:  Yes, CAD drawings are used significantly with this model in 

producing the network, spatial and egress route analyses.  Once the CAD drawing is 

imported into the model, the user must identify the scale of the building (this is done by 

clicking on two points and entering in the distance for that line).   

 

Visualization capabilities:  Yes, this is shown in Figures 2.25 and 2.26.  Myriad is a set 

of tools able to show overall congestion/density points as well as individual persons 

moving through the building (with the use of tools such as Simulex and STEPs). 
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Validation studies:  Validation was performed on the model through the development of 

Still’s PhD Thesis.  Also much work has been performed in third party modeling with the 

use of EXODUS, Simulex, etc.  

 

Summary 
 

This comprehensive overview of evacuation models covers details on 28 separate 

evacuation and crowd movement simulation tools.  However, due to lack of information 

in the designated categories of interest for certain models, three models are included in 

the review but will not be included in the following conclusion tables (Tables 2.17 

through 2.19).  These models are FPETool, Legion, and Myriad.   

FPETool is not included in the tables due to the fact that it is not primarily an 

evacuation model, but more so a total package fire model with an egress calculation.  It is 

included in the review for completeness.  However, since FPETool lacks many of the 

features that other egress models contained, it was determined unnecessary to include its 

features in Table 2.17 through 2.19.   

Also, Legion focuses primarily on crowd movement and behavior.  Legion is 

added to the review for completeness, but there is a lack of data on the model in the areas 

outlined as important in this categorization.  Because of the lack of data, this model will 

not be added to the conclusion tables 2.17 through 2.19.   

Lastly, since Myriad is very different from the other evacuation models, focuses 

on crowd movement, and lacks information on the important categories outlined in the 

review, it is also not included in the conclusion tables.  Because of the difference in 

modeling method as well as lack of detailed data on the inner workings of the model, 



207  

only the categories for which data was obtained are included in the Myriad write-up 

section.  

Tables 2.17-2.19 are included to organize the detailed data presented in Chapter 2 

in an easy to use format.  Table 2.17 details the overall organization of the categorical 

data for each model.  The abbreviations for Table 2.17 are explained here corresponding 

to each category.   

 
 
Purpose:  

(1) Models that can simulate any type of building  

(2) Models that specialize in residences 

(3) Models that specialize in public transport stations 

(4) Models that are capable of simulating low-rise buildings (under 15 stories) 

(5) Models that only simulate 1-route/exit of the building. 

 

Availability to the Public: 

(Y): The model is available to the public for free or a fee 

(N1): The model has not yet been released 

(N2): The model is no longer in use 

(N3): The company uses the model for the client on a consultancy basis 

(U): Unknown 

 

Modeling Method: 

(M): Movement model 
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(M-O):  Movement/optimization models 

(PB): Partial Behavioral model 

(B):  Behavioral model 

(B-RA): Behavioral model with risk assessment capabilities 

 

Grid/Structure: 

(C): Coarse network 

(F): Fine network  

 

Perspective of the model/occupant: 

(G): Global perspective 

(I): Individual perspective 

Each model is categorized by both the perspective of the model and of the occupant.  If 

only one entry is listed in this column, both the model and occupant have the same 

perspective. 

 

Behavior: 

(N): None 

(FA): Functional analogy 

(I): Implicit 

(R): Rule-based 

(C): Conditional 

(P): Probabilistic 
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(AI): Artificial intelligence 

 

Movement: 

(UC): User’s choice 

(D): Density 

(FA): Functional analogy 

(Ac K): Acquired knowledge 

(P): Potential 

(E): Emptiness of next grid cell 

(ID): Inter-person distance 

(Un F): Unimpeded flow 

(C): Conditional 

(OML): Other model link 

 

Fire Data: 

(N): The model cannot incorporate fire data 

(Y1): The model can import fire data from another model 

(Y2): The model allows the user to input specific fire data at certain times throughout the  

evacuation 

(Y3): The model has its own simultaneous fire model 

 

CAD: 

(N): The model does not allow for importation of CAD drawings 
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(Y): The model does allow for importation of CAD drawings 

(F): This feature is in development 

 

Visual: 

(N): The model does not have visualization capabilities 

(2-D): 2-Dimension visualization available 

(3-D): 3-Dimension visualization available 

 

Validation: 

(C): Validation against codes 

(FD): Validation against fire drills 

(PE): Validation against literature on past experiments (flow rates, etc.) 

(OM): Validation against other models 

(N): No validation work could be found on the model 

 

Tables 2.18 through 2.19 also organize data from Chapter 2, but specifically focus on the 

special features of each model. 
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Table 2.17:  Easy reference chart of egress models included in Chapter 2. 

 Model Purpose Available 
to public 

Modeling 
Method 

Grid/ 
Structure 

Perspective 
of M/O 

Behavior Movement Fire 
data 

CAD Visual Valid 

EVACNET4 1 Y M-O C G N UC N N N FD 
Takahashi’s 

Fluid 
1 N2 M-O C G N/FA FA-D N N 2-D FD 

PathFinder 1 N3 M F I/G N D N Y 2-D N 
TIMTEX 4 Y M C G/I N D N N N PE 

WAYOUT 5 Y M C G N D N N 2-D FD 
Magnetic Model 1 U M F I FA/I FA N N 2-D N 

EESCAPE 5 N3 M C G N D N N N FD 
EgressPro 5 N2 M C G N D Y2 N N N 

ENTROPY 5 U M/PB C G/I N Ac K, FA N N N OM 
STEPs 1 Y M/PB F I FA P, E N Y 3-D C 

PED/PAX 3 Y/N2 PB C G I D N Y 2,3-D N 
EXIT89 1* N1 PB C I I/C(smk) D Y1 N N FD 
Simulex 1 Y PB F I I ID N Y 2-D FD,PE 

GridFlow 1 Y PB F I I D N Y 2,3-D FD, PE 
ALLSAFE 5 N3 PB C G I Un F Y1,2 N 2-D OM 

CRISP 1 N3 B-RA F I R/C, P E,D Y3 Y 2,3-D FD 
ASERI 1 Y B-RA F I R/C, P ID Y1,2 N, F 2,3-D FD*- 

BFIRES- 2 4 N2/U B-RA F I R/C, P UC** Y2 N N N 
BldEXO 1 Y B F I R/C, P P, E Y1,2 Y 2,3-D FD 

EGRESS 2002 1 N3 B F I R/C, P P,D Y2 N 2-D FD 
EXITT 2 Y B C I R/C C Y1,2 N 2-D N 
VEgAS 1 N2/U B F I AI ID Y1? Y 3-D N 

E-SCAPE 1 U B C I R/C, P OML Y2 N 2-D N 
BGRAF 1 N1 B F I R/C, P UC? Y1,2 N, F 2-D? FD 
EvacSim 1 N1 B F I R/C, P D Y2 N N N 

*Especially for high-rise buildings; **User specifies # of time frames, an occupant moves to a grid point during each time frame; *-  Fire drills and sensitivity 
analyses on the model 
? indicates that a category is unclear or unknown 
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Movement models: 
Table 2.18.1: Movement models  

 
Characteristics/Model Magnetic 

Model 
EESCAPE EgressPro ENTROPY STEPs 

Avail to public U N3 N2 U Y 
Method Movement Movement Movement Movement/ 

PB 
Movement/ 

PB 
Structure Fine Coarse Coarse Coarse Fine 

Perspective of M/O Individual Global Global G/I Individual 
People Beh FA/I None None None FA 

Import CAD drawings N N N N Y 
Visual Simulation Y N N N Y 

Counterflow N N N N N 
Manual exit block N N N N, Y with 

improvements 
Y 

Fire Conditions N N Y N N 
Defining Groups Y N N N Y 

Disabl/Slow Occ grps Y N N N, Y with 
improvements 

Y 

Delays/Pre-movement 
(how) 

Y N Y N Y 

Rte. Choice 3 choices 1 route 1 route 1 exit Score 
Elevator use N N N N Y 

Toxicity to occ N N N N N 
Impatience/Drive N N N N Y 
Occ Distribution UC – 3 

choices 
1 choice only 1 choice only 1 choice Score/user 

chooses target 
Table 2.18.2: Movement models continued 
 

Characteristics/Model Evacnet4 Fluid PathFinder TIMTEX WAYOUT 
Avail to public Y N2 N3 Y Y 

Method Movement-O Movement-O Movement Movement Movement 
Structure Coarse Coarse Fine Coarse Coarse 

Perspective of M/O Global Global I/G G/I Global 
People Beh None N-FA None None None 

Import CAD drawings N N Y N N 
Visual Simulation N Y Y N Y 

Counterflow N N N N N 
Manual exit block N N N N N 
Fire Conditions N N N N N 
Defining Groups N N N N N 

Disabl/Slow Occ grps N N N N N 
Delays/Pre-movement 

(how) 
N Y N N Y 

Rte. Choice Optimal Optimal 2 Choices Split choice 1 route, 
flows merge 

Elevator use Y N N N N 
Toxicity to occ N N N N N 

Impatience/Drive N N N N N 
Occ. Distribution Optimization Optimization 

from rooms 
and to exits 

UC – 2 
choices 

User chooses 
flow split 

1 choice 
only 
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Behavioral models: 
Characteristics/Model PED/PAX EXIT89 Simulex GridFlow 

Avail to public Y/N2 N1 Y Y 
Method Partial Behavior Partial Behavior Partial Behavior Partial Behavior 

Structure Coarse Coarse Fine Fine 
Perspective of M/O Global Individual Individual Individual 

People beh Implicit Implicit/C (smk) Implicit Implicit 
Import CAD drawings Y N Y Y 

Visual simulation Y N Y Y 
Counterflow N Y N Y 

Manual exit block N Y Y Y 
Fire conditions N Y, CFAST N not yet N,  only FED 

input 
Defining groups Y N Y Y 

Disabl/Slow occ grps Y Y Y Y 
Delays/Pre-movement 

(how) 
Y Y Y Y 

Rte. choice Quickest route, 
optimize, or 
follow signs 

Shortest distance 
or user-defined 

Shortest distance 
or altered distance 

map 

Shortest distance, 
random, or  

user-defined 
Elevator use N N N N 

Toxicity to occ N N N Y 
Impatience/Drive N N N N 
Occ. distribution 3 choices? 2 choices 2 choices 3 choices 

Table 2.19.1:  Behavioral models 
 
Characteristics/Model ALLSAFE CRISP ASERI BFIRES-2 

Avail to public N3 N3 Y N2/U 
Method Partial Behavior B-RA Behavioral-RA Behavioral-RA 

Structure Coarse F F F 
Perspective of M/O Global I I I 

People beh Implicit Conditional Conditional Conditional 
Import CAD drawings N Y N, F N 

Visual simulation Y Y Y N 
Counterflow N Y N N 

Manual exit block N Y Y Y 
Fire conditions Y Y – not in drill 

mode 
Y Y 

Defining groups Y Y Y N 
Disabl/Slow occ grps N Y Y Y 
Delays/Pre-movement 

(how) 
Y Y Y Y 

Rte. choice All to 1 exit Shortest, user 
defined door 

difficulty 

Shortest or user-
defined, then 
conditional  

Conditional 

Elevator use N N N N 
Toxicity to occ N Y – not in drill Y Y-smk tolerance 

Impatience/Drive N N N N 
Occ distribution 1 choice Conditional Various Various 

Table 2.19.2: Behavioral models continued 
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Behavioral Models cont.: 
Characteristics/Model EXODUS EGRESS EXITT VEgAS 

Avail to public Y N3 Y N2/U 
Method Behavioral Behavioral Behavior Behavioral 

Structure F Fine Coarse Fine 
Perspective of M/O I Individual Individual Individual 

People beh Conditional Conditional Conditional AI 
Import CAD drawings Y N N Y 

Visual simulation Y Y Y Y 
Counterflow N Y N N 

Manual exit block Y Y Y Y 
Fire conditions Y Y Y Y 
Defining groups Y Y Y Y 

Disabl/Slow occ grps Y – mobility Y Y N 
Delays/Pre-movement 

(how) 
Y Y Y Y 

Rte. choice Shortest, altered 
by local level and 

attractiveness 

Conditional Conditional User-dfnd/Cond 

Elevator use N N N N 
Toxicity to occ Y Y N Y 

Impatience/Drive Y N N N 
Occ distribution Conditional Various Various Various 

Table 2.19.3:  Behavioral models continued 
 
 
Characteristics/Model E-SCAPE BGRAF EvacSim 

Avail to public U N1 N1 
Method Behavioral Behavioral Behavioral 

Structure Coarse Fine Fine 
Perspective of M/O I Individual Individual 

People beh Conditional Conditional Conditional 
Import CAD drawings N N, F N 

Visual simulation Y Y N 
 Counterflow N N N 

Manual exit block N N Y-locked doors 
Fire conditions Y Y Y – user 
Defining groups Y Y Y 

Disabl/Slow occ grps N Y Y 
Delays/Pre-movement 

(how) 
Y Y Y 

Rte. choice Conditional Conditional Conditional 
Elevator use N N Y 

Toxicity to occ N Y N 
Impatience/Drive N N N 
Occ distribution Various Various Various 

Table 2.19.4: Behavioral models continued 
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CHAPTER 3: FOUR FACTORS OF EGRESS MODELING 
 

There are many factors and influences that play a role in the evacuation of 

building occupants.  Gwynne discusses these in his SFPE article entitled “A Review of 

the Methodologies and Critical Appraisal of Computer Models Used in the Simulation of 

Evacuation from the Built Environment”33.  Gwynne organizes the factors that influence 

evacuation into the following categories: 

• The configuration of the building/enclosure  

• The procedures within the enclosure 

• The environmental factors inside the structure 

• The behavior of the occupants.   

The evacuation components of each category are explained in the following paragraphs, 

although they all interact and overlap with each other in any type of evacuation.  The four 

factors are eventually related to a hotel fire evacuation in Chapter 4. 

 Configuration of the building/enclosure involves what is traditionally covered by 

the codes and standards, such as building layouts, number of exits, exit widths, travel 

distances, etc.  Gwynne proposes that occupants can commit behavioral violations to this 

factor in a number of ways, for instance exit misuse, because they may be unfamiliar with 

the building and without staff guidance to aid the evacuation.  Another main issue that is 

frequently studied with building configuration is the way people move throughout the 

different components of the building, horizontal and nonhorizontal movement.  Fruin30, 

Nelson and Mowrer1, Pauls34, and Proulx3, to name a few, have studied this topic to 

understand movement through building components, such as corridors, doorways, 

stairways, etc.  The speed of the occupants throughout all components of the building 
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relies on the density of the occupants they are traveling with.  Nelson and Mowrer1 name 

two regions of interest in horizontal components which are less than 0.54 p/m2 (signifies 

maintaining the speed of the occupant’s choice) and greater than 3.8 p/m2 (signifies no 

movement possible).  The speeds associated with densities between these two values are 

specified by the graph provided by Nelson and Mowrer1.  Also, Ando151, for instance, has 

researched the possibility of different speeds depending upon the gender and age of the 

occupant.   

Stairway movement, another configuration aspect of the building, also affects 

movement of the occupants.  Occupant speed is affected by the number of steps, the 

angle of the stairway, depth of the tread, height of the riser, and the presence and location 

of handrails on each side33.  Proulx3 states that she found stairway movement to involve a 

complex set of behaviors, such as resting, investigation, and communication.  Stairway 

movement is also affected by the amount of personal space needed per occupant, whether 

or not a person is carrying another individual (such as a child or personal items), and the 

agility of the person traveling either up or down a flight of stairs.  People sometimes 

become obstacles in the evacuation process, due to exhaustion or injury in very vital 

components of the building.  These people may play a role in delaying others to evacuate 

the building in a timely manner.  The configuration items should be accounted for in an 

evacuation model, since they are important factors that lead to a successful evacuation. 

Procedures of the enclosure involve configuration knowledge of the occupants, 

training and activities of the staff, familiarity of the occupants with exit availability, and 

alerting the occupants that a fire is occurring in the building.  This factor takes the 

building configuration one step further toward the understanding that occupants’ 
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knowledge about a building affects their movements and decisions during evacuation.  

Also, some occupants enter into a fire situation with previous evacuation experience from 

other events, which may alter their decisions.  The evacuation process is much easier if 

the building is equipped with accurate exit signs, an adequate and informative alarming 

system, as well as informed staff that are able to guide occupants to safety.  Proulx129,130 

has studied the use of voice alarm systems in high-rise buildings, to inform occupants of 

a serious situation and mitigate occupants that ignore a loud and frequently sounding fire 

alarm.  It is essential for occupants to believe that the alarm is not false and understand 

the seriousness of the situation. 

 The third factor of evacuation is the environmental situation inside the structure.  

This involves the effects of heat, toxic and irritant gases, and smoke on an occupant’s 

ability to navigate and make decisions.  This aspect is highly lacking in the evacuation 

models currently on the market.  The reason for this is the difficultly for researchers to 

know how people actually react in a real fire.  As of now, we simply rely on post-fire 

reports and/or experimental work done by Jin28 in the early 80s.  Jin, in his studies in 

Japan, performed experiments to see how far people could move in irritant smoke 

produced from wood, but studies like that can no longer be performed on human subjects.  

Gwynne states that during evacuation, smoke can perform a number of functions, such as 

alert the occupant, inhibit the use of exit routes, reduce speed due to lack of visibility and 

irritation, and expose people to narcotic and irritant gases, as well as heat.   

 The fourth factor is the behavior of the occupant, which involves group and social 

affiliation, adoption of specific roles, responses to the indication of an emergency, 

emergency travel speeds, and the ability to carry out desired actions33.   Bryan, in his 



218  

research of residential fires131, studied the roles of individuals in a fire emergency.  Men, 

when compared to women, were more likely to investigate the fire and carry on fire 

fighting activities, where the women were more likely to alert and gather others together 

for the evacuation procedure.  Gwynne states that these behaviors appear dominant in a 

more domestic setting, such as places where the person has a more personal attachment to 

the property and people.  Also, an important aspect of the behavioral factor is the 

perception of danger.  This involves the kind of cues that alert the person to a dangerous 

situation and if they accept these cues as serious enough to evacuate.  Many times, a loud 

fire alarm without voice communication will not cause an individual to evacuate, 

especially late at night.  If occupants perceive the situation to be dangerous, they are 

more likely to leave the building.  Many different evacuation models do not take these 

kinds of specific behaviors into account during the egress.  The closest that these have 

come to modeling behavior involves the use of a delay time and specific occupant speeds 

for genders and other occupant types, such as commuters or office staff.  As the model 

review in the Chapter 2 shows, certain models do take interactive behavior into account, 

although the data to support such behavior is sparse.   

The interaction of these four evacuation factors encompasses almost any building 

evacuation.  Evacuation models incorporate all four of these factors in varying 

complexity.  As more data is obtained in the field of human behavior in fire, these factors 

can be expanded upon and represented in their true form.   
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CHAPTER 4: FOUR FACTORS OF EGRESS RELATED TO A HOTEL 
EVACUATION 

 
Chapter 3 describes the four factors of egress, namely building configuration, 

procedures of the structure, environmental conditions, and behavioral conditions.  This 

chapter aims to relate these four factors specifically to a hotel evacuation.   

There are many different building types that require special considerations when 

planning for an evacuation.  Some examples of different buildings types are apartment, 

business, dwellings, hotels, and mercantile88.  In addition to building types, special 

requirements are given to a high-rise building, regardless of building occupancy.  In this 

chapter, those factors that are related to a high-rise hotel building will be identified for a 

thorough evaluation of the case study presented in this report.  It is hypothesized that 

evacuation models may account for some of these hotel factors, but most likely not all. 

 
Building Configuration 

As mentioned in Chapter 3, the first of the four factors of egress33 is the building 

configuration.  In comparison with other occupancy structures, hotels have very unique 

building configuration issues that relate to egress.   

Overall in the United States, there are 44,787132 hotels with a varying range of 

building height.  As building height varies with different hotels, so does the number of 

guestrooms per floor.  There is a high potential for a large number of people to be 

contained in a high-rise hotel building.   

Some other building configuration factors that relate to hotels are long 

corridors/hallways through which the occupants must pass to reach the stairs and long 

exit paths leading to the outside, in the case of taller buildings.  In order to maximize the 
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space in the hotel and assure that all guestrooms have a scenic view (especially for high-

rises), many hotels are equipped with longer hallways.  This can potentially provide 

problems for unfamiliar occupants.  In the adverse case where smoke enters these longer 

hallways133, occupants can become confused and/or disoriented before reaching the 

stairwell.   

In many of the larger hotels, it is common to find different occupancies in the 

same building.  Such spaces can consist of guestrooms, restaurants, assembly spaces for 

conferences, office spaces, casinos, and/or dance clubs.  These add a considerable amount 

of risk to a structure of guestrooms.  The other occupancies provide additional ignition 

sources, different levels of occupant commitment to certain activities, different 

mechanisms for occupant alertness, and different levels of familiarity to the structure.   

As Proulx mentions3, certain spaces offer different levels of visual access to the 

fire/emergency.  This visual access affects the occupant’s response to the fire, ultimately 

affecting their delay time for evacuation.  In the case of hotels, particularly guestroom 

floors, the visual access is lessened due to the division of the floor space into individual 

rooms.  In the case of open office spaces, for instance, it is more likely that an occupant 

will see a fire developing on their floor and react faster than in a more closed off space.  

Since occupants are closed off into individual rooms, delay time may be increased.  

Along the same lines, if there is a focal point in the space, for instance a stage or screen 

in a movie theater, occupants are more likely to react in a timely manner.  Both visual 

access and focal points seem irrelevant and certainly lessened in hotel buildings, due to 

the arrangement of guestrooms.  Although, if the hotel is equipped with conference 

rooms or other assembly spaces, these factors may contribute to a shortened delay time. 
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Procedures 

During evacuation from a hotel building, the procedures of the hotel can affect the 

occupants’ awareness, decision to evacuation, and resultant movement to the exit.  

Unique to a hotel building, there is usually (for larger hotels) at least a limited staff 

available 24 hours a day in the front lobby.  Also, during the day, the hotel is equipped 

with a cleaning and maintenance staff who are frequently stationed throughout the 

building.  These personnel can be key in alerting unsuspecting occupants of an 

emergency.  They can also be helpful in guiding occupants out of the building, if 

necessary.  Their actions depend on their training and responsibilities as established 

before an emergency occurs. 

For any evacuation, including hotel buildings, any previous experience and/or 

training provided to the occupants can affect the decisions made during the evacuation36.  

Also, the type of warning system affects decision making and movement during 

evacuation.  If occupants are staying at the particular hotel for the first time, they may not 

be familiar with the sound of the alarm system.  This could cause the occupants to ignore 

the signal, search for other information, remain sleeping, and a variety of other activities 

that delay evacuation.  In the case of voice communication, the hotel has the opportunity 

to provide further information than simply an available sound, which could further 

decrease delay time3.  In certain types of communication systems, both staff and fire 

service personnel are able to provide specific messages to assist the occupant’s behavior 

and definition.   
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Also, if an occupant is a frequenter of hotels with numerous false alarms, they 

may be more susceptible to ignore any future signals.   

A potential problem with hotel buildings is the unfamiliarity of the occupants with 

the exit system.  It is likely that occupants will exit the building the way that they came 

in, which in the case of high-rise hotel buildings, would be the elevators.  Without 

looking on the back of the guestroom door or observing exit signs, occupants may not be 

aware of the location of exit doors.   

 
Environmental Conditions 

Various sources of fire ignition occur in hotel occupancies, and create a number 

of possible fire scenarios for designers.  Beyond fire, since September 11, 2001, more 

building owners and occupants are faced with other threats, such as bombs and chemical 

agent release.  These conditions pose different risks to personnel and require different 

evacuation procedures, which are beyond the scope of this project.   

As noted in the NFPA U.S. Fire Problem Overview report134, leading causes of 

fire scenarios in hotels include the following: 

• Suspicious (Incendiary) 

• Cooking equipment 

• Appliance (air conditioning, dryer) 

• Smoking materials 

• Other equipment 

• Electrical distribution 

• Open flame 

• Natural Causes 
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The leading causes of fires involving death and injuries to civilians were smoking 

materials and incendiary fires.  For example, an occupant in a smoking room may fall 

asleep with a cigarette in bed.  Also, some suite hotels have a kitchenette area for 

occupants to cook in.  A fire scenario could occur in the cooking area.  Hotels have many 

different fire scenarios to plan for in a performance-based design.  Statistics, such as 

those provided by NFPA, may help to narrow down the scenarios by choosing those 

which are most frequent and/or pose the greatest threat. 

Along with including the fire ignition, fire models should also account for smoke 

travel, blocked exits, blocked stairwells, heavy smoke in corridors, heat, narcotic gases, 

and other factors that affect occupants during evacuation movement. 

 
 
Behavioral Factors 

The behavioral factors that affect a hotel evacuation are explained in three 

categories:  hotel occupant characteristics, pre-evacuation behavior, and behavior during 

the evacuation.   

First, the characteristics of the hotel occupants play a role in the evacuation of the 

building.  For instance, occupants with disabilities travel at a different speed and may 

require additional assistance to evacuate the building.  In certain circumstances, 

occupants with disabilities can also affect the evacuation of other occupants in the 

building.  Able-bodied occupants have been known to assist disabled occupants135 or 

remain with them until rescued by emergency personnel. 

When evacuating high-rise buildings, occupant exhaustion can interfere with 

movement, especially on the stairs.  Occupants that are overweight, pregnant, older, 
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and/or that have certain health problems can suffer from mobility impairment on multiple 

flights of stairs.  These occupant characteristics have been identified as a possible delay 

during evacuation, but have been difficult to quantify and simulate in current evacuation 

models. 

Lastly, carrying or wearing certain items alter movement during evacuation.  It is 

possible that occupants will carry personal items with them during movement to safety, 

such as luggage, purse, or computers.  Carrying items will reduce occupants’ speed as 

well as take up room in the stairwell.  Also, occupants who need to assist or carry 

children alter their movement accordingly.  The speed of primary social and cultural 

groups is governed by the mobility of the slowest member of the group even in fire 

evacuations136.  During winter months, occupants will usually put on a coat before 

evacuating, which can alter body size and movement.  Although work has not been 

documented on this topic, footwear could also play a role in occupant movement, 

especially on stairwells. 

During the pre-evacuation period, occupants are known to engage in certain 

activities before beginning the evacuation3.  Behaviors/factors that are relevant to hotels 

include social affiliation, responsibility, and alertness.  Social affiliation is the need to 

join or reunite with certain individuals before beginning to evacuate.   This behavior 

could be prevalent with families in hotels.  For instance, members of a family could be 

engaged in separate activities away from each other at the time of emergency awareness.  

It is likely that members of a family will try to reunite and find each other before 

beginning movement to the exits137,138.  Also, if an occupant is alone, they may try to find 
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other occupants to obtain additional information about the situation and to verify their 

definition and behavior plans.   

In a hotel, it is possible that occupants may feel responsibility for their own guests 

and other occupants.  If this is the case, they may perform certain activities if their 

guestroom is in danger, such as alerting others and the fire department2.  Lastly, the 

alertness of the occupant affects behavior during the pre-evacuation period.  In hotels, 

occupants have the opportunity to sleep.  During certain stages of sleep, it is more 

difficult to awaken to the sound of a fire alarm115, which could possibly delay evacuation.  

Also, if occupants are impaired by drugs or alcohol, reacting to an alarm is also impaired. 

During the evacuation period, occupants have been known to engage in certain 

behaviors.  These are not all unique to hotel evacuations, because they can occur in a 

range of building types.  It is a possibility that occupants act differently when they are 

alone versus when they are with a group of occupants.  For some occupants, they decide 

to remain in their guestrooms and engage in “protect in place” activities instead of 

evacuating133.  If occupants do decide to leave, they may have to move through smoke, 

which would ultimately affect their behavior2.  As stated earlier, there is not a great deal 

of research in this area, but it is identified as an important factor. 

During evacuation, occupants may encounter rescue personnel in the stairwells.  

This affects stairwell movement.  Even though counterflow has not been extensively 

researched, some current models have the capability of estimating this factor.  Also, with 

fire fighter assistance, some occupants can evacuate via the elevators, which would affect 

the numbers of occupants in the stairwell. 
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After evacuation has been completed, occupants of homes sometimes feel it is 

necessary to reenter the building2.  Occupants may want to return to their guestrooms for 

personal items, luggage, or other items of value.  This certainly puts the occupant in 

grave danger, but is not modeled by any current evacuation models.  It is unclear whether 

or not this is a factor with hotel buildings.   

These four factors of egress have now been related to what could occur in a hotel 

evacuation.  Some current evacuation models can incorporate various aspects of these 

factors, but not completely.  There are many aspects of each factor that remain untouched 

in evacuation modeling, such as staff participation, health and mobility variables of the 

occupants, social affiliation, and information transfer.  This is primarily due to the fact 

that the data to verify such behavior is lacking.  With an increase in data gathering, these 

factors may be included in evacuation modeling in the future. 



227  

CHAPTER 5:  DESCRIPTION OF EXIT89 AND SIMULEX AND KEY FEATURES 
RELATING TO A HOTEL EVACUATION 

 
In order to answer the first set of questions posed in this thesis, two specific 

models are chosen and described in great detail, outlining the key features that enable 

these to simulate a hotel evacuation scenario.  The purpose of Chapter 5 is to provide 

descriptions of each model in detail, as well as outline the features of each model that 

allow the user to simulation a hotel evacuation scenario.   

 EXIT89 and Simulex are chosen as example models that are capable of simulating 

a high-rise building evacuation.  Also, both models are considered to be partial-

behavioral models, which is important for any comparison of the evacuation results (in 

Chapter 9).  Partial-behavioral models have similar inputs and capabilities, which puts 

EXIT89 and Simulex on the same “playing field.”  However, Simulex is a fine network 

model and EXIT89 is a coarse network model.  This distinction is important and 

significant to study when analyzing difference in evacuation results. 

 The next section describes each model’s capabilities in detail and identifies key 

features that relate to a hotel evacuation. 

 
EXIT8971,72,73,74,75,76 
 

EXIT89 is an evacuation model that has the capability of modeling large 

populations located in high-rise structures.  The model requires the user to input nodes 

and arcs, but contains a variety of features that are not available from other node/arc 

models, such as: 

• Shortest travel route or a user-defined route 

• The use of CFAST77 smoke data, user defined blockages, or none 
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• Body size of the individuals being modeled (Austrian, Soviet, or American) 

• Emergency or normal travel speed  

• Random delay or none and the minimum and maximum times for the delay 

• The use of contra flows or none 

• The modeling of disabled occupants and their percentage of the travel speed 

compared to the rest of the occupants 

• Up or down stair travel 

These features are shown in Table 5.1 below. 

Table 5.1:  Input features of EXIT89 for each egress factor 

Input Type User choices/input 
 Building 

Configuration 
Node and arc 

positions 
Area each node 
(usable space) 

Distance from 
node to node (arc) 

Procedures User-defined route for 
certain occupants to exit 

Shortest route chosen for 
all occupants 

Environment Yes or No  
(CFAST data) 

If yes to CFAST data – 
exits become blocked by 

dense smoke 
Behavior – 
Body size 

All American 
= 0.0906 m2 

All Soviet =  
0.113 m2 

All Austrian =  
0.1458 m2 

Behavior – 
Speed 

Emergency (as shown in 
Table 5.2/5.3 below) 

Normal (as shown in 
Table 5.2/5.3 below)  

Randomly 
distributed 

response time 

Minimum 
delay time (s) 

Maximum 
delay time (s) 

% of population 
to delay 

OR Constant 
response delay 
for each node 

Amount of time specified for each node that 
occupants delay before beginning evacuation 

Additional 
inputs – 

Counterflow 

Yes or No Time at which 
effect occurs 

Fraction of node 
occupied by 

opposite flow 
Occupants with 

disabilities 
# of disabled occupants 

for each node 
% of able-bodied speed 
each disabled occupant 

will travel 
Stair Travel Up Down 
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In EXIT89, occupants can evacuate following the shortest route or other defined 

routes.  As such, routes can be identified that may be familiar to the occupants, yet 

involve an increase in the distance traveled.  Fahy71 states that choosing the shortest 

evacuation route is more appropriate for a well-trained population or a population that is 

assisted by well-trained staff.  The shortest route calculation used in EXIT89 uses an 

algorithm that identifies the origin of the network and then fans out from the origin.  

EXIT89 calculates the shortest routes on each floor to the stairways or to an area of 

safety.  Fahy acknowledges that an advantage of this approach is that if a node becomes 

blocked by smoke, the model recalculates only the routes on that floor, instead of the 

routes throughout the entire building.  If a stairway node is blocked, the routes on that 

floor and the floor above are recalculated so that as occupants encounter the blockage, 

they choose another route to travel down to an exit of the building.   

EXIT89 allows more than one node to be blocked at a time.  The user can also 

input data from CFAST77, such as smoke densities and the depths of the smoke layer, 

which must be recorded in time steps of 5 s.  Entering smoke blockages without CFAST 

output requires that the name of the blocked node and the time from the start of the 

evacuation that the blockage occurs be identified.   

If CFAST data is used in the evacuation model, EXIT89 calculates S, the 

psychological impact of smoke by using equation (5.1): 

H
DODS ⋅⋅= 2      (5.1) 

Where OD=optical density of the smoke in the upper layer (m-1) 

 D =depth of the upper layer (m) 

 H =height of the ceiling (m) 
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A value of S > 0.5 m-1 is used to block a node113.  In order to interface CFAST 

with EXIT89, each CFAST compartment needs to correspond with a node in EXIT89.   

Data of the three body sizes included in EXIT89 are from Predtechenskii and 

Milinskii31 for Soviet body sizes, Ezel Kendik139 for Austrian body sizes, and the 

Occupational Safety and Health in Business and Industry (no reference could be found) 

for American body sizes.  These three references give body values in various conditions, 

indicating differences between genders, age, and with various layers of clothing.  Mean 

values of each population are provided in EXIT89.  Because Austrian values give the 

largest body size, Fahy notes that simulations with Austrian values result in the longest 

evacuation times under crowded conditions.  Fahy71 suggests that simulations should be 

conducted with all three body sizes to obtain a range of results for a given building. 

EXIT89 uses formulas from Predtechenskii and Milinskii31 to determine walking 

speeds as a function of the density of the occupants.  Density is first obtained by 

multiplying the number of people in the stream by the horizontal projection of the person 

(related to body size) and dividing that value by the width multiplied by the length of the 

stream (the area of the stream), resulting in a density in units of m2/m2.   

EXIT89 uses the velocity correlations for horizontal paths, down stairs and 

upstairs, depending upon the density calculated in each movement situation. 

Horizontal Paths: 

  (m/min)   (5.2) 

for density:  92.00 ≤< D  

Down Stairs (↓): 

↓↓ =VmV  (m/min)       (5.3) 

where )224.061.5sin(44.0775.0 39.0
−⋅+= ↓

−

↓
↓ Dem D  

57217434 380 112 23 4 +−+ − = DD D D V 
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Up Stairs (↑): 

↑↑ =VmV  (m/min)       (5.4) 

where ↑↑ ⋅+= ↑ Dem D 7.15sin09.0785.0 45.3    for ;6.00 << ↑D  

where )57.185.7sin(10.0785.0 +−= ↑↑ Dm  for 92.06.0 ≤≤ ↑D  

 

EXIT89 uses tables of velocities (based on occupant densities) for normal, 

emergency, and comfortable movement along horizontal paths, openings, and stairways.  

It should be stated that Predtechenskii and Milinskii’s data originated from observations 

of people in different circumstances and perception of risk, which is the reason for 

conditions such as emergency and normal speed data.  Predtechenskii and Milinskii 

omitted fire conditions of visual obscuration by smoke and physiological conditions of 

heat exposure to occupants or structural damage to horizontal or vertical means of egress.  

The condensed tables for emergency and normal speeds are shown in Tables 5.2 and 5.3 

for all three building components. 

Table 5.2:  Speed vs. density relationship throughout horizontal components and doorways  

 Horizontal Components Through Doorways 
Density (m2/m2) Emergency 

speed (m/s) 
Normal Speed 

(m/s) 
Emergency 
speed (m/s) 

Normal Speed  
(m/s) 

0.01 1.36 0.9145 1.58 1.06 
0.1 0.95 0.65 1.17 0.81 
0.2  0.664  0.47 0.85 0.60 
0.3 0.50 0.36 0.65 0.47 
0.4 0.41 0.30 0.516 0.38 
0.5 0.36 0.275 0.43 0.33 
0.6 0.33  0.258 0.37 0.29 
0.7 0.30 0.24 0.31 0.25 
0.8 0.25 0.20 0.26 0.22 
0.9 0.19 0.16 0.20 0.17 
0.92  0.175 0.15 0.19 0.16 
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Table 5.3:  Speed vs. density relationship for down stair components  

Density (m2/m2) Emergency speed 
(m/s) 

Normal Speed  
(m/s) 

0.01 0.99 0.82 
0.1 0.85 0.70 
0.2 0.66 0.55 
0.3 0.50 0.41 
0.4 0.37 0.31 
0.5 0.27 0.23 
0.6 0.20 0.16 
0.7 0.14 0.12 
0.8 0.11 0.094 
0.9 0.10 0.083 
0.92 0.098 0.081 

 
 

  For emergency movement, equations (5.2) to (5.4) are adjusted by equation 

(5.5)31. 

        (5.5) 
  
Where  µe = 1.49 – 0.36D  for horizontal paths and through openings   

  µe = 1.21  for descending stairs 

  µe = 1.26  for ascending stairs 

 
EXIT89 has the capability to model counterflows, e.g. where fire department 

personnel are traveling in a direction opposite to evacuating occupants.  In such cases, the 

time(s), location(s) and degree of constriction of the flow path by the counterflow 

(relative to the building occupants) need to be identified.  In situations where fire 

department personnel are flowing in the opposite direction, Fahy suggests that a 

reasonable constriction is up to 50% of the total width.  A constriction may also be 

specified to account for occupants slowed either due to debris, other slow-moving 

occupants, or smoke conditions that cause occupants to crawl through a specific node(s). 

v v e e µ = 
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The number of stairways in the building must be specified as well as the direction 

occupants are expected to evacuate (up or down stairwells, with only one direction being 

modeled in a single simulation).  Upstairs movement may be of interest if evacuation 

from a sub-grade level or movement to a roof for helicopter rescue is of interest. 

The only behavioral aspect of EXIT89 relates to pre-evacuation time of 

occupants, i.e. the time delay before occupants begin evacuation.  Evacuation by 

occupants can begin simultaneously or be delayed by a specified amount of time.  Delays 

can be set for a node and additional delays can be specified for particular occupants to 

implicitly account for pre-evacuation activities such as investigating the fire, alerting or 

assisting others, or gathering personal belongings.  A compilation of limited data to 

support the provision of a particular time delay for all or a portion of occupants is 

provided by Proulx and Fahy140.  

Information required to describe each node in EXIT89 includes usable floor area, 

height of the ceiling, node capacity, initial contents, number of disabled occupants, the 

delay time before occupants begin evacuation, and the node the occupants will move to 

next if a user-defined route is selected.  EXIT89 uses an individual perspective to track 

individuals as they move throughout the building by recording occupants’ locations at set 

intervals in time.  Disabled occupants beginning at a node are identified by specifying a 

velocity reduction factor.  For each arc, users must include the distance from the center of 

the node prior to the restriction, the width of the opening between the nodes, and the 

distance from the restriction to the center of node after the restriction.  EXIT89 expects 

the user to include the diagonal distance of travel along stairways.  In EXIT89, the arcs 

are always bi-directional.   
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Features of EXIT89 that are Specific to a Hotel Evacuation 
 

To represent the building configuration, EXIT89 uses node and arcs to layout the 

space.  Depending upon the type of space in the building (guest room vs. hallway), space 

identification into nodes can be complicated.  Certain hotels can have a large number of 

guest rooms, which can be assigned one node for each room.  On the other hand, hotels 

can have uniquely long hallways with which the user has to choose the number of nodes 

to place within that hall.  The more nodes placed within a space, the more accurate the 

building representation, and the more time involved in the set-up of the input file. 

EXIT89 allows the user to define routes for certain individuals during the 

evacuation to represent certain procedures of the simulation.  This input option can be 

used to simulate the possibility of hotel staff traveling to guestrooms to alert occupants.  

This is certainly unlikely during the night, especially with a limited staff on hand.  The 

user-defined option can also be used for guests who are unfamiliar or who attempt to 

perform alerting, searching, or notification behavior.  Lastly, this option can be used for 

family members that need to search for each other or friends in the hotel before 

evacuating.  

To represent the fire environment, EXIT89 allows the user to introduce CFAST 

results or fire conditions over time to the simulation.  This option will block certain exits 

if they become overcome by smoke, which presents a more realistic evacuation scenario.  

The user may choose to exercise this option in a complex hotel building with many exit 

choices.  
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Lastly, EXIT89 allows the user to choose a body size and occupant speed 

condition to implicitly represent behavior in the model.  Most important to a hotel 

situation, the user can also include occupants with disabilities and counterflow issues.  

Counterflow of firefighters can affect an evacuation scenario of a hotel, especially with 

high-rise hotel buildings.  Firefighters usually take up a certain percentage of one of the 

exit stairs for a certain period of time during the evacuation.  EXIT89 allows the user to 

incorporate such activities during the simulation. 

 
 
Simulex78,79,80,81,82,83,84,85 

 
Simulex is an evacuation model that has the ability to analyze the egress of a large 

number of people from a large, geometrically complex building.  Simulex generates a 

two-dimensional building network from CAD drawings of each floor level.  Unlike 

EXIT89, Simulex does not require node connections, i.e. arcs, to be defined. Instead, 

Simulex uses a “fine grid” to identify movement paths.  The input required for the model 

includes: 

• Floor plans via CAD drawings 

• Connection of floor levels via identification of stairways or ramps  

• Location of occupants throughout building spaces.  

• Population movement characteristics: occupant type (commuters, shoppers, 

office staff, or school populations, identifying mixture of adults, children and 

elderly); gender (occupant groups may be all male or all female), age (all 

occupants may be children or elderly people), choosing a specific travel speed 

for all occupants, or a mixture of characteristics defined by user. 
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• Mean delay time to be randomly, triangularly, or normally distributed 

throughout the occupants of the building.   

• Distance maps allowing all exits to be accessible or considering blocked exits. 

These features are shown in Table 5.4 below. 

Table 5.4:  Input features of Simulex for each egress factor 

Input Type  User choices/Input 
Building 

configuration 
Import CAD files Stair distance Stair width 

Procedures Shortest route Blocking exits from certain 
occupants 

Environment Blocking exits from certain occupants 
Behavior – 
body types 

Male Female Children Elderly Median 

Behavior – 
populations 

All 1.0 m/s 
(speeds) 

Office Staff Commuters Shoppers School 
Children 

Response 
delay 

Mean delay time (s) (+ or -) ___ seconds 
of time for delay 

3 distributions: 
random, triangular, or 

normal 
 

The distance map consists of 0.2 by 0.2 m spatial blocks and represents a “low-

resolution” form of the total building space.  These maps are used to direct occupants to 

the closest available exit, where each person moves toward an exit by taking the direction 

that is perpendicular to the constant-distance contours from the exit.  Simulex allows the 

user to calculate up to 10 different distance maps consisting of different exits and links 

being open or blocked to different occupants throughout the building.  A specific distance 

map could be useful for simulating a certain group of occupants who are familiar with the 

building and may travel to an exit that is farther away.   

Assumptions included in Simulex that affect the results of the comparison involve 

movement speed and overtaking.  Each person is assigned a normal, unimpeded walking 

speed until the speeds are reduced by the closeness of other occupants, obstacles, and/or 



237  

walls of the building.  Simulex uses a relationship between walking velocity on level 

pathways and inter-person distance80.   

The occupants walking speed is a function of inter-person distance.  An example 

of the data used for this movement is shown in Figure 5.1.   

 

 
Figure 5.1:  Example graph of inter-person distance vs. velocity (79, page 3) 

 
The walking speed of an occupant is dependent upon the proximity (or distance 

away) from the people ahead.  The inter-person distance is defined as the distance 

between the center of the bodies of two individuals.  The best-fit equation for the 

example graph above is shown here as Equation 5.6: 
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 where b d td≤ ≤   (5.6)  

v Vu=    where   d td>  

Where:  v is the impeded walking velocity (m/s), Vu is the unimpeded (normal) 

walking velocity (m/s), d is the inter-person distance (m), td is the threshold 

distance (1.6 m), and b is the body depth (torso radium).   
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Rb

Rt

Rs

The walking velocity down stairs is restricted to 0.6 times the normal unimpeded velocity 

assigned to each body type.   

The normal unimpeded walking velocity and body size for each body type is 

assigned either by the program or the user, if the user prefers a different value79,84.  

Examples of body types are shown in Table 

5.5.  The unimpeded walking velocity is 

also assigned a +/- value among the members 

of the group.  For instance, the male body 

type is assigned an unimpeded velocity of 

1.35 m/s +/- 0.2 m/s as a variation in speed 

among the members in the group.  

 

A plan view of the body profile of 

each person is represented as a mixture of 

three circles as indicated in Figure 5.2.  Each 

body consists of a center torso circle and two 

shoulder circles.  Simulex contains a variety of different body types (of which 5 are 

shown in Table 5.5), containing different dimensions of the body radius, torso radius, and 

the shoulder radius.  The five different body types highlighted here are median, male, 

female, child, and elderly, and are used in the comparison runs performed for this thesis.  

Inter-person distance is measured from the center of one body to the center of another.   

 

 

Figure 5.2:  Body Profile used in Simulex   
(79, p. 5) 
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Table 5.5: Body type dimensions 

Body Type Total Body 
Radius  

R(b) 

Radius of 
Torso R(t) 

Radius of 
Shoulder  

R(s) 

Unimpeded 
mean velocity 

(m/s) 

Variation in 
velocity (+/- m/s) 

Median 0.25 0.15 0.10 1.3 0.0 
Male 0.27 0.16 0.10 1.35 0.2 

Female 0.24 0.14 0.09 1.15 0.2 
Child 0.21 0.12 0.07 0.9 0.3 

Elderly 0.25 0.15 0.10 0.8 0.3 
 

Some examples of occupant types/populations included in Simulex are identified 

in Table 5.6, along with their corresponding body size and unimpeded velocity.  The user 

is also able to produce his/her own population using a combination of body types 

provided by the program or created by the user.  The arrangement of a particular 

population corresponds to a distribution of body sizes assigned to the occupants of the 

group.  For each occupant type, there are certain percentages of body types/sizes that the 

program will use to assess occupant movement during evacuation.  By specifying 

percentages of the population assigned to certain body dimensions, Simulex can reduce 

the walking velocity due to inter-person distance between the occupant and others around 

him, the area or width of the building component, and the presence of other obstructions 

in the area.  Also, the user can specify the percentage of decrease in the unimpeded 

walking velocity for the occupants walking up or down stairs.  For instance, the model 

default specifies a decrease of 60% down stairs and 50% up stairs for most body types.  
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Table 5.6: Occupant types with corresponding body size and velocity 

Occupant Type % 
Median 

% 
Male 

% 
Female 

% 
Child 

% 
Elderly 

Body Size 
(m2) 

**Initial 
Velocity m/s 

 All Elderly 0 0 0 0 100 0.113 0.8 (+/-  0.3) 
All Male 0 100 0 0 0 0.130 1.35 (+/- 0.2) 

All Female 0 0 100 0 0 0.101 1.15 (+/- 0.2) 
All Children 0 0 0 100 0 0.070 0.9 ( +/- 0.3) 
All 1.0 m/s 100 0 0 0 0 0.118 1.0 

All 1.2 m/s SFV 100 0 0 0 0 0.130 1.2 
All 1.3 m/s 100 0 0 0 0 0.118 1.3 
All 1.4 m/s 100 0 0 0 0 0.118 1.4 
Office Staff 0 60 40 0 0 Multiple Range 
Commuters 0 50 40 10 0 Multiple Range 
Shoppers 0 35 40 15 10 Multiple Range 

School Children 0 3 7 90 0 Multiple Range 
 

Simulex accounts for rates of body twisting and overtaking during evacuation.  

The value used by Simulex for the rate at which individual people can twist or turn for an 

able-bodied person is 100 degrees/s141.  Thompson and Marchant suggest that the rate of 

body twist has a “significant effect on the overall rate of groups of people as they move 

through exit openings”81.  Overtaking occurs if the obstructing person is traveling in both 

the similar and opposing direction of the assessing person.  Simulex uses calculations for 

overtaking that are based on the assumption that the passing person moves around the 

obstructing person, avoiding contact by a minimum of 50 mm.  Thompson, Marchant, 

and Wu82 reference Bryan to state that 50 mm is the nominal value for body sway during 

forward movement.  

 

Features of Simulex that are Specific to a Hotel Evacuation 
 

Unlike EXIT89, Simulex allows the user to import actual floor plans from a CAD 

program to represent the building configuration.  By using CAD drawings, Simulex can 

“see” the building in its entirety, including all walls, obstructions, door openings, etc.  
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The program places a 0.2 m by 0.2 m grid over each floor plan which the occupants will 

follow to evacuate the building.  The use of CAD drawings and fine network models is 

very convenient and more accurate for complex buildings, such as hotels.  Hotels have 

complex spaces, especially those hotels equipped with meeting spaces, kitchens, fitness 

centers, guest rooms, etc.  With this method, the floor plan is more accurately represented 

in the model.   

In order to simulate certain procedures during the evacuation, the user has the 

capability of blocking certain exits from particular groups of individuals, which will 

cause them to automatically go to the next closest, available exit.  This is similar to the 

method of a user-defined route for the occupants, and is performed by altering the 

distance map of the particular group of occupants.  Also, altering the distance map is 

another way of simulating occupants that are unfamiliar with the building and may be 

likely to travel to a farther, more familiar exit rather than the shortest distance route.  This 

is a valid choice for simulation of a hotel because many of the guests are unfamiliar with 

their surroundings.   

Simulex does not currently have the capability of simulating the fire environment.  

The developer of the model is working to provide this capability. 

Lastly, behavior is also implicitly simulated with Simulex.  By choosing an 

occupant characteristic/population, a corresponding body size and unimpeded velocity 

are assigned to each individual.  Speed is then decreased by interpersonal distance and 

distance away from walls and obstacles throughout the building.  There is no specific 

behavioral simulation available in Simulex that would aid in the modeling of a hotel 

building.   
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CHAPTER 6: USING EXIT89 AND SIMULEX IN A PERFORMANCE-BASED 
DESIGN  

 

Performance-Based Design Process 

Many times in a performance-based design, an engineer will compare the results 

from an evacuation model with the results from a fire model to assess whether or not the 

occupants can escape without succumbing to untenable conditions.  It is usual that, 

although there are many different types of evacuation models to choose from, only one 

model is selected to run all of the evacuation simulations in this type of analysis.  

Another alternative used by engineers, although rare, is to select an evacuation model that 

is also equipped with fire model capabilities.  In either method, the quantification of life 

safety for the building is essentially a comparison of ASET vs. RSET.  ASET is known as 

the available safe egress time and defined as the “time when fire-induced conditions 

within an occupied space or building become untenable”1.  RSET, on the other hand, 

stands for required safe egress time, and should be shorter than ASET to maintain life 

safety from a fire.  RSET is defined by Equation (6.1): 

 
RSET = td + ta + to + ti + te    (6.1) 
 
Where 

td = the time from fire ignition to detection 

ta = the time from detection to notification of the occupants 

to = the time from notification until occupants decide to take an action 

ti =  the time from decision making to the start of evacuation 

te = the time from the start of the evacuation until the end 
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The first two RSET times, td and ta involve initial detection and cues made 

available to the occupants in a variety of ways.  One method involves building hardware, 

such as detection and alarm devices.  Another could involve the method of human 

detection, discovery, and/or response to the fire.  Any other primary cue or indication of 

fire is also included in these times, such as hearing the sirens of fire trucks, hearing, 

seeing, and/or sensing fear from other occupants, receiving information from external 

sources/family, etc. 

The third and fourth RSET times, to and ti involve the processing of the initial and 

subsequent cues before beginning evacuation.  During this time period, occupants are 

evaluating and responding to the cues presented to them due to the fire emergency.   

Lastly, te involves the actual movement of the occupants to evacuate or remain in 

their area of refuge, if fire conditions are untenable and impossible to traverse through.  A 

variety of calculation methods are available for this piece of RSET, such as hand 

calculations1, evacuation models, and graphs19.  While these calculation methods are 

based on a variety of movement data, obtaining delay times for occupants in different 

types of buildings has been difficult.   

Another very similar way of labeling the RSET times is shown by Figure 6.1 

taken from the SFPE Guide to Human Behavior in Fire142: 

 
Figure 6.1: Timeline of the evacuation process (142, p. 1) 
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After fire development and/or cue initiation, the process referred to as cue 

validation acts as a recurring cycle during the decision-making period.  This cue 

validation process is similar to the to and ti times from the RSET equation (6.1).  During 

this period, occupants are continually faced with cues that require that they recognize and 

interpret the cue in order to make decisions and act.  Occupants interpret different cues 

with varying levels of severity, which in turn is reflected in the types of decisions that 

they make during this period.  For instance, if the occupant receives a fire alarm sound as 

a cue, they will often recognize the sound to be a fire alarm.  However, if they witness 

many false alarms in their building, they may not interpret the alarm as an actual fire.  In 

this dangerous case, the occupant in question may decide to ignore the alarm and 

continue to perform the action that they are already involved in.  In another example, an 

occupant may receive a cue in the form of smoke seeping through their bedroom door.  

The occupant could recognize the cloud to be smoke and interpret the situation as 

dangerous.  In this case, the occupant will quite possibly decide to gather her family and 

leave the house immediately.  These are two very different situations, both following the 

same cue validation process displayed in Figure 6.1.   

As mentioned earlier, it is likely that the engineer working on a performance-

based design will run separate fire and evacuation models to compare ASET and RSET 

for life safety evaluation of a building.  An example of a need for design change is when 

a fire model states that the smoke layer will descend to a dangerous level in 

approximately 4 minutes (ASET), and the evacuation time for the building has resulted in 

a range of 3-6 minutes (RSET).  Since this paper focuses mainly on evacuation modeling, 

only the RSET period is discussed.  During the evaluation process, the engineer strives to 
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simulate a variety of fire/evacuation scenarios in order to bound the evacuation results.  

This method attempts to anticipate a variety of feasible fire scenarios that could initiate 

an evacuation over the lifetime of the building.    

In the egress simulations, especially when a separate fire model is run to compare 

results, the two main types of inputs are varied in the bounding analysis.  These are 

building characteristics and occupant characteristics.  This leaves the egress simulations 

to focus only on three of the four factors of egress; building configuration, procedures, 

and behavior of the occupants.   If some models contain the capability, it is possible for 

the engineers to incorporate the environmental factor into the egress simulations.  For 

instance, if the fire model predicts heavy smoke and/or high levels of concentration in 

certain areas of the building at specific time periods, some evacuation models allow the 

user to block exits or stairways at a certain time during the simulation.  Overall, it is 

common that the building configuration remains constant, since by this time, the design 

has been well-defined architecturally.  And, since the occupant characteristics have a 

greater uncertainty, they are modified to produce several different egress input scenarios 

in order to bound evacuation results.  Some evacuation models assign their occupant 

characteristics and behaviors probabilistically, and with the Monte Carlo technique, can 

automatically run a series of scenarios and produce a range of evacuation results.  

Examples of occupant characteristics that can vary between simulations and affect 

evacuation results include the following list: 

• Age 

• Gender 

• Number of occupants in the building 
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• Walking speed 

• Body size 

• Route choice 

• Initial location of occupants in the building 

• Delay or Pre-evacuation time 

 
An attempt is made to anticipate design scenarios for a hotel building.  Also an input 

matrix involving the characteristics listed above is created for each scenario using the two 

featured evacuation models, EXIT89 and Simulex.   

 

Overview of the Input Matrix for Each Model 

There are similarities and differences in the input options between EXIT89 and 

Simulex for each of the four factors of egress.  For the building configuration, EXIT89 is 

a coarse network model and Simulex is a fine network evacuation model.  A coarse 

network model requires the user to input the configuration of the building as a series of 

nodes and arcs throughout the spaces.  A node represents a room or section of a room.  

Traveling between nodes is performed via arcs connecting these nodes.  Simulex, on the 

other hand, features a fire network which separates the entire floor plan into a series of 

grid cells 0.2 m by 0.2 m in length.  Occupants, using the fire network technique, move 

from one grid cell to another, instead of one node to another.  Simulex requires only that 

the user import a CAD drawing of each floor, with which the model then overlays a grid.  

The fine network technique allows the model to more accurately “see” the building 

configuration through which the occupants will move. 
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For the procedures of the evacuation simulation, both models allow the user to 

choose either the shortest route option or a user-defined route.  The user-defined route is 

input into each model differently, but the result is the same.  This allows the user to move 

occupants to a defined exit, even if the occupants pass by a closer exit.  The user-defined 

route method is helpful in situations where the user is interested in simulating occupants 

who are familiar only with the main exits of a building.   

 For the environmental factor, only EXIT89 allows the user to input results from a 

previously run fire model.  In this case, the model used by EXIT89 is CFAST77.  

Currently, this option is not available to users of Simulex.  Also, neither of these models 

incorporates manual blocking of an exit or stair by the user at specific time periods 

during the simulation.  This technique can be used to simulate untenable conditions 

predicted by a separate fire model. 

Lastly, there are multiple options available to users under the behavioral category.  

Both EXIT89 and Simulex are considered to be implicit behavioral models33.  An 

“implicit” label represents those models that attempt to model behavior implicitly by 

assigning certain response delays or occupant characteristics that affect movement 

throughout the evacuation.  Instead of occupants following specific behavioral rules, they 

are primarily assigned a random delay time from a user-defined distribution.  The 

purpose of this input is to implicitly represent pre-evacuation decision-making and 

activities.  The user specifies a certain characteristic of the delay distribution for each 

model, which results in the assignment of a delay time to each individual simulated by 

the model.  EXIT89 allows the user to specify an overall distribution to the population 

and/or assign individual delay times to specific nodes.  Simulex, on the other hand, 
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assigns delay times to the population via three distributions; random, triangular, and 

normal. 

Also under the behavioral factor, each model allows the user to specify certain 

occupant characteristics that affect occupant movement and speed throughout the 

evacuation.  EXIT89 allows the user to choose between 3 different body sizes; American, 

Soviet, or Austrian (listed from smallest to largest body).  Also, the user chooses between 

emergency or normal movement speeds.   Although these seem to be a variety of choices 

for the simulated population, these characteristics, once chosen, automatically apply to 

the entire building population.  On the other hand, occupant characteristics can be chosen 

for groups within the building population when using Simulex.  Each body type 

corresponds to a particular body size and unimpeded walking speed.  Users of Simulex 

can choose characteristics provided by the model (speeds ranging from 0.5 m/s to 1.4 

m/s) or create a population of their own.  Simulex allows the user to place a variety of 

body sizes and unimpeded walking speeds throughout the building in order to more 

accurately represent a realistic situation. 

Lastly, additional inputs provided by the models are simulating occupants with 

disabilities and counterflow.  Both models have the capability of simulating occupants 

with disabilities, but in different ways.  For the EXIT89 model, the user must specify the 

number of occupants for each node and their respective percentage of able-bodied speed.  

From data collected in Ulster143, it can be seen that the percentage of able-bodied speed 

can differ depending upon the building component, such as horizontal, ramps, and stairs.  

Because of this, the user can present an average percentage over multiple building 

components.  Simulex, on the other hand, allows the user to input the actual unimpeded 
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speed of the disabled population on horizontal components, the variation in this speed 

(+/- m/s), the multiplication factor walking down stairs, and the multiplication factor 

walking up stairs.  Simulex allows the user to input more detailed data on the created 

population.  Finally, the counterflow option provides a limited method of simulating 

opposing flow throughout the building.   EXIT89 simulates counterflow by simulating a 

percentage of the node blocked over a specific amount of time during the evacuation.  

Fahy recommends no more than a 50% decrease due to firefighter counterflow76.  

Simulex, on the other hand, can handle only horizontal opposing flow for the hotel 

simulation.  A simulation was attempted where a firefighter would begin on the ground 

floor and move to the top floor for a rescue.  The model was unable to handle vertical 

counterflow, and after traversing 1 story, the firefighter became an obstacle stuck in the 

stairwell.   

Table 6.1 is used to represent the possible input variables available to users of 

each model, EXIT89 and Simulex.  These variables are used to represent best and worst 

case hotel scenarios for a hotel building.  The examples of fire scenarios are created in 

order to show how an engineer would bound evacuation results for a particular building 

using these two evacuation models.  The best and worst cases are used here only as 

examples for the engineer, not as a rule for all hotel buildings.   
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Table 6.1:  Input choices for each model, EXIT89 and Simulex 

Input Type User input – EXIT89 User input - Simulex 
 Building 

Configuration 
1-? nodes in hallway; 1 node 

per guestroom 
DXF files 

Procedures User-defined routes or shortest 
distance 

Blocking exits or shortest 
distance 

Environment CFAST data (yes, no) N/A 
Behavior – 
Body size 

American, Soviet, or Austrian Choice of 28 body types to 
create own population 

Behavior – 
Speed 

Emergency or Normal 0.5 m/s – 1.4 m/s; or another 
value chosen by user  

Randomly 
distributed 
delay time 

Minimum and maximum delay 
time (s); or ___ (s) for each 

node 

Mean delay time; +/- (s) 

Additional 
inputs – 

Counterflow 

% of node blocked by 
counterflow (0-100%); Time 

that effect occurs 

N/A for  
vertical counterflow 

Occupants with 
disabilities 

# of disabled occupants for 
each node; % of able-bodied 

speed traveled 

# of disabled occupants for 
the building; 0.49 m/s – user 

defined speed 

Examples of Evacuation Scenarios for a Hotel Building 

The following fire evacuation scenarios are used as examples of possible best and 

worst case scenarios used to bound the evacuation results: 

• Fire initiating in a guestroom on Floor 15 during the nighttime hours in the winter 

season (cigarette ignition on a mattress) 

• Fire initiating in the kitchen on the ground floor during the evening hours in the 

winter season (cooking equipment) 

• Fire initiating in the conference room area in the lower levels of the hotel during 

daytime hours in the spring season (electrical fire)  

• Fire initiating in the laundry area in the lower level of the hotel during the evening 

hours of the winter season (mechanical cause or incendiary) 

• Fire initiating in a guestroom on Floor 5 during the daytime hours in the summer 

season (air conditioning unit failure) 
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• Fire initiating in electrical wiring on the ground floor away from occupants or staff 

immediate discovery during the nighttime hours in the winter season  

 
All fire causes were taken from NFPA’s “Selections from the U.S. Fire Problem 

Overview Report Leading Causes and Other Patterns and Trends Hotels and Motel”134.  

These scenarios range from nighttime to daytime, winter to summer, and different levels 

throughout the hotel building.   

The inputs that would essentially change from one scenario to another would be 

body size, response time, occupant routes, initial position of occupants on the floor, 

building population numbers, and speeds.  Body size can change due to the season and 

weather.  Occupants with coats and heavier clothing can take up more room in hallways, 

smaller rooms, and stairwells, possibly causing a slower evacuation time.  Response 

times in the simulations would change due to the time of day and activity being 

performed by the occupants before notification.  During the nighttime scenarios, time 

would have to be added to the delay time for occupants to awaken and become alert 

enough to recognize that an emergency is occurring.  Occupant routes may change due to 

the presence of hotel staff at different hours of the day.  During nighttime situations, the 

desk staff is limited and the hotel cleaning and maintenance staff are not there.  Because 

of this, occupants may be more likely to travel longer and more familiar routes to exit the 

building.  Also depending upon the time of day, the occupant positions and numbers will 

change.  During the day, the guestrooms are likely to be empty and the ballroom and 

conference rooms filled.  Occupants positioning and numbers will certainly change the 

evacuation results.  Lastly, occupant speeds throughout the building will change 

depending upon the fire scenario.  If the occupants are closer to the fire, they may sense 
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the urgency of the situation and be more likely to leave immediately and walk at a faster 

rate than others further away from the fire.   This occupant characteristic also ties in with 

occupant positioning in its affect on the evacuation results. 

The input variables that are not explicitly stated within each fire scenarios that are 

taken into account for egress simulations are occupant gender, age and mobility 

distributions.  These will affect body sizes and speeds of the occupants in the hotel, 

which ultimately affects occupant movement and evacuation times.  These can be 

obtained by consulting with the building owner for population statistics or acquiring 

census information for the current year.   

Input Matrices for Best and Worst Case Scenarios using EXIT89 and Simulex 

From the six fire scenarios listed in this chapter, the best and worst case scenarios 

are chosen.  For each case and model, inputs are selected to reflect the specific scenario.  

This is to be used as an example of how EXIT89 and Simulex can capture the four factors 

of a hotel scenario.  Once the input matrices have been established, the missing factors 

are identified.  Also, other models that may have the capability of accounting for the 

missing factors are introduced. 

The best and worst case scenarios are the following: 

• BEST:  Fire initiating in the conference room area in the lower levels of the hotel 

during daytime hours in the spring season (electrical fire)  

• WORST: Fire initiating in electrical wiring on the ground floor away from occupants 

or immediate staff discovery during the nighttime hours in the winter season  
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The best case scenario is chosen as such because a fire that occurs during the day 

when people are around is not likely to create untenable conditions and a need for total 

evacuation of the building.  But, if total evacuation is procedure for the hotel in this 

scenario, people are awake and alert, a large number of hotel staff is on hand to direct 

occupants out of the building, and a lower response delay is likely because of this.  Also, 

fewer occupants are likely to be in their guestrooms, during the day (especially during the 

week days).  Many of the occupants are likely to be in the conference areas of the hotel, 

which is where the fire originates.  Lastly, because of the season (spring), occupants are 

unlikely to be wearing heavy coats.  All of these scenario characteristics may lead to a 

faster evacuation with a decrease in the delay time of the occupants.  

In the worst case scenario, the fire occurs during the nighttime in an area that is 

away from the sleeping rooms of the occupants.  This scenario is labeled as the worst of 

the six because the fire has a chance to grow behind the walls, possibly creating 

untenable conditions.  Since the occupants would be sleeping during this time, a large 

delay time is possible, especially since none of the occupants would be near the fire’s 

location of origin.  Also, the staff is limited during the nighttime, which may allow 

occupants to travel to further, more familiar exits.  This scenario considers that all 

occupants are sleeping in their guestrooms at full occupancy.  Lastly, since the scenario 

occurs in the winter months, occupants are likely to grab a jacket before exiting their 

guestrooms, if they leave at all.  All of these scenario characteristics lead to a slower 

evacuation time with an increase in the delay time of the occupants. 

For each model, the inputs for the best and worst case scenarios are displayed in 

Tables 6.2 and 6.3 as an example of how to bound evacuation results.   
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Table 6.2:  Best and worst case scenarios for EXIT89 

EXIT89 Worst Case Scenario Best Case Scenario 
 Building 

Configuration 
Multiple nodes in hallway;  

1 node per guestroom 
Multiple nodes in hallway;  

1 node per guestroom 
Procedures User-defined routes to familiar 

exits 
Shortest route 

Environment CFAST data (yes, no) CFAST data (yes, no) 
Behavior – 
Body size 

Austrian (largest) American (smallest) 

Behavior – 
Speed 

Normal speed Emergency speed  

Randomly 
distributed 
delay time 

5 min to 15 min for 100% of 
population 

Immediate to 30 seconds 

Occupants with 
disabilities 

Occupy accessible rooms with 
slower moving occupants 

None 

 
Table 6.3:  Best and worst case scenarios for Simulex 

Simulex Worst Case Scenario Best Case Scenario 
 Building 

Configuration 
Import DXF files Import DXF files 

Procedures Alter distance map to move to 
familiar exit 

Shortest distance 

Environment N/A N/A 
Behavior – 
Body size 

Distribution of males, female, 
children, and elderly for a 

hotel population with jackets 

Distribution of males and 
females only 

Behavior – 
Speed 

Distribution of 0.5 – 1.5 m/s Distribution of 1.0 – 1.5 m/s  

Randomly 
distributed 
delay time 

10 min mean, +/- 5 min 15 second mean, +/- 15 
seconds 

Occupants with 
disabilities 

Occupy accessible rooms with 
slower moving occupants 

None 

 

Missing Egress Factors from EXIT89 or Simulex 

There are certain egress factors related to hotels that are not captured in 

evacuation simulations with EXIT89 and Simulex.  For the building configuration factor, 

it is important to represent the building accurately.  This can sometimes be a problem 
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with coarse network models, such as EXIT89.  It is up to the user to specify the node and 

arc connections for the floor plan, which will ultimately guide occupants throughout the 

building and to the exits.  If this is done carelessly or arbitrarily, occupants could follow 

paths which are not realistic.  Fine network models that allow the user to import a CAD 

drawing are ideal because the model calculates occupant paths, and occupants move more 

realistically to their goal.  Fine network models also allow the user to input obstacles that 

may hinder occupant movement. 

Under the procedures factor, neither model allows the user to input the presence 

of a staff member aiding in the evacuation.  Such can be done implicitly by defining a 

specific route, but the presence of a staff can aid beyond route finding.  Staff can 

determine the severity of the situation, alert occupants, provide instructions, provide 

information to the firefighters for disabled rescue, calm or increase movement of the 

occupants, etc.  Although this would be difficult to model, it may be a part of a fire 

situation in a hotel building.  Also not simulated by either model is previous training and 

experience of the occupants.  Previous training and experience in fires36 has been shown 

to affect the delay time of the occupant.  This is also difficult to model as well as 

determine the training status of the population to be modeled.  However, this is another 

factor in hotel buildings that ultimately affects the overall evacuation time. 

There are some obvious limitations to running the fire model and evacuation 

model separately for a performance-based design project.  This method overlooks the 

interaction between the fire conditions and the occupants.  Even though Jin’s studies28 

have their limits, they begin to show that heat and irritant smoke affect occupant 

movement, senses, brain function, and anxiety level.  EXIT89 has the ability to simulate 
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turn back behavior due to the optical density of the smoke, however, the model lacks all 

other effects to the occupant.  Although there is a lack of data on how asphyxiants and 

heat affect the stress level and brain functions of the occupant, this is an obvious concern 

of egress through any building.  Simulex does not currently have this capability. 

Lastly, similar to the environmental factor, EXIT89 and Simulex do not capture 

all of the behavioral factors associated with a hotel evacuation.  To begin with, for any 

tall building, exhaustion on the stairs is not simulated.  There is no decrease in speed due 

to number of stories traversed in either of the two models.  Also, social affiliation of 

friends and families is overlooked.  If families are in different locations when alerted of 

an emergency, the models make no effort to reunite the family members or friends before 

beginning the evacuation process.  EXIT89 and Simulex account for delay times by 

distributing a delay time across all occupants, instead of assigning individual activities to 

occupants with corresponding activities delay times.  In other words, there lacks specific 

simulation of the following individual activities; firefighting, searching for occupants or 

the fire itself, preparation activities (getting dressed, waking others), etc.  Another 

possibility of occupant egress that lacks simulation using the two models is elevator use.  

Even though a majority of elevators are recalled to the lobby when the fire alarm sounds, 

the issue of elevator evacuation is a current concern in human behavior.  There is 

currently a building in Australia where the use of elevators is a part of the evacuation 

procedures144 and the modeling of such is becoming more useful as technology and mind 

set changes.   

Simulex allows the user to simulate occupants carrying items, such as babies and 

book bags, as well as occupants that are wheelchair bound.  The user can change the body 
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size of a particular population, which allows for such unique shaped occupants.  EXIT89, 

on the other hand, does not have this capability.  Both models allow the user to simulate 

an occupant sleeping or impaired by a response delay distribution only.  Lastly, the 

incorporation of environmental conditions is lacking in the case of Simulex and 

simplified in the case of EXIT89, as stated earlier.  However, both models do not 

simulate occupants returning to their rooms and preparing an area of refuge, if the 

conditions outside of their guestroom are untenable.  The preparation of an area of refuge 

can occurr2,133, but lacks simulation and the proper understanding of the interaction 

between smoke and occupants.   

Current Evacuation Models that can Account for Some of these Missing Factors 

While EXIT89 and Simulex lack the incorporation of certain factors of an 

evacuation from a hotel building, there exist other models that can incorporate some of 

them.  Table 6.4 lists some of the current capabilities of models today that can address 

factors of a hotel evacuation.  However, it should be mentioned that just because a model 

can simulate such an activity, does not mean that there is sufficient data to support the 

results.  Where there is data to support the incorporation of a particular factor, it is noted 

in this section.  If a reference is not provided, the supportive data was not evident.  Most 

of these models are labeled as behavior models, with the exception of STEPs (given a 

Movement model categorization).   
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Table 6.4:  Features of models that contribute to a hotel evacuation 

Model Contribution to a hotel evacuation 
EXODUS • Turn back behavior  

• Movement affected by presence of smoke 
EvacSim • Fire wardens instruct occupants on each floor 

• Knowledge sharing among occupants 
• Elevator use 
• Simulation of pre-evacuation activities 

CRISP • Vertical counterflow 
• Simulation of pre-evacuation activities 

STEPs • Social Affiliation – family members reunite 
• Elevator use 

ASERI • Turn back behavior 
• Simulation of pre-evacuation activities 

EXITT 
(residences only) 

• Turn back behavior 
• Simulation of pre-evacuation activities 
• Simulation of occupants assisting others in the building 

EGRESS • Simulation of response and decision-making delays 
• Simulation of fire fighters moving toward the fire 

VEGAS • Simulation of occupants responding to behavior of others 
around them 

E-SCAPE • Simulation of pre-evacuation activities 
• Simulation of group conformity 
• Delays affected by occupant special training and/or fire drills 

BGRAF • Simulation of pre-evacuation activities 
• Simulation of environmental conditions affecting evacuation 

BFIRES-II • Simulation of pre-evacuation activities 
 

As indicated in Table 6.4, many current evacuation models have the capability of 

simulating individual pre-evacuation activities.  The method involves assigning a specific 

time period to complete each activity (and probabilities are likely to be included), instead 

of a response delay distribution for the entire group or population.  The simulation of pre-

evacuation activities is used by EvacSim, CRISP, ASERI, EXITT, E-SCAPE, BGRAF, 

and BFIRES-II.   

EXODUS, ASERI, and EXITT simulate turn back behavior if the optical density 

of the smoke warrants such behavior.  There is data available by Bryan and Wood2 on 

this subject, which is used by EXODUS and ASERI.  EXODUS also uses Jin data28 to 
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simulate movement affected by smoke, which involves a decrease in movement to an 

eventual crawl position.  Overall, with the exception of STEPs, all models listed in Table 

6.4 incorporate fire effects using certain methods specified in Chapter 2 of this report.  

Another interesting feature involving fires is the capability of BGRAF to simulate 

environmental conditions affecting the evacuation and to simulate the occupants affecting 

environmental conditions.  This is a realistic scenario, however it is not clear whether 

there is data to support such a unique capability.  

EvacSim is a unique model that fulfills many of the missing factors presented 

earlier.  The model, however, is still in the research stage and may never be released for 

public use.  The model has the unique capability of incorporating fire wardens that guide 

and instruct occupants on their specific floor.  These wardens can hold occupants on their 

floor until further instruction, relay messages to leave the floor immediately, and perform 

room to room searches of their floor.  EvacSim also simulates elevator use by occupants 

with disabilities and incorporates the familiarity factor to lead occupants to further exits.  

Also, similar to fire input, all of these models incorporate the use of occupant familiarity 

(as a variable or through user-defined routes) in the simulation. 

After discussion and work with the CRISP developer at BRE, it was discovered 

that the vertical counterflow capability was recently incorporated into the model.  The 

model allows the user to specify which occupants will act as firefighters and perform 

search and rescue on different floors of the building.  The model can simulate actual 

movement of an occupant against the flow in the stairwell.  The STEPS model contains 

the unique capabilities of social affiliations of a family group.  Before the identified 
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family group will begin evacuation, they are simulated to unite in a certain place and 

evacuate together.  STEPs can also simulate limited elevator use. 

The final unique capabilities of models involve behaviors simulated by EGRESS, 

E-SCAPE, and VEGAS.  EGRESS has the capability of simulating both the action and 

decision-making delays.  This is unique in that the model recognizes the steps associated 

with the pre-evacuation process.  Lastly, VEgAS and E-SCAPE incorporate the 

simulation of occupants who respond to the situation based on the behavior of the others 

around them.  For instance, if an occupant is near a “flock” or group of occupants acting 

on a cue, that occupant will also act in a similar manner. 

All of these behavioral capabilities begin to simulate a more realistic evacuation 

from any type of building.  As stated earlier, just because a model capability is listed and 

discussed, does not mean that that capability is based in research data.  This is still a 

major necessity in the field of evacuation modeling.  Because of this, it may be beneficial 

in many cases to use a simpler model that lacks the “bells and whistles” of evacuation 

modeling, if the user is more confident with the data supporting the input choices.   
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CHAPTER 7: DESIGN SCENARIO FOR GUEST BEDROOM HOTEL FIRE 
 

Engineers commonly run all evacuation simulations (in order to bound the 

evacuation results) for a performance-based design with one evacuation model.  The 

purpose of this section in the thesis is to challenge this idea.  The question to be answered 

is will two specific models give similar output for the same design scenario?  Negative 

results may then show the importance of choosing the egress model with the appropriate 

features for the building, and I have provided a mechanism to do this in Chapter 2. 

A fire scenario is created in which both models run in an attempt to simulate such 

an evacuation.  Each model is run “blindly” by the author to simulate the scenario using 

the full range of capabilities that each evacuation model has to offer.  The purpose of the 

fire comparison run for each model is to simulate the fire scenario as close as possible to 

an actual evacuation.  Output from each model, such as evacuation times, population flow 

split to the exits, and time spent in each exit, is compared and analyzed.  Lastly, reasons 

for any differences are identified and explained.   

In this chapter, the fire scenario for the comparison run is discussed.  

Characteristics of the fire scenario are the cause, location, and size of the fire, the time of 

day and season of the fire ignition, the distribution of expected pre-evacuation times for 

this type of fire, the expected occupant characteristics for a hotel building (age and 

gender), and the actual building configuration used for the comparison run. 

The Fire 
 

The NFPA U.S. Fire Problem Overview134 states that, “Although fatal fires in 

[hotels and motels] are less frequent than fatal fires in homes, the potential for large loss 

of life is very real.”  In the United States throughout the years of 1994 through 1998, 
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19,200 fires have occurred in hotels causing approximately 140 deaths, 1400 injuries, and 

$812 million dollars worth of damage.    

It is expected that when the number of fires decreases dramatically, as it has since 

1980 from 12,200 to 4,400 (in 1998), that the deaths, injuries, and property damage 

would follow suite.  Unfortunately, this is not the case.  Since 1980, the number of hotel 

fires have decreased by 60%, however the number of deaths, injuries, and direct property 

damage ($) per year has remained steady, especially over the past 10 years.  Of the fires 

occurring between 1994 and 1998, the most frequent cause of fires, civilian injuries, and 

direct property damage in hotels is suspicious or incendiary behavior.  The top five 

causes of hotel fires are presented in Table 7.1 for Years 1994-1998.   

Table 7.1:  Top five causes of hotel fires for Years 1994-1998 

Rank Cause Frequency Approx. # of fires 
1 Suspicious/Incendiary 16.6% 800 
2 Cooking equipment 15.4% 800 
3 Appliances 14.6% 700 
4 Smoking materials 13.0% 600 
5 Heating equipment 9.8% 500 

 
The most frequent cause of fire involving civilian deaths in hotel fires occurring 

between 1994 and 1998 is due to smoking materials.  Table 7.2 presents the top five 

causes of hotel fires involving civilian deaths. 

Table 7.2:  Top five causes of hotel fires involving civilian deaths 

Rank Cause Frequency  # of deaths 
1 Smoking materials 37.5% 11 
2 Suspicious/Incendiary 28.2% 8 
3 Heating equipment 8.8% 2 
4 Other Equipment 8.4% 2 
5 Open flame/match 5.3% 1 

 
The top five causes of hotel fires involving civilian injuries in hotel fires are presented in 

Table 7.3 for Years 1994-1998. 
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Table 7.3:  Top five causes of hotel fires involving civilian injuries 

Rank Cause Frequency # of injuries 
1 Suspicious/Incendiary 24.4% 68 
2 Smoking materials 21.2% 59 
3 Appliance 11.7% 32 
4 Cooking equipment 10.6% 30 
5 Electrical distribution 7.2% 20 

 
The top five causes of fires involving direct property damage ($) in hotel fires are 

presented in Table 7.4 for Years 1994-1998. 

Table 7.4:  Top five causes of fires involving direct property damage 

Rank Cause Frequency $ of damage (mil) 
1 Suspicious/Incendiary 29.2% $20.4 
2 Heating equipment 26.8% $18.7 
3 Electrical distribution 11.3% $7.9 
4 Other Equipment 7.0% $4.9 
5 Smoking materials 6.6% $4.6 

 
 

The NFPA U.S. Fire Problem Overview134 also documents the frequency of fires, 

casualties, injuries, and property damage by area of origin within the hotel.  The most 

frequent area of origin for all four of these categories is the bedroom.  The top five most 

frequent areas of origin for fires to occur are included in Table 7.5. 

Table 7.5:  Top five most frequent areas of origin for fires 

Rank Area of Origin Frequency Approx. # of fires 
1 Bedroom 25.3% 1200 
2 Kitchen 17.2% 800 
3 Laundry room 12.2% 600 
4 Lavatory 4.4% 200 
5 Hallway/Corridor 4.4% 200 

 
 

The most frequent areas of origin for civilian casualties to occur are included in 

Table 7.6. 
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Table 7.6:  Most frequent areas of origin for civilian casualties 

Rank Area of Origin Frequency # of deaths 
1 Bedroom 56.2% 16 
2 Lounge/den 12.7% 4 
3 Other area 10.5% 3 
4 Kitchen 6.4% 2 
5 Lavatory 4.3% 1 

 
The most frequent areas of origin for civilian injuries to occur are included in 

Table 7.7. 

Table 7.7:  Most frequent areas of origin for civilian injuries 

Rank Area of Origin Frequency # of injuries 
1 Bedroom 40.4% 113 
2 Kitchen 11.0% 31 
3 Laundry room 9.2% 26 
4 Lounge/den 5.8% 16 
5 Lavatory 4.7% 13 

 
The most frequent areas of origin for property damage to occur are included in 

Table 7.8. 

Table 7.8:  Most frequent areas of origin for property damage 

Rank Area of Origin Frequency $ of damage (mil) 
1 Bedroom 23.9% $16.7 
2 Kitchen 6.8% $4.7 
3 Other area 5.9% $4.2 
4 Attic 5.8% $4.1 
5 Laundry room 5.1% $3.6 

 
The scenario chosen to be modeled by EXIT89 and Simulex is one that presents a 

high risk to occupants residing in a hotel.  From the U.S. hotel statistics presented by 

NFPA, hotel fires most frequently begin in the bedroom, which results in frequent deaths 

and injuries to civilian guests.  And, from the fire cause data, possible causes of a fire in a 

guest bedroom could be incendiary or smoking materials.  Other conditions to consider in 

the scenario are the floor of origin, time of day and the season/weather.  The floor chosen 

as the floor of origin is the 15th floor.  By choosing the 15th floor, the fire presents a risk 

to occupants high in the building who have the farthest distance to travel to evacuate the 
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building.  Also, to present the greatest amount of risk to the occupants (or the worst case 

scenario), a time of 3 a.m. and the season of winter is chosen for the scenario.  A night-

time scenario considers that the occupants of the hotel are sleeping and may take 

additional time to wake up and prepare to leave the guest room.  Also, by choosing a 

winter scenario, the occupants may take additional time to dress appropriately for time 

spent outside of the hotel.  A winter scenario also improves the mechanics for smoke 

spread to the upper floors.  The final scenario chosen for modeling of the 21-story hotel is 

the following: 

• A mattress fire begins in the guest room of the 15th floor of the hotel around 3 a.m. 

during the winter season.   

• The cause of the fire is due to a guest smoking in bed and falling asleep with cigarette 

still lit. 

• The fire burns slowly for a while and eventually engulfs the mattress to develop a fast 

fire.   

Delay Times 
 

A large amount of research was performed to locate delay times for hotel 

buildings during the night-time or sleeping hours3,76,140,145,146,147.  Many researchers, 

Proulx, Fahy, Purser, Gwynne, Boyce, Brennan, and others, were contacted to obtain 

delay times for night-time hotel drills or fires.  The article that contains the most 

information on this topic was presented at the 2nd International Symposium on Human 

Behavior in Fire by R. Fahy and G. Proulx140.  The article focuses on creating a database 

of delay times and walking speeds for evacuation modeling.  The article contains a 

collection of delay times for hotels, office buildings, department stores, and apartment 
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buildings.  Only two entries of the database focus on high-rise hotel buildings.  The two 

hotel buildings that Bryan studied did not give an initial alarm notification of the fire 

situation, resulting in extremely long time delays ranging from 5 minutes to 2 or 3 hours.   

Since the high-rise hotel building for this scenario is equipped with a voice 

communication system, such high delay times are not feasible.  Another source of delay 

times for hotel buildings is Proulx’s chapter of the SFPE handbook3.  Proulx discusses 

estimated delay times to start evacuation included in the 1997 British Standard, Part 1:  

Guide to the Application of Fire Safety Engineering Principles, Draft for Development 

DD240148.  For hotels and boarding houses equipped with pre-recorded messages, as 

found in the design scenario hotel used for this study, DD240 suggests a delay time of 4 

minutes.  The delay time value of 4 minutes seems small, and no reference material was 

found to defend such a number.  Another source of hotel delay times was found in 

Mizuno et al.145 who reports delay times of evacuating hotel staff to be a mean of 7 

minutes during a specific fire event.  Although these sources give starting information on 

hotel fires, the range of delay times are quite large and are taken from scenarios 

dissimilar to this design scenario. 

The next step was to research delay times for apartment buildings, since much 

more information on delays could be found on this building type.  The author 

acknowledges the difference between hotels and apartments, but also recognizes that in 

both buildings, occupants can be sleeping during the alarm.  Arousal from sleep is a 

major component to the delay time in this scenario, and the similarities of the building 

types outweigh the differences. 
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For apartment building delay times, DD240 also suggests a time of 4 minutes for 

a pre-recorded voice communication system.  Also, Proulx140 has done a substantial 

amount of work in apartment buildings by performing fire drills and documenting 

movement during actual fires.  She has stated that none of her observed fire drills were 

performed at night.  On the other hand, she has documented the Forest Laneway fire that 

occurred during night-time hours.  She stated that for those occupants who evacuated 

during the first hour, their mean delay time was approximately 10 minutes.   

Overall, the most substantial work on apartment delay times has been performed 

by Brennan at VUT147.  She has put together a database of information from apartment 

fires and has established time ranges of delay times for the first 70 cases of fire incidents.   

The time ranges for the apartment buildings are calculated from the time of the 

cue that resulted in the initial action.  The database distinguishes between those who 

begin evacuation without investigating and those that do investigate first.  The time range 

to begin evacuation (the occupants are asleep) is 0.5 m – 17 minutes (mean of 5 minutes) 

for those who do not investigate.  For those who investigate, the time range is 2 – 21 

minutes with a mean of 6 minutes.  Brennan does not make distinctions in delay times 

dependent upon the type of alarm system within the building, as DD240 does.  When 

combining Proulx data from the Forest Laneway fire, Brennan data from the apartment 

database, and DD-240 guidance, while also taking into account that this design hotel is 

equipped with a voice alarm system, the delay time for the guest bedroom fire scenario 

will range from 0.5 minutes – 10 minutes, with a mean of 5 minutes.  This range of delay 

time stays close to the mean of data from Brennan, but contains a maximum of 10 

minutes (instead of 17 or 21) due to the use of a voice communication system149.  As 
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Proulx has shown in recent work129, the use of voice communication systems lessens the 

amount of delay time taken by the occupants of high-rise buildings.   

Occupant Distribution for Fire Scenario 
 

Statistics on hotel guest occupant distributions in the U.S. was obtained from two 

different sources, D.K. Shifflet’s DIRECTIONS Travel Information System and the 

American Hotel and Lodging Association (www.ahla.com).  The statistics from D.K. 

Shifflet’s DIRECTIONS, provided from Marriott Inc., contain a wide variety of 

information such as the percentages of male and female guests, a distribution of the ages 

staying at hotels for all types of stays, and the additional percentage of children present 

during leisure trips.  These distributions are provided below in table 7.9. 

Table 7.9:  DIRECTIONS distributions of hotel stays in the U.S. 

Gender Distribution Age Distribution 
Male 58% Ages 18-34 26% 

Female 42% 35-49 37% 
  50-64 26% 

89% adults 

  65+ 11% 11% over 65 
  During leisure travel: 12% children 

 
There is a wide distribution of ages of hotel guests, which also depends on the 

type of stay, business or leisure.  Information on the distribution of type of stay was 

found on the American Hotels and Lodging Association (AHLA) website, 

www.ahla.com, and is included in Table 7.10. 

Table 7.10:  AHLA distributions of hotel stays in the U.S. 

Type of Stay %  
Transient Business 29 

Attending Conference 27 
56% 

business 
Vacation 24 

Other reasons (personal, family, special event) 20 
44% 

leisure 
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This information aids in understanding what percentage of the time spent in hotels 

is for business or for leisure.  For business stays, it is unlikely that children are included 

in the trip.  Therefore, it is important to get an overall percentage of occupants, whether 

for business or leisure, that includes children, adults, and older adults for this modeling 

scenario.  Some models take into account body sizes and corresponding walking speeds, 

depending upon the gender and age of the occupant.   

From the AHLA chart, 56% of the hotel stays are for business purposes and the 

other 44% are considered leisure for the purposes of an overall calculation of the 

occupant distribution at the time of the fire emergency.  For business stays, children are 

not considered as part of the occupant distribution.  By combining the gender, age, and 

type of stay distributions, it can be calculated that the occupant distribution for business 

stay will contain 52% male adults, 37% female adults, and 11% older adults over 65 

years.  The calculation chart for this distribution is found in Table 7.11. 

Table 7.11:  Business stay distribution 

56% Business stay 
Age dist. Gender dist. Calculation Business overall dist.

89% adults 58% male adult 0.58 * 89% 52% male adult 
 42% female adult 0.42 * 89% 37% female adult 

11% 65+    11% older adult 
0% children    0% children 

 
The same type of calculation is performed for leisure stays and is included in 

Table 7.12.  By combining gender, age, and type of stay, the occupant distribution 

calculated for leisure stay is 45% male adults, 33% female adults, 10% older adults over 

65, and 12% children. 
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Table 7.12:  Leisure stay distribution 

44% Leisure stay 
Leisure dist. Age dist. Gender dist. Calculation Leisure overall 

dist. 
88% over 18  58% male adult 88 * 0.89 * 0.58 45% male adult 

 
89% adults 

42% female adult 88 * 0.89 * 0.42 33% female adult 
 11% over 65  88 * 0.11 10% older adult 

12% children    12% children 
 

In order to calculate the overall occupant distribution which takes into account the 

business and leisure stay distribution, the following calculations are made to combine the 

two into one distribution.  From these calculations, an overall distribution of occupants 

present for the hotel bedroom fire is the calculated to be the following:  49% adult males, 

35% adult females, 11% older adults over 65 years old, and 5% children.  Table 7.13 

contains the calculation performed to obtain this distribution. 

Table 7.13:  Overall distribution of the hotel occupants - business and leisure 

Occupant Type Business % 
(56% of stays) 

Leisure % 
(44% of stays) 

Calculation Overall % 

Adult Male 52% 45% 56 * 0.52 + 44 * 0.45 49% 
Adult Female 37% 33% 56 * 0.37 + 44 * 0.33 35% 
Older Adult 11% 10% 56 * .11 + 44 * 0.10 11% 

Child 0% 12% 56 * 0 + 44 * 0.12 5% 
 

This scenario assumes that 2 men or 2 women will share one room for business 

stays in parts of the hotel, and that couples of men and women will share one room for 

leisure stays in other parts of the hotel (along with their children in certain rooms).  No 

rooms will have single occupants because this scenario is anticipating a worst case 

scenario, which is full capacity of the hotel.   

The main purpose is to provide an average scenario comparison run for each 

model.  Then, the comparison run’s inputs are tweaked to bound the evacuation results by 

higher and lower evacuation times.   
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Because of this purpose, it has been decided that occupants with disabilities will 

not be simulated in the fire scenario for this model comparison run.  Although data is 

available on the movement of occupants with certain disabilities140,143, it is of interest to 

study differences between two models, instead of including an infinite amount of input 

variable differences.  However, additional simulations used in the model comparison will 

feature disabled occupants. 

Also, the simulation of occupants with jackets or other items are included only in 

the bounding analysis.  There lacks a great deal of data on movement with heavy and 

bulky clothing or other items, which is the main reason for such to be included in the 

bounding analysis, instead of the main comparison run. 

 
Building Configuration88,150 

 
The building selected for the comparison is a 28-story high-rise hotel.  The 

building is located on the west coast of the United States and is used for both business 

and leisure travelers.  The height of the building is 81.2 m and the gross floor area is 

39,320 m2.  The gross area of each floor level ranges from 1,168 to 1,204 m2.  The 

building consists of 28 levels above ground and 2 levels below grade.   

Because the purpose of this study is to compare the results from two models 

rather than predict actual evacuation times, a simplified version of the sample building is 

modeled.  Levels 1-3 are used as public spaces (containing a ballroom, meeting rooms, 

health club, mechanical spaces and other support spaces), with no guest rooms provided.   

Level four consists of a hospitality suite, guestrooms, and a walk-on terrace, levels 5-24 

contains guestrooms and suites, level 25 contains the concierge’s club, and levels 26-28 

consists of mechanical space.  In this study, only floors 4 through 24 are modeled to use 
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those levels that the guests would be occupying during the night-time fire scenario.   Four 

of the upper floors and three of the lower floors of the hotel are omitted from the analysis 

because those areas (meetings rooms and mechanical spaces) are unlikely to be occupied 

by a large number of occupants during the night-time hours.  Also, the block of elevators 

located on each floor of the hotel is also omitted from the scenario.  This is due to the fact 

that elevators are currently not allowed to be used during an emergency by the occupants 

of a building, as specified in ASME A17.1150.  An empty space is left on each floor plan 

where the elevators resided, as shown on Figure 7.1.  

For each model simulation, as soon as occupants in the stairway travel from floor 

4 (see Figure 7.1) to the door of the stairwell lobby entering onto floor 3 (see Figure 7.2), 

they are assumed to arrive at their destination of safety.  Being that the first three floors 

of the building are neglected in this analysis, the input of each model is simplified by 

considering the fourth floor to be Floor 1 and the ground floor to be Floor 0.     

 
 
 
 

 
Figure 7.1: An AutoCAD drawing of Floor 4 – changed to Floor 1 
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Figure 7.2: An AutoCAD drawing of Floor 3 – adjusted to Floor 0 

 
 

All guestrooms are occupied by either 2 or 4 guests (depending upon the size of 

the room).  There is a conference room on the first floor that can house 54 occupants, 

however since the fire scenario occurs at 3 a.m., no occupants are initially located in the 

conference room.  The listed numbers of occupants in each room are presented in Figure 

7.3 for Floor 1 as a typical floor. Considering all 21 floors, a total of 1044 occupants are 

present in the building at the time of the evacuation.  Both exits, consisting of two 

stairways located on the right and left sides of the building, are available to occupants in 

each simulation. 

 
Figure 7.3: Occupant Load on Floor 4 (adjusted to Floor 1) 
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The width of each of the two stairs, measuring the wall to wall distance, is 1.13 m.  

The width of the handrails from each side of the stairway will not be subtracted from the 

width of the stairway by the user of the model because the models use movement 

algorithms that account for space from walls and obstruction.  Also, it has been suggested 

that although occupants avoid brushing up against the side of a wall, they treat their 

distance from the handrails differently23.  The length along the diagonal connecting the 

stair treads in both Stair 1 and 2 is 9.5 m.   
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CHAPTER 8: DESCRIPTION OF THE EVACUATION SIMULATIONS RUN WITH 

EXIT89 AND SIMULEX  
 

As mentioned in Chapter 7, the main question to be answered is whether or not 

two specific models give similar output for the same design scenario.  This chapter aims 

to highlight the input parameters used in each model to simulate the fire comparison 

scenario.  Chapter 5 discusses the types of input available for each model, and Chapter 8 

highlights the choices made to simulate the fire scenario and the reasons. 

In addition, each model is used in an attempt to bound evacuation results from the 

example hotel building.  The building configuration will remain constant for all 

evacuation runs.  Chapter 7 provides a synopsis of how the actual hotel building is altered 

for the purpose of this comparison run.  Only the occupant characteristics will change in 

order to anticipate other hotel occupant scenarios.  The characteristics that are likely to 

change with bounding scenarios are the following:  ages and genders (which have an 

impact on body size and walking speeds for EXIT89 and Simulex), occupant position 

within the hotel, occupant routes, population numbers, delay time, and occupant mobility.  

Since there is uncertainty in all of this information, it is important to understand the 

sensitivity of changing these values and provide an appropriate bound on the evacuation 

time. 

However, for the purpose of this thesis, occupant position within the floor, 

population numbers, and occupants routes will not change.  The reason for this is due to 

the fact that the hotel building is altered for comparison purposes.  A performance-based 

design would likely change occupant positions and population numbers in relation to the 

time of day, for example, placing specific number occupants in conference rooms during 
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the day and guestrooms at night.  However, because the building is altered for this thesis 

to contain only guestroom floors for model comparison purposes, this is not a possibility 

and lies outside the scope of this thesis.  A performance-based design could also alter 

occupant exit paths to use a more familiar main exit to the building.  This is also out of 

the scope of this thesis for the same reason.   

Lastly, since only two exits are simulated for the altered hotel building, exits or 

stairs will not be simulated as blocked for the entire scenario.  If the models are equipped 

with the capability to manually block stairs doors during certain time periods of the 

simulation, this could be another technique to bound the evacuation results.  This is not a 

capability of EXIT89 or Simulex.  Also, since no fire simulations are run for this thesis, 

this is out of the scope of the project.  

Due to the purpose of model comparison, only occupant characteristics such as 

age, gender, and mobility are altered (which are ultimately labels that change the way that 

occupants move throughout a building).  Lastly, delay times are altered and compared. 

Comparison Run for Simulex: 

First, the inputs provided to Simulex for the fire scenario comparison (design 

scenario) run are identified and the reasons for choosing such inputs are explained.   
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Figure 8.1:  Simulex snapshot of separate stair building input 

 
As mentioned earlier, the Simulex model allows the user to import CAD drawings 

of each floor into the program.  The user then has options of how to link the floor plans 

together with stair sections.  For the fire comparison, each floor plan is linked to a 

separate, created stair section.  The inputs provided by the user are the stair widths and 

length for each stair section.  The stair length provided to the model for each stair section 

is 7.3 m, which is the length of 2 flights with 1 landing in between (the distance in 

between 2 floors).  The other landing (on the actual floor as shown in Figure 8.1) is not 

included in the stair length because the occupants actually traverse that distance on the 

floor plan.  Figure 8.1 shows the Left stair of Floor 3 on the floor plan and the adjoining 

stair sections from Floor 4 to 3 and from Floor 3 to 2.  Occupants traveling on the stair 

from floor 4 (Link 15), pass through Link 13, continue on the landing on Floor 3, pass 

through Link 11, and travel to Floor 2 (Link 9) via the stair.  This complicated link and 

stair configuration is created in order to more accurately simulate occupant movement 

From floor 4 to 3

Landing on floor 

Stair sections 

Left Stair 
on Floor 3

From floor 3 to 2

From floor 4 to 3From floor 3 to 2 
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through the building.  Another option would have been to include one long continuous 

staircase that all floor plans feed into for each stair.  However, the continuous stair would 

not allow for occupant body turning on the floor plan, which more accurately simulates 

an evacuation via stairs. 

Other information about the hotel building is significant in the simulation of the 

fire comparison scenario.  On the floor containing the conference room, the left landing is 

slightly larger, causing occupants to move 0.6 m longer, however only on that specific 

floor.  The stair sections are 44 inches in width and the guestrooms range from 350 – 440 

ft2, with guest suites of 800 ft2.  When entering stair width, frame-to-frame stair 

dimensions are used, instead of incorporating boundary layers.  Frame-to-frame distance 

is used because Simulex slows occupants down due to inter-person distance from other 

occupants as well as obstacles and walls83.  The incorporation of boundary layers seems 

redundant.  Also, handrails are not subtracted from stair widths due to the fact that people 

can and will rub against the rail when walking down the stair.   

For the choice of shortest route vs. a created distance map, the shortest route 

option (default distance map) is chosen for this fire scenario.  The reason for this is due to 

the simplicity of the hotel’s floor plan.  The floor plan is equipped with guestrooms 

surrounding one main hallway with exits on the right and left sides.   

In Simulex, the user is required to choose a certain occupant population consisting 

of single or multiple body types for the building population.  This occupant population 

can be prescribed for the entire population or for a group within the hotel building.  As 

described earlier in the occupant distributions section of Chapter 7, 49% of the occupants 

are male adults, 35% are female adults, 11% are older adults, and 5% are children.  This 
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distribution combines statistics from both business and leisure travel stays.  By 

identifying this hotel population, a certain selection of unimpeded walking speeds and 

body sizes are distributed throughout the hotel building.  The user is also required to 

visually place the occupants throughout the building, manually or using different methods 

provided by the program.  For this fire comparison run, occupants are manually placed at 

the back of each guestroom, opposite of the doors, to simulate the location of beds.  It is 

assumed that because of the nighttime scenario, occupants would be located in bed. 

For the comparison run, no smoke data is incorporated into the Simulex run, 

because the program does not currently have this capability. 

Finally, the mean delay time for the hotel scenario is 5 minutes, plus or minus 5 

minutes, distributed with a random distribution throughout the building.  A random 

distribution is used due to the lack of data on hotels and its corresponding distribution for 

the simulated population.  The support for this response delay range is given in Chapter 

7.  Also added to the comparison for each model, a run without occupant delay is 

simulated. 

Simulex Input for 3 a.m. Cigarette Burn in a Guest Bedroom: 

• Building configuration input through CAD files 

• Shortest route chosen for all occupants 

• No exits blocked for any occupants, i.e. Default distance map 

• Occupant distribution for scenario:  49% (512) adult males, 35% (365) adult females, 

11% (115) older adults over 65 years old, and 5% (52) children 

• No delay or Mean delay time = 5 minutes; +/- 5 minutes; Random distribution 
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Comparison Run for EXIT89: 

Similar to the Simulex section, the inputs provided to EXIT89 for the fire 

comparison (design scenario) run are identified and the reasons for choosing such inputs 

are explained.   

As explained earlier, EXIT89 is a coarse network model.  This requires the user to 

specify a chosen amount of nodes and arcs for each floor plan and stair section of the 

building.  For larger spaces, such as the hallway, it is important to determine the 

appropriate amount of nodes in the hallway of each floor that would accurately represent 

the shape of the building.   

 
Node input sensitivity analysis for the hallway 

Work is performed on the sensitivity of EXIT89 to the choice of the number of 

nodes for this hotel building configuration.  Even though this floor plan provides a simple 

configuration, the center hallway is long and connects to a large number of nodes 

representing the guestrooms.  Because of the shape of the hallway, the number of nodes 

in the hallway is altered from 7 to 1 (shown in Figures 8.2-8.9) to see if the population 

flow split to each exit and the evacuation times change dramatically.  Results of this 

exercise are displayed in Table 8.1.   

It should be noted that all node change simulations contain the following inputs:  

American body size, normal walking speed, shortest route calculation, 1044 total 

occupants (empty conference room), no boundary layers on the doors, guestroom, 

corridors, and stairs, and no delay time for occupant movement. 

Figure 8.2 shows the placement of the nodes for the 7 node simulation.  Nodes are 

strategically placed so that, except for the node on the left, all are approximately 7.5 feet 
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away from any guestroom entrance.  A dotted line in Figure 8.2 represents the midpoint 

of the hallway for each simulation.  Since the shortest-route calculation is used for each 

simulation, as soon as the occupants walked out to their corresponding hallway nodes, 

EXIT89 would then move occupants to the closest stairwell.  By using this 7 node 

configuration, any occupant to the left of the midpoint line would travel to the left 

stairwell, and any occupant to the right of the midpoint would travel right.  This results in 

a 582/462 people flow split to the left and right stairwells, respectively. 

One note should be made as to the configuration of Floor 1 found in Figures 8.2-

8.9.  Not all floors look exactly like the one shown in Figures 8.2-8.9.  This floor plan is 

used only as an example of node placement.  On most floors, the conference room area, 

shown in Figure 8.2, is divided into 3 separate guestrooms.  With this known, one can see 

that more occupants reside on the left of the midpoint than on the right, which explains 

the 582/462 population split (left and right respectively). 

 

 
Figure 8.2:  7 nodes in hallway of 1st floor 

 
Figure 8.3 shows the node configuration for 6 nodes in the hallway.  The only 

difference between Figure 8.2 and 8.3 is the removal of the node in the left vertical 

hallway.  As expected, by removing this node, the population flow split remained the 

same, however, the evacuation time increased slightly.  The reason for this is possibly 

Midpoint of hallway Conference room 



282  

because the guestroom occupants on the left of the floor plan had to walk a bit further to 

their hallway node and then into the left stairwell. 

 
Figure 8.3: 6 nodes in hallway of 1st floor 

 
Figure 8.4 displays a change of 5 nodes in the hallway.  These nodes are still 

spaced out evenly in the center portion of the hall, with one of the nodes directly at the 

midpoint.  The flow split is similar to the previous 2 simulations, but presents slightly 

different numbers: 584/460 for the left and right exits respectively.  This caused some 

confusion, but after further analysis, the cause of this difference was found.  Because the 

two starred guestrooms in Figure 8.4 are connected to the center node on every floor of 

the building, this node is exactly the same distance from either stair.  The model 

randomly chooses the right or left stair for the starred guestrooms on each floor.  This is 

the reason for the slight variation in population split.  However, even with this difference, 

the evacuation time of 467 seconds is very close to the previous simulations, 6 and 7 

nodes. 

 
Figure 8.4:  5 nodes in hallway of 1st floor 
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Figure 8.5 shows the node placement of 4 nodes in the main hallway.  This 

configuration gives an equivalent flow split as the previously discussed simulations.  

Also, a similar evacuation time of 461 seconds is calculated.  Different from 5 nodes in 

the hallway, this 4 node configuration allows the guestrooms to the left and right of the 

hallway midpoint to travel to their respective stairways.   

The reason for this is because of the arcs (or connections) from node to node 

established by the user.  For instance, the starred guestroom in Figure 8.5 is connected to 

the node displayed by the curved arrow.  If the user had connected the starred guestroom 

to the node displayed by the straight arrow, the occupant would have traveled to the left 

stair.  The reason for the change is the distance from the connected hallway node to the 

staircase.  Once the occupant from the starred guestroom has reached their corresponding 

hallway node, they travel the shortest distance from that node to the stair.  In other words, 

the population flow split is more dependent upon the node connections from the 

guestroom to the hallway and the positioning of that node in reference to the available 

staircases, instead of the number of nodes in the hall.   

 
Figure 8.5:  4 nodes in hallway of 1st floor 

 
The population flow split for the 3 node configuration (as shown in Figure 8.6) is 

also equivalent to the previous simulations.  The decrease in evacuation time to 444 

seconds is possibly because of the addition of the left most node in the vertical hallway.  
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The occupants on the left side of each floor plan do not have to walk as far to reach the 

staircase. 

 
Figure 8.6:  3 nodes in hallway of 1st floor 

 
The 2 node configuration shown in Figure 8.7 also provided an equivalent 

population split and similar evacuation time.  None of the occupants are specifically 

going out of their way to travel to the stairs.  Again, it is dependent upon the user’s 

choice of node connections, or arcs.  All of the guestrooms to the right of the hallway 

midpoint are connected to the right node.  The same is true for the left node.  Because of 

the distance between nodes and the stairs, the occupants will travel to their respective 

stairs. 

 
Figure 8.7:  2 nodes in hallway of 1st floor – Configuration 1 

 
As a twist to the configuration in Figure 8.7, Figure 8.8 presents a different 

mechanism of noding the hallway.  One node is placed in the vertical left hallway and 

one node is placed in the center of the main hallway.  This provides a dramatic change in 

the population split and evacuation time, as shown in Table 8.1.  The arcs designated by 
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the user are key to this simulation.  Only 4 guestrooms to the left of the floor plan are 

connected to the left-most node.  All other guestrooms on the floor are connected to the 

center node.  As was previously mentioned and displayed in Figure 8.4, all guestrooms 

connected to the center node are randomly distributed to either the right or left stairwell, 

by floor, i.e. an entire floor will proceed to one stairwell or the other.  The reason that the 

left stair is so heavily used is because of that left-most node.  On every floor, 10 people 

are automatically designated to the left from the 4 left guestrooms. 

 
Figure 8.8:  2 nodes in hallway of 1st floor - Configuration 2 

 
Lastly, similar to the configuration in Figure 8.8, Figure 8.9 displays only one 

node in the midpoint of the main hallway.  The results reflect a random use of either 

staircase by floor.  This time, though, the right stair is more heavily used.   It is not 

necessarily clear as to why this is the case.  Similar to the 2 nodes, Configuration 2 case, 

the evacuation time is much larger than the previous cases. 

 
Figure 8.9:  1 node in center of hallway of 1st floor 
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Table 8.1:  Results of altering number of nodes in the hallway from 7 to 1 

# of nodes in hall # using left exit # using right exit Evacuation time 
7 582 462 439 
6 582 462 459 
5 584 460 467 
4 582 462 461 
3 582 462 444 

2 – Configuration 1 582 462 441 
2 – Configuration 2 764 280 606 

1 350 694 593 
 

Consequently, the population split to exits and evacuation time is governed by 

node placement, distances, and choice of node connections (or arcs) by the user.  At least 

in this example, less weight is placed on the actual number of nodes in the hallway, and 

more on their placement.   

Ultimately, as Figure 8.2 shows, seven nodes are placed throughout the hallway to 

simulate the fire scenario.  Each node is less than 8 feet away from each doorway of the 

guestrooms.  From the previous discussion and the results found in Table 8.1, it was 

decided that this layout would accurately describe the movement of the occupants from 

the guestrooms to the stairway.  Also, as explained in the Simulex section, Chapter 7 

explains how the hotel building is altered for the purpose of model comparison. 

Frame-to-frame dimensions are also used for all building components, including 

doors, guestrooms, corridors, and stairwells.  As with Simulex, it is questioned whether 

or not to use boundary layers for these components.  Fahy, the developer, says that she 

enters the exact dimensions of the building components into her model76.  It is understood 

that Predtechenskii and Milinskii incorporate this boundary layer in their calculation 

tables.  There would certainly be differences if boundary layers are included in the model, 
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by an obvious decrease in widths of components, and ultimately evacuation times.  Fahy 

also states that the user should input the usable area for each space, which includes 

subtracting out for large obstacles.  This is not done for the guestrooms in the hotel 

building, due to the fact that there are so few occupants residing in such a large space.  It 

is speculated that a hotel bed would not alter occupant movement in a substantial way.  

Lastly, handrails are not incorporated for the same reasons described for the Simulex 

model.  As Fahy has stated, the choice is up to the user to decide whether or not to take 

handrails into account.  Fahy writes that the “use of the handrails can make footing more 

secure, which should increase the flow (or at least not cause the slowing that will happen 

when people feel unsure of their footing).”  On the other hand, handrails could increase 

the boundary layer.  Either way, handrails are not considered to hinder movement in the 

fire comparison run. 

For the choice of shortest route vs. a user-defined route, the shortest route option 

is chosen for this fire scenario.  The reason for this is due to the simplicity of the hotel’s 

floor plan.   

EXIT89 requires the user to choose an overall body size in which all of the 

occupants will represent during the simulation.  The average or middle body size of 

Soviet is chosen for the scenario as well as the emergency travel speed.  The Soviet body 

size is chosen to represent an average body size of men, women, children, and older 

adult.  The Soviet body size is 0.1130 m2, which is very close (within 0.003 m2) to the 

anthropometric data for adults (97.5 percentile) provided in the Life Safety Code, NFPA 

10188 (Figure A.7.3.4.1).  The Soviet body size is also close to an average taken of men, 

women, elderly, and children body sizes used by Simulex.  Also, emergency travel speed 
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is selected since an actual fire would be the cause for this simulated evacuation.  It may 

seem more appropriate to choose the American body size for a hotel building in the 

United States, however, the body size of 0.0906 m2 is quite small.  Instead of viewing 

these body size labels as representations of countries, they should be viewed as labels for 

a small, medium, and large body size.   

Whereas location of the occupants can be chosen in Simulex, EXIT89 does not 

allow the user to place occupants at certain points (x,y) throughout the building.  The user 

only tells the model how many occupants are located within a node and the model 

handles “placement” or more accurately, the calculation of the number of people and the 

size of the space.  This aids the model in understanding the density of the space or the 

amount of space each occupant occupies throughout the simulation. 

There is no input of CFAST data for the fire scenario.  It is not included to be 

consistent since Simulex does not have smoke considerations.   

This fire scenario does not include the input of counterflow by the firefighters 

responding to this type of an emergency.  Although it is obvious that firefighter 

movement upstairs in an emergency is an issue in any fire, there is not enough data 

available on firefighter movement nor the interaction of flow streams moving in opposite 

directions to support choices for this parameter.   

Also, the comparison runs include one with a delay time and one without.  The 

minimum response delay time is 0.5 minutes and the maximum response delay time is 10 

minutes, as stated in Chapter 7.  These values apply to 100% of the population in the 

hotel building.   
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EXIT89 Input for 3 a.m.Cigarette Burn in a Guest Bedroom 

• Node/arc configuration of the building with 7 nodes in the hallway of every floor. 

• Shortest route chosen for all occupants 

• No input of CFAST data 

• All occupants of Soviet body size 

• All occupants travel at emergency speed 

• Minimum response delay time = 0.5 minutes; Maximum response delay time = 10 

minutes; 100% of population to delay 

• No input of counterflow 

• No occupants with disabilities 

• Down stair travel only 

Additional Bounding Analysis Runs for Simulex: 

The purpose of this exercise is to alter the occupant characteristics of the 

population, such as occupant speed, body size, mobility, and delay time, in an attempt to 

bound the evacuation results from the hotel building.  The purpose of the bounding 

analysis for any design is to attempt to anticipate other emergency situations, such as a 

change in fire location, fire type, time of day, season, change in hotel use, difference in 

hotel guests, etc.   

As mentioned earlier, other characteristics, such as occupant initial location, 

route, and population numbers for the building are not altered, which does put a 

limitation on the breadth of evacuation scenarios used to bound results.  For the purpose 

of this thesis, a majority of the focus is on the body size and speed of the occupants, 

dependent on certain circumstances. 
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The simulations run with Simulex are run either with no delay time or with the 

previous 5 minute +/- 5 minute delay time (as is used in the fire comparison run).  The 

runs using Simulex (with and without a delay time) are the following cases: 

Speed variation (all median body size except jackets) 

• All move at 1.0 m/s  

• All move at 1.2 m/s  

• All move at 1.4 m/s   

• All 1.2 m/s + jackets  

Occupant type variation (body size and speed) – smallest and slowest; largest and fastest 

• All elderly population 

• All males  

• All median body size, move at 1.3 m/s 

• All females  

Hotel use variation 

• Business Stay hotel  

• Leisure Stay hotel  

• Summer Camp hotel  

Occupant mobility variation 

• Hotel population (used in the fire comparison run) with a 3% disabled population 

• All disabled 

 
Speed variation 
The first attempt to bound the evacuation results from the hotel building is to do 

so by variation in speed.  The range of speeds used to do this is 1.0 m/s to 1.4 m/s (197-
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276 ft/min).  Each speed simulation uses the median body speed with no variation (+/-) in 

the unimpeded speed.  In other words, all occupants move at that specified speed.  The 

reason for using such a range is that 1.2 m/s represents the value provided in the SFPE 

handbook as the maximum unimpeded exit flow speed for horizontal components1.  1.0 

m/s, on the other hand, is provided by Boyce et al143 to represent average movement of 

various disabled occupants on horizontal components.  This is used as the lower bound.  

Since the lower and midbounds differ by 0.2 m/s, the highest speed bound used is 1.4 m/s 

and is representative of a very fit, urgent population. 

Also, to simulate a fire scenario occurring in the very cold months of winter, a 

simulation is run at the average speed of 1.2 m/s with the occupants wearing jackets.  

This also uses a median body size. 

 
Occupant type variation (body sizes and speed) 
In an attempt to vary the body sizes and corresponding unimpeded speeds, 

simulations are run with all of the population designated as containing 1) a smaller body 

and slowest speed and 2) a larger body size and fastest speed.  By running these types of 

simulations, the evacuation times can be bounded, as long as these populations are 

feasible to expect in a hotel building.  Also, to use the model’s capabilities to its fullest, 

this section uses the established populations provided by Simulex.  The model provides 

body types that correspond to body sizes and unimpeded speeds (with variation +/-) from 

field observations. 

The smaller body and slowest speed population is an “all elderly” population.  

This could occur in a hotel if a particular conference or event takes place for older adults 

near by the hotel.  The “elderly” body size is 0.113 m2, the population speed is 0.8 m/s 
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(+/- 0.3 m/s), and the multiplication factor for walking down stairs is 0.6.  It is true that 

Simulex specifies another body size that is smaller, which is the children body size.  This 

is not used to represent the entire smaller and slower population because the children’s 

speed is faster than the “elderly,” and it is also not feasible to design for an entire hotel 

filled with children, without adult supervision.  The children occupant type is taken into 

account in the hotel use variation simulations. 

The larger body sizes and fastest speed populations are two different occupant 

types.  The first being an all male population, which corresponds to the following inputs:  

0.131 m2 body size, 1.35 m/s (+/- 0.2 m/s), and a multiplication factor for walking down 

stairs of 0.6.  The second occupant type simulated is an all median population, consisting 

of a body size of 0.118 m2, unimpeded speed of 1.3 (+/- 0 m/s), and a multiplication 

factor for walking down stairs of 0.6.  These two occupant types are also provided by 

Simulex.  Two occupant types are simulated for bounding because although the all male 

population may have a larger body, the speeds are varied and can be slower than the 

median occupant type.  The median occupant type is used to represent an average of body 

sizes with no variation in speed.  Both occupant types are selected to produce faster 

evacuation times for the hotel building. 

An occupant type of all females is also simulated because of the fact that the 

female body is a smaller size than the males and median bodies.  On the other hand, the 

female occupant type contains a slower speed.  This simulation is run to check which 

input, a smaller body size or faster speed, has a greater effect on the evacuation time.  

The female occupant type contains the following inputs:  0.101 m2 body size, 1.15 m/s 

(+/- 0.2 m/s) and 0.6 is the multiplication factor for downstairs movement. 
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Hotel use variation 
For the fire comparison run, the hotel occupant statistics are obtained from DK 

Shifflet’s DIRECTIONS Travel Information System.  The purpose of the comparison 

run is to capture an average population of hotel guests, and this is done by combining 

percentages of business and leisure stays into one simulation.  For the bounding analysis, 

separate scenarios are simulated to anticipate an emergency in a primarily business hotel 

and a hotel primarily used for leisure stay.  As mentioned earlier, the percentages of men, 

women, children, and older adults for both a business and leisure trip are provided by 

DIRECTIONS and are restated here:  Business - 58% male, 42% female and Leisure - 

45% male, 33% female, 10% older adult, and 12% children.  The last simulation run 

under hotel use variation is of a hotel being used to house summer camps.  This 

simulation involves a population containing 95% children and 5% adults.  

 
Occupant mobility variation 
As mentioned before, Simulex allows the user to designate any population 

distribution (made up of any type of body size and speed) for their specific building.  

This is done for the Hotel use variance runs.  This is also used for the Occupant mobility 

simulations.  A hotel population with 3% (acknowledging the number of rooms 

designated to handicapped or disabled occupants) disabled population is created.  Data 

for the movement of the disabled occupants was acquired from data collected by Boyce et 

al.143.   This article captures the movement speed of disabled occupants (using crutches, 

canes, rollators, wheelchairs, etc.) on horizontal and vertical building components.   

The occupant types that are used to create this population involve the previous 

hotel distribution (49% male adults, 35% female adults, 11% older adults, and 5% 
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children) used in the fire comparison run and a created disabled population.  This 

population is entitled “hotel with 3% disabled” and contains 97% of the hotel type and 

3% of the disabled type.  The percentage of 3% for the disabled occupant type is decided 

upon by calling the actual hotel building used in this research to ask for the number of 

guestrooms that are designated for handicapped or disabled occupants.  Out of 506 

guestrooms and 28 suites in this hotel, 7 have an accessible shower, 11 have an accessible 

tub, and 28 have equipment for the hearing impaired.  Since the hearing impaired would 

not necessary have slower movement, they are not included here in the calculation for 

disabled occupants.  Therefore, 18 divided by 534 rooms provides an estimate of 3% 

disabled occupants.  This is strictly an estimate since it is likely that all accessible rooms 

will not be occupied at one time, as well as not all disabled or slower moving occupants 

require accessible rooms.  Also, if a hotel is equipped with a greater number of accessible 

rooms, for instance 5%, it is likely that not all disabled occupants will be able to traverse 

the stairs on their own.  Some will be in a wheelchair and will require occupants to carry 

them down or to be rescued by firefighters via elevator (Phase II control).  Therefore, 3% 

is a reasonable estimate to use here in the simulation of disabled occupants in a hotel 

scenario. 

The disabled occupant type is assigned the “median” body size to represent adult 

sizes.  The speed of the disabled occupant type is decided upon by using data from Boyce 

et. al143.  This article provides data on disabled occupants traversing horizontal building 

components, inclines, and up and down stairs.  The data used for the disabled simulation 

involved those occupants using crutches, walking sticks, and rollators as well as 

occupants defined as having “locomotion disability” but did not require a walking aid.  
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Other occupants, such as wheelchair users, would not be included in those occupants 

using the stairs.  Although Boyce et al did not have a large number of participants in the 

study, the article provides a good estimate.  The range of horizontal movement for the 

disabled population is a mean of 0.8 m/s with a variation of +/- 0.37 m/s.  This data is 

used for horizontal movement in Simulex.  For movement downstairs, the range of speed 

includes 0.11 – 0.7 m/s with a mean of 0.33 m/s.  This results in a 0.4 multiplication 

factor of movement down stairs, another input used in Simulex.  Overall, the hotel with 

disabled population involves a distribution of men (47%), women (34%), children (5%), 

older adult (11%), and disabled (3%) occupant types. 

Another occupant population that is created to bound the evacuation results is an 

all disabled occupant population.  This will present a very slow evacuation, although not 

as practical of a fire scenario for a hotel. 

Additional Bounding Analysis Runs for EXIT89 

Similar to Simulex, the purpose of this exercise is to use EXIT89 to alter the 

occupant characteristics of the population, such as occupant speed, body size, mobility, 

and delay time, in an attempt to bound the evacuation results from the hotel building.  

The purpose of the bounding analysis for any design is to attempt to anticipate other 

emergency situations, such as a change in fire location, fire type, time of day, season, 

change in hotel use, difference in hotel guests, etc.   

As mentioned earlier, other characteristics, such as occupant initial location, 

route, and population numbers for the building are not altered, which does put a 

limitation on the breadth of evacuation scenarios use to bound results.  For the purpose of 
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this thesis, a majority of the focus is on the body size and speed of the occupants, 

dependent on certain circumstances. 

Unlike Simulex, however, EXIT89 does not allow the user to specify groups of 

occupants.  In other words, any occupant characteristic specified applies to the entire 

population of the building.  Also, the model allows the user to choose only from three 

different body sizes that apply to the entire population; American, Soviet, and Austrian, 

and two different speeds; emergency and normal.  This model does not give the user the 

choices and range of occupant characteristics, as does Simulex.  Therefore, less flexibility 

is given to the user to bound the evacuation results. 

The simulations run with EXIT89 are run either with no delay time or with a 30 

second to 10 minute range distributed randomly over the entire population (the same 

delay used for the fire comparison run).  The runs using EXIT89 (with and without a 

delay time) are the following: 

Occupant body size and speed variation 

• American emergency 

• Austrian normal 

• American normal 

• Austrian emergency 

• Soviet normal 

Occupant mobility variation 

• Soviet emergency with 3% disabled occupants 

• All disabled occupants 
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Because of the limitations in input for occupant characteristics, only the body 

size/speed variation and occupant mobility variation can be performed to bound the 

evacuation results.  This leaves out the opportunity to vary hotel use and simulate a 

variety of speeds with which the occupants traverse the hotel building. 

 
Occupant body size and speed variation 
For each EXIT89 simulation, the user must choose one of the three body sizes and 

one of the two speed choices.  The body sizes of the 3 choices are provided here:  0.1458 

m2 for Austrian, 0.1130 m2 for Soviet, and 0.0906 m2 for American.  Also, by consulting 

the density/speed tables used by EXIT89, the emergency speed for horizontal 

components is 1.36 m/s at a density of 0.01 m2/m2 and the normal speed is 0.915 m/s at a 

density of 0.01 m2/m2.    

With that said, the combination of body size and speed that should create the 

fastest evacuation time is that of American emergency.  On the other hand, the slowest 

evacuation times should result from the Austrian normal combination.  All other 

combinations are run in order to check this speculation. 

 
Occupant mobility variation 
Similar to Simulex, occupants with disabilities are added to the fire comparison 

run (Soviet emergency).  31 occupants total, which is 3% of 1044 occupants, are added to 

the simulation randomly by the user.  EXIT89 requires that the user manually place the 

disabled occupants in certain nodes throughout the building and specify the disabled 

occupants’ percentage of the "normal" walking speed. 

  In order to arrive at this input, which is different from what Simulex requires, the 

Boyce et al. reference143 was again consulted.  The velocities provided by Boyce et. al are 
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then compared with the initial unimpeded speeds provided in the model31 for horizontal 

and vertical building components.  This comparison aids in the estimation of the 

percentage of the “normal” walking speed input for EXIT89.  The initial speed of 

emergency movement for horizontal movement is 1.36 m/s and downstairs is 0.99 m/s.  

As stated earlier, disabled occupants travel 0.8 m/s (mean) on horizontal components and 

0.33 m/s (mean) downstairs.  The percentage “able-bodied speed” for disabled occupants 

on horizontal is 58% (1.36 m/s * 0.58 = 0.8 m/s) and on stairs is 33% (0.99 m/s * 0.33 = 

0.33 m/s).  Since these percentages differ and EXIT89 requires only one percentage of 

“able-bodied speed”, an average percentage had to be calculated.  This average is 45% 

(average of 58% and 33%). 

However, since 45% may not capture the range of different speeds and the 

majority of the movement of occupants (especially those on higher floors) is on the stairs, 

disabled occupants are randomly assigned percentages ranging from 0.33 to 0.58, with a 

majority focused on 0.45.   In total, 3% (or 31 occupants) are assigned a disabled speed 

percentage.  This covers 1 person on every floor with an additional person (total of 2) on 

floors 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 to reach a total of 31 disabled occupants.  

These occupants are manually placed on each floor in different places throughout the 

floor plan ranging from rooms right next to the staircase to rooms in the middle of the 

hallway (which would involve walking the furthest distance to get to the stairs).   

Also, as is performed in Simulex, an all disabled population is input as a bounding 

simulation.  All 1044 occupants are given the average 0.45 percentage of “normal” 

walking speed, so as to simplify manual input. 
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The fire comparison (design scenario) run results from each model is compared 

and analyzed in the next chapter.  Also, all evacuation simulations attempting to bound 

the evacuation results are presented and discussed for each model.  This provides an 

evacuation result range for each model which will then be compared and analyzed 

between EXIT89 and Simulex. 

 



300  

 

CHAPTER 9: RESULTS AND ANALYSIS OF DIFFERENCES IN MODELS 
 

The purpose of this chapter is to present and compare the results from the fire 

comparison run (design scenario) from Simulex and EXIT89.  As stated in Chapter 7, the 

fire comparison scenario, referred to as the “hotel” simulation, involves a fire ignited by a 

cigarette on a mattress in a guest bedroom on the 15th floor of a 21 story hotel (fully 

occupied with 1044 occupants).  This fire occurs at approximately 3 a.m. in the morning 

during the winter season.  The models are used to their full capacity in order to simulate 

this fire scenario as realistically as possible.  All inputs chosen for each model are 

presented in Chapter 8.  Chapter 9 aims to compare the results from each model for the 

fire comparison run (hotel) and discuss possible reasons for any differences.  Two 

additional scenarios, both including disabled occupants, are used in a limited fashion to 

compare the models.  Since both models have the capabilities of including disabled 

occupants and a performance-based design is likely to include such a scenario, it is 

important to assess these differences.  Also, it is imperative to include more than one data 

point in assessing differences in the models. 

Once the fire comparison runs are compared and analyzed, results from the 

bounding analysis from each model are presented and discussed.  Since a performance-

based design aims to bound the evacuation results by running combinations of model 

inputs, the evacuation time results from each model are presented as a range and 

compared.  The purpose of the bounding results comparison is to assess whether or not 

the two models provide a similar range of evacuation times for the same building.  If 
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differences in the evacuation results are large, this may also show a need to evaluate 

designs using multiple evacuation models.   

 

Fire Comparison Runs 

Table 9.1 shows the results from the fire comparison run, labeled “hotel 

simulation” and results from two additional simulations that are used for further 

comparison entitled “hotel – 3% disabled” and “all disabled.”  The results that are used 

for comparison, as shown in Table 9.1, are the evacuation time (seconds), the population 

split of occupants to each exit (left and right exits), and the time spent at each exit, left 

and right, (seconds).  Also, each simulation is run for both models with and without the 

delay time of 5 minutes mean, +/- 5 minutes.  The reason for this is because in most 

cases, engineers will run egress simulations for their performance based design without a 

delay time, and then simply attach an appropriate time delay to results from egress 

models.  Simulating evacuation with and without delay times also allows for further 

comparison of the two models. 
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Table 9.1:  Results of fire comparison run and additional disabled simulations 

NO DELAY Simulex EXIT89 
Simulation Evacuation 

Time (s) 
Flow 
Split 

Time at 
Exit (s) 

Evacuation 
Time (s) 

Flow 
Split 

Time at 
Exit (s) 

Hotel 
simulation 

735 L=582 
R=462 

L=735 
R=635 

445 L=582 
R=462 

L=445 
R=386 

Hotel – 3% 
disabled 

1029 L=582 
R=462 

L=1029 
R=815 

633 L=582 
R=462 

L=496 
R=633 

All disabled 1319 L=582 
R=462 

L=1319 
R=1020 

990 L=582 
R=462 

L=990 
R=859 

 
DELAY – 

0.5–10 MIN 
Simulex EXIT89 

1140 L=1140 
R=1005 

Hotel 
simulation 

1195 

L=582 
R=462 

L=1140 
R=1195 

809 L=582 
R=462 

L=806 
R=809 

Hotel – 3% 
disabled 

1378 L=582 
R=462 

L=1378 
R=1190 

969 L=582 
R=462 

L=934 
R=969 

All disabled 1592 L=582 
R=462 

L=1525 
R=1592 

1226 L=582 
R=462 

L=1226 
R=1085 

 
 

Table 9.1 indicates EXIT89 evacuation times are 40% lower in the two hotel 

scenarios and a 25% lower in the “all disabled” scenario for the simulation with no delay 

time.  For the simulations including a delay time with a 5 minute mean (+/- 5 minutes), 

EXIT89 provides an evacuation time that is 30% lower than Simulex for the two hotel 

simulations and approximately 25% lower for the “all disabled” simulation.  Overall, 

Simulex provides a 25-40% higher evacuation time when compared to EXIT89 for these 

three evacuation scenarios. 

However, when comparing the number of occupants using each exit (flow split), 

both Simulex and EXIT89 produce the following results; 582 occupants use the left exit 

and 462 occupants use the right exit.  A similar flow split from both models is expected 

because the shortest distance route for the occupants is chosen for Simulex and EXIT89.  

This shows that the models are both seeing occupant distances in the same way and that 
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occupants are moving along the same path in both models.  If occupants are moving 

along the same path in Simulex and EXIT89, differences in the results could possibly be 

attributed to other inputs, such as body size and speeds. 

Another set of results that is compared among Simulex and EXIT89 is the time 

spent in each exit by the occupants.  It is known that the same number of occupants is 

using the exits, shown by the flow split results.  However, Simulex is showing longer 

times spent in the exits by the same number of occupants.  This difference is researched 

and analyzed in this chapter. 

Possible Reasons for the Differences in the Results Given by Simulex and EXIT89: 

• Actual stair configuration input  

• Differences in body sizes  

• Differences in unimpeded speed  

• Differences in the number of occupants allowed in a stair section at one time  

• Differences in the speed on horizontal components and stairs of the occupants 

controlled by movement algorithms of each model 

• Differences in the evacuation time recorded when 99% of the occupants have 

evacuated the building 

• Differences in the way the models handle slower moving occupants  

• Differences in the way that the models handle response distributions 

 
All of these possible reasons for differences are explored and reported upon.  

These reasons may prompt additional simulations using either of the two models, and 

these results are reported and analyzed.  Finally, conclusions are made noting the 
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significant reasons for the differences in the evacuation results from Simulex and 

EXIT89. 

Stair configuration input 
 

Continuous staircase 
One possible cause of the differences in results between 

EXIT89 and Simulex could be the stair configuration and method 

of input for the stairs into each model.  The occupants of the 

building spend most of their evacuation time on the staircase.  As 

stated in Chapter 8, the method of input for the staircases in 

Simulex is to include separate staircases for each floor.  On the 

other hand, EXIT89 requires only that each staircase section be 

represented by one node and the entire staircase is represented by 

the connection of all stair nodes together.  In other words, the 

model recognizes the stair as one continuous section (without 

turns on landings) that each floor plan flows into.  Because of 

the differences in stair input, Simulex input for the hotel 

building is altered so that only one left and one right staircase is 

created for the entire building.  An example of the left continuous staircase is shown in 

Figure 9.1.  By using this technique, once the occupants enter the staircase from any 

floor, they will continue to traverse the straight, continuous stairwell until reaching Floor 

0 (containing their exits).   

Although this may be a faster mechanism for inputting building configurations, it 

seems to subtract from the accuracy of the simulation.  Occupants evacuating an actual 

Figure 9.1:  Example 
of continuous left stair 
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building do not continue in a straight line throughout their entire trip.  At each floor and 

in between each floor, they are required to twist their bodies around a corner to continue 

down the next flight of stairs.  The continuous stairway, however, does give the user a 

better view of the flow and movement in the stairwells.  Also, when consulting the 

developer of Simulex, Thompson speculates that simulating separated staircases may 

cause pessimistic evacuation results84.  He goes on to explain that “people are perhaps 

inclined to obstruct the paths of other people more readily when changing direction 

(ignoring the obstruction to movement that they cause, rather than the direct effect upon 

themselves).”  However, the separate stair simulation seems to simulate a more accurate 

representation of high-rise building movement. 

In order to test this theory using other types of occupant characteristics within 

Simulex, several different simulations are run using the continual staircase for the left and 

right stairs (all with no delay time).  The Simulex simulations run with the continuous 

stair include all simulations run for the bounding analysis for the Simulex model (low and 

high evacuation times), as shown in Table 9.2.  These continual stair simulations are then 

compared to the previous, more realistic, separate stair simulations (which are used in the 

actual fire comparison run and subsequent bounding simulations).  The results are found 

in Table 9.2. 
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Table 9.2:  Simulex bounding simulations, no delay, used to compare the separated and continuous 
stair configurations 

SIMULEX –  
No delay 

Separated Stairs One continuous 
staircase 

Overall 

Simulation Evacuation 
Time (s) 

Time at Exit 
(s) 

Evacuation 
Time (s) 

Time at 
Exit (s) 

Difference in 
Evac. Time 

All Hotel 
population 

735 L=735 
R=635 

698 L=698 
R=555 

- 5% 

Hotel population 
+ disabled 

1029 L=1029 
R=815 

1079 L=930 
R=1079 

+ 5% 

All disabled 1319 L=1319 
R=1020 

1230 L=1230 
R=1155 

- 7% 

All Male 590 L=590 
R=490 

552 L=552 
R=435 

- 6% 

All Median 591 L=591 
R=460 

447 L=447 
R=370 

- 24% 

All Female 620 L=620 
R=540 

460 L=460 
R=390 

- 26% 

All Elderly 1073 
 

L=1073 
R=860 

856 L=856 
R=720 

- 20% 

Business Stay 603 L=603 
R=515 

510 L=510 
R=405 

- 15% 

Leisure Stay 699 L=699 
R=680 

707 L=707 
R=625 

+ 1% 

95% Children, 5% 
adult (camp) 

738 L=738 
R=650 

596 L=575 
R=596 

- 20% 

All 1.0 m/s 745 L=745 
R=630 

591 L=591 
R=480 

- 20% 

All 1.2 m/s 602 L=602 
R=515 

489 L=489 
R=400 

- 19% 

All 1.4 m/s 537 L=537 
R=430 

420 L=420 
R=335 

- 22% 

1.2 m/s + jackets 803 
 

L=803 
R=615 

595 L=595 
R=450 

- 26% 

Overall Range:537-1319 Range:420-1230 - 24% to 0 
 

Simulations using the continuous staircase provided faster evacuation times, 

except in the simulations with slower and disabled occupants mixed with faster moving 

occupants.  This exception is shown in the following simulations:  “hotel,” “hotel with 

disabled,” and “leisure stay.”  The reason for the increase in the evacuation time for the 

“hotel population with disabled” and “leisure stay” simulations is due to the random 
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placement of the slow occupants by the model.  If a slower occupant is placed in a certain 

part of the building, especially on a higher level in the building, that speed dominates for 

all other occupants (who are unable to pass the slow occupant) in the staircase.  Because 

of this, all occupants behind the slow-moving person take on the slow speed, thereby 

negating their own speed.  Also, their slow speed negates the change in stair 

configuration if they are placed high enough in the building to affect the movement of a 

large number of occupants.   

For all other simulations that include mobile (faster) occupants, the decrease in 

evacuation time with the continuous stair ranges from approximately 40 seconds (“all 

males”) to 208 seconds (“1.2 m/s + jackets”), or a range of 6-26%.  Also, for the “hotel” 

run, approximately a 1-minute decrease in evacuation time is calculated by Simulex, even 

though this simulation included slower moving occupants.  This difference in evacuation 

time seems logical because occupants in the continuous staircase no longer have to wrap 

around the stairs at each floor.  When analyzing movement of the occupants in the 

separated staircase simulations, several occupants wrap around the landings one by one, 

at times, and other times, travel 2 people across through the landing area.  When 

analyzing the continuous stair simulations, the model allows the occupants to move freely 

(and at times, two-abreast) and continuously down a long, straight staircase. 

 As mentioned earlier, it is logical to see small decreases in evacuation time for the 

simulations with a percentage of slower occupants, such as the “hotel population,” “hotel 

with disabled,” and the “leisure stay” simulations.  However, there is a question as to why 

the “all males” simulation only produces a 6% decrease in evacuation time when other 

simulations with larger bodies, such as the “all median” and the “jackets” simulations 
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have a much larger decrease in evacuation time.  Due to this confusion, the “all males” 

simulation is observed compared with the “all median” and “1.2 m/s + jackets” 

simulations because all of the three simulations mentioned contain occupants with larger 

body sizes and faster evacuation speeds.  It did not seem logical that both the median and 

jackets simulations included such a large decrease in evacuation time, while the males 

simulation did not.    

Observations are made of each simulation; “all males,” “all median,” and “1.2 m/s 

+ jackets,” and are reported below.  The “all males” simulation includes all occupants 

traveling at a speed of 1.35 m/s (+/-) 0.2 m/s with an overall body size of 0.131 m2 (0.27 

m for the radius of the body circle, 0.16 m for the radius of the torso circle, and 0.10 for 

the radius of the shoulder circle).  During the observation and as shown in Figure 9.2, 

many of the men travel the stair single file in the center of the stairway.  This is seen 

frequently throughout the simulation, especially in the beginning of the simulation, when 

people are still entering the stairwells from the floors.  During any backup or slow down 

in the stair, the occupants move down the stair in a single file line.  And when the men 

begin to move faster, all of the occupants either travel in a staggered pattern or in a single 

file line (never 2-abreast movement). 

The “all median” simulation includes all occupants traveling at a speed of 1.3 m/s 

(+/-) 0.2 m/s with an overall body size of 0.118 m2 (0.25 m for the radius of the body 

circle, 0.15 m for the radius of the main torso circle, and 0.10 m for the radius of the 

shoulder circle).  During the observation and as is shown in Figure 9.3, the occupants 

freely move down the stairs 2-abreast throughout the entire simulation.  The occupants 

travel single file or even staggered for short portions of the stair between larger groups of 
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tightly packed occupants.  In the “all median” simulation, occupants get closer in the stair 

than the “all males” or “jackets” simulations.  The “all median” occupants have a smaller 

body size than males, which allows them to move closely throughout the stair.  The “all 

median” occupants also travel at a similar speed when compared with the “all males.”  

Therefore, it makes sense for the “all median” occupants to have a faster evacuation time 

in the continuous stair simulation, which results in a larger percentage decrease (when 

compared to “all males”). 

Lastly, the “1.2 m/s + jackets” (known as “jackets”) simulation includes all 

occupants traveling at a constant speed of 1.2 m/s with an overall body size of 0.247 m2 

(0.25 m for the radius of the body circle,  0.235 m for the radius of the torso circle, and 

0.10 m for the radius of the shoulder circle).  During the observations of the “jackets” 

simulation, as shown in Figure 9.4, occupants travel throughout the stair in a close, 

staggered pattern.  At times throughout the evacuation, the occupants move at 2-abreast.  

Even though these occupants have a larger torso radius and body size, their overall body 

radius (0.25 m) is still smaller than the “all males” occupants (0.27 m).  It is assumed that 

the developer uses these body sizes for a jacketed population with the understanding that 

occupants still get closer to each other even with the presence of jackets, shown by a 0.25 

m body radius.  It makes sense for the “jackets” simulation to have similar evacuation 

results to the “all males” simulation because although the jackets simulation has a smaller 

body size than the males, they also move at a slower speed than the males.   

From these observations and Figures 9.2-9.4, the large percentage decrease of the 

“jackets” continuous stair simulation seems to be consistent with decreases seen for the 

“all males” and “all median” simulation.  This comparison and the large percentage 
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decrease in evacuation time (between the stair input methods) shows that the “jackets” 

separate stair simulation may have caused some unnecessary delays due to body sizes 

throughout the stair.   

           
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Overall, the results of the stairway change in Simulex for the three main 

simulations are included in Table 9.3 for comparison purposes.  With the change in stair 

configuration for Simulex, the results given by EXIT89 for no delay are still 36% lower 

in the “hotel” simulation, 40% lower in the “hotel with disabled” simulation, and 20% 

lower in the “all disabled” simulation.  For the delay simulations, EXIT89 for all three 

simulations is lower by a range of 25%.  Even with the stair change, EXIT89 still differs, 

using these three simulations, by a range of 20-40%.   

Figure 9.2:  "All 
Males" single file 
movement 

Figure 9.3:  "All 
Median" 2-
abreast 

Figure 9.4:  "All 1.2 
+ jackets" closely 
staggered 
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Table 9.3:  Results of fire comparison run and additional disabled simulations with addition of 
continuous stair simulations 

NO DELAY Simulex EXIT89 
 Separated Stair Continuous Stair  

Simulation Evac 
Time (s) 

Time at 
Exit (s) 

Evac 
Time (s) 

Time at 
Exit (s) 

Evac 
Time (s) 

Time at 
Exit (s) 

Hotel 735 L=735 
R=635 

698 L=698 
R=555 

445 L=445 
R=386 

Hotel with 
disabled 

1029 L=1029 
R=815 

1079 L=903 
R=1079 

633 L=496 
R=633 

All disabled 1319 L=1319 
R=1020 

1230 L=1230 
R=1155 

990 L=990 
R=859 

 
DELAY Simulex EXIT89 

1140 L=1140 
R=1005 

Hotel 

1195 L=1140 
R=1195 

1091 L=1085 
R=1091 

809 L=806 
R=809 

Hotel with 
disabled 

1378 L=1378 
R=1190 

1264 L=1220 
R=1264 

969 L=934 
R=969 

All disabled 1592 L=1525 
R=1592 

1647 L=1647 
R=1610 

1226 L=1226 
R=1085 

 
 
 

Difference in body sizes 
 

Another possible cause for the differences in EXIT89 and Simulex output is the 

body sizes used for the occupants in each model.  In Simulex, the average body size is 

calculated by adding together the percentages of each type of body size involved in the 

individual simulation.  As shown in Table 9.4, the average body sizes for each model 

used in all three simulations are approximately equivalent.  Any differences among the 

average body sizes for each model and simulation are in the thousandths of a square 

meter.  It should be noted, however, that in EXIT89, all occupants move with the same 

body size.  In Simulex, for the “hotel” and “hotel – 3% disabled” simulations, almost half 
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of the population has a body size that is 0.02 m2 larger than any of those simulated by 

EXIT89. 

Table 9.4:  Body size comparison for each simulation 

Body sizes Simulex EXIT89 
Simulation Body type Body size 

m2 
Average 

body size m2
Body name Body 

size  m2

49% Males 0.131 
35% Females 0.101 
5% Children 0.072 

Hotel 
simulation 

11% Elderly 0.113 

0.115 100% Soviet 0.113 

47% Males 0.131 
34% Females 0.101 
5% Children 0.072 
11% Elderly 0.113 

Hotel – 3% 
disabled 

3% Disabled 0.118 

0.115 100% Soviet 0.113 

All disabled 100% Disabled 0.118 0.118 100% Soviet 0.113 
 

Analysis of the three simulations is performed later in the chapter to evaluate the 

number of occupants each model allows in a stair section as one time period.  This will 

aid in concluding whether or not body size plays a role in the larger evacuation times 

created by Simulex.  Similarly, each model’s movement algorithms, in which body size is 

a factor, is analyzed and compared.   

In order to check the feasibility of these average body sizes, the Life Safety Code 

Handbook88 is consulted on anthropometric data for the 97.5 percentile of adults.  The 

body size given by the Handbook is calculated to be 0.11 m2, which is similar to the body 

sizes in Table 9.4. 

 

Difference in unimpeded speeds 
 

Similar to the previous section, another reason for differences in the results for the 

two models could be the unimpeded speeds used in each model’s simulation.  Table 9.5 
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shows the unimpeded speeds in EXIT89 and Simulex given to each body type for all 

three simulations.  Similar to the body size input, if an emergency speed is input into 

EXIT89, all occupants move at that unimpeded speed until density increases.  Chapter 5 

includes tables from Predtechenskii and Milinskii31, which are used in EXIT89 to show 

the relationship between speed and density of the occupants.   

In Simulex, each body type is also given a specific unimpeded speed, as shown in 

the table.  Since a variety of occupant types are used in each simulation, Table 9.5 

provides the mean unimpeded speed of the simulation and the range of occupant speeds.  

In addition, the multiplication factor of the occupants on the stair is included for each 

model.   

However, each model handles stair movement differently.  A multiplication factor 

for stair movement is included in the table for comparison purposes.  The horizontal 

speed of the occupant is multiplied by this multiplication factor to achieve speeds on 

stairs.  In the Simulex input file, the user can specify the actual multiplication factor for 

both up and down stair movement.  In all body types, except for disabled, a multiplication 

factor of 0.6 is used.  A factor of 0.4 is used for all disabled occupants.  A 0.6 

multiplication factor, for example, allows the model to move occupants at 60% of their 

horizontal speed.  In EXIT89, the model uses the Predtechenskii and Milinskii chart 

specifically for movement downstairs, which begins at an unimpeded speed of 0.99 m/s 

for able moving occupants moving at emergency movement.  An initial multiplication 

factor of 0.72, shown in Table 9.5, is solved for in EXIT89 by dividing 0.99 m/s (down 

stairs) by 1.36 m/s (horizontal movement), for comparison purposes only.  Stair 
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multiplication factors can be altered in Simulex, whereas in EXIT89, the density vs. 

speed tables are already set. 

Table 9.5:  Average unimpeded speeds on horizontal and stair components for each model 

Initial 
Speeds 

Simulex EXIT89 

Simulation Body type Initial speed 
(m/s) 

Average 
speed (m/s) 

Speed name Initial Speed 
(m/s) 

49% Males 1.35 +/- 0.2 
35% Females 1.15 +/- 0.2 
5% Children 0.9 +/- 0.3 

Hotel 
simulation 

11% Elderly 0.8 +/- 0.3 

1.19 mean; 
0.5-1.55; 
(0.6 stairs 

factor) 

100% 
Emergency 

1.36 horiz; 
(0.72 stairs 

factor) 

47% Males 1.35 +/- 0.2 
34% Females 1.15 +/- 0.2 
5% Children 0.9 +/- 0.3 
11% Elderly 0.8 +/- 0.3 

Hotel – 3% 
disabled 

3% Disabled 0.8 +/- 0.37 

1.18 mean; 
0.43-1.55; 
(0.6/0.4 

stairs factor)

97% 
Emergency; 
3% disabled 

1.36 horiz, 
.45-0.79 horiz 

disabled; 
(0.72 stairs 

factor) 
 

All disabled 100% 
Disabled 

0.8 +/- 0.37 0.8 mean;  
0.43-1.17; 
(0.4 stairs 

factor) 

100% 
Disabled 

0.61 horiz; 
(0.72 stairs 

factor) 

 
For the “hotel” simulation, Simulex occupants move at a mean unimpeded speed 

of 1.19 m/s (with a range of 0.5-1.55 m/s) and EXIT89 occupants move at 1.36 m/s for 

horizontal components.  Even with a large distribution of male occupants possibly 

moving faster (maximum of 1.55 m/s) in Simulex, all of the occupants in EXIT89 begin 

with a fast speed of 1.36 m/s.  This could certainly be a causal factor for EXIT89’s faster 

evacuation times.  Also, EXIT89 has a smaller initial decrease in speed down stairs, 

which could also contribute to faster evacuation times. 

For the “hotel with 3% disabled” simulation, the addition of 3% disabled 

population lowers Simulex’s mean unimpeded speed to 1.18 m/s (0.43 – 1.55 m/s range).  

On the other hand, EXIT89 contains a mean speed of 1.36 m/s with 3% of the population 

ranging from 0.45 to 0.79 m/s.  Again, the mean speed is higher for the majority of the 
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occupants in the simulation.  Also, for all occupants, the initial stair factor in EXIT89 is 

still 0.72.  For Simulex, the disabled occupants move with a 0.4 stair multiplication 

factor.  This is a possible reason for the large difference in evacuation times. 

Lastly, for the “disabled” simulation, even though the mean speed of occupants in 

Simulex is larger than that of EXIT89, Simulex provides a randomly distributed range of 

speed.  This range of speeds is from 0.43 to 1.17 m/s.  All of the disabled occupants in 

EXIT89 move at a speed of 0.61 m/s.  This could cause a smaller difference in evacuation 

time between EXIT89 and Simulex, however, Simulex’s stair factor (0.4) is much lower 

for all occupants than EXIT89’s initial multiplication factor (0.72).   

 

Difference in the number of occupants in a staircase section at one time 
 

Another possible reason for differences in input is the number of occupants that 

each model allows in a stair section at one time.  As mentioned in earlier chapters, when 

occupants move closer together, each model has a different method of slowing occupants 

due to density.  The occupants’ stair speed and the overall movement algorithm control 

the number of occupants in a stair section at any time in the simulation.  This is relevant 

because if one model allows the stair to become more crowded than the other with 

occupants traveling at a higher speed, occupants are moving through the stairs at a faster 

flow.  The faster flow results in a faster evacuation time.   

For this comparison, only simulations without a delay time are analyzed.   

The reasons for this are twofold.  One reason involves the fact that delay times are 

frequently added onto evacuation simulation results, instead of included in the 

simulation.  Also, there is an interest in understanding maximum occupant numbers in 
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stair sections for each model, which can only be achieved by allowing all occupants to 

travel to the stairs as soon as the simulation begins.  The delay time simulations are 

analyzed specifically in other sections throughout this chapter. 

The output of EXIT89 poses a challenge to explicitly calculate the number of 

occupants in a stair section during certain time periods throughout the simulation.  The 

output tracks the position of each occupant throughout the building for the entire length 

of the simulation.  Each line of output tracks the exact time, the occupant number, the 

original start node of the occupant, the building node that the occupant is traveling from, 

the building node that the occupant is traveling to, the number of occupants that have 

exited the building, and the number of occupants trapped (if smoke is involved in the 

simulation).  The information and its organization provide some difficulty in arriving at 

the number of occupants in the stairs at a certain time period.   

However, a method for finding this information is developed using groups of 

occupants entering a specific stair section (between floors 2 and 3) at the same point in 

time.  “Groups” of occupants from similar locations in the building enter a stair section at 

the exact same time, seen in the output file.  It is then noted, from the file, at which time 

in the evacuation that this group would exit this stair section and enter the next.  Then, 

during this bracketed time period (that the “group” would travel inside the stair section), 

it is noted the number of occupants that entered the stair section to join the original 

“group” of occupants in the stair.  This is representative of the number of occupants in 

the stair section at the time just before the original “group” exits to the following stair.  

For example, a group of 8 occupants enter stair section 398 (left stair on the 3rd floor) at 

17.36 s and enter the following stair section at 35.98 s.  Before 35.98 s, 20 more 



317  

occupants enter the stair 398 for a total of 28 occupants in the stair section at the time 

period directly before the group of 8 enters the next stair section 298 (approximately 

30.27 s is when the last occupant enters the stair before the group of 8 exits).   

Table 9.6 shows the number of occupants inside the Left (398) and the Right 

(399) stairs (one story of stairs only) at specific points in time throughout the “hotel” 

simulation from EXIT89.  It can be seen from the table that an average of 31 occupants 

and 23 occupants can be found in the left and right stairs, respectively, at one time.  Also, 

Table 9.6 notes the range of occupants found in the stair at one time, including the 

maximum number of 45 occupants for the Left stair.   

Table 9.6:  Numbers of occupants inside the Left and Right Stairs sections (measuring occupants on 
one story of stairs only) at specific points in time throughout the "hotel" simulation for EXIT89 

Time (s) # of occupants in 
Stair 398 

Time (s) # of occupants in 
Stair 399 

30.27 28 30.12 22 
50.11 28 45.49 22 
69.16 28 60.64 22 
86.98 28 76.56 22 
105.21 29 90.62 20 
119.29 22 105.67 22 
137.53 28 111.03 16 
157.72 34 125.63 22 
176.37 27 139.8 22 
197.6 36 154.4 22 
214.92 20 187.38 28 
234.43 36 200.8 8 
240.37 8 220.83 32 
269.29 45 238.65 6 
313.47 43 262.29 36 
357.07 44 296.5 36 
400.16 42 352.65 40 

Average 31 Average 23 
Range 8-45 Range 6-40 

 
Tables 9.7 and 9.8 capture the number of occupants in the left and right stair 

sections (connecting floors 2 and 3) at specific points throughout the simulation using the 
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Simulex model.  The method for recording this data is to playback the “hotel” simulation 

and to pause the simulation at randomly chosen times to count the number of occupants 

in each stair section.  The recording of occupants included only those occupants 

originating from the third floor and above.   

Table 9.7:  Numbers of occupants inside the Left and Right Stairs (in between floors 2 and 3) at 
specific points in time throughout the "hotel" simulation for Simulex – Separate Stair 

Time (s) # of occupants in 
Left Stair Section 

Time (s) # of occupants in 
Right Stair Section 

29 12 23 12 
47 21 45 14 
108 20 57 11 
118 18 111 21 
141 18 133 18 
163 21 152 21 
198 19 174 20 
236 22 200 20 
275 23 246 21 
321 28 280 20 
344 27 312 20 
354 27 328 20 
375 26 353 22 
425 22 367 20 
449 24 392 21 
495 21 433 5 
524 21 463 19 
558 24 521 25 
598 11 532 22 
613 3 559 1 
661 1 Average 18 

Average 19 Range 1-25 
Range 1-28   
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Table 9.8:  Numbers of occupants inside the Left and Right Stairs (in between floors 2 and 3) at 
specific points in time throughout the "hotel" simulation for Simulex – Continuous Stair 

Time (s) # of occupants in 
Left Stair Section 

Time (s) # of occupants in 
Right Stair Section 

29 13 23 12 
47 24 45 26 
108 23 57 23 
118 27 111 23 
141 26 133 19 
163 28 152 24 
198 27 174 11 
236 28 200 0 
275 28 246 16 
321 21 280 26 
344 27 312 29 
354 16 328 27 
375 17 353 26 
425 22 367 22 
449 23 392 20 
495 27 433 26 
524 25 463 22 
558 22 Average 21 
598 24 Range 0-29 
613 11   

Average 23   
Range 11-28   

 
As shown in Tables 9.7 and 9.8, the continuous stair simulations allow a higher 

average of occupants to be recorded in each stair.  The reason for this may be due to the 

fact that occupants on the floor landings are missed by analyzing the separated stair 

simulations.  Because of this, more confidence is placed in the data in Table 9.8. 

As indicated in the three tables, even with the continuous stair simulated in 

Simulex (Table 9.8), EXIT89 still allows a larger number of occupants in the stair section 

at one time.  The average number of occupants in the stairs is larger in EXIT89 when 

compared to both simulations with Simulex.  Also, the range of the number of occupants 
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in the stair at one time is also larger with EXIT89 ranging from 8-45 occupants 

(compared to 0-29 occupants with continuous stair using Simulex). 

The reasons for a lower number of occupants in the stairs in Simulex, when 

compared with EXIT89, is based on the differences in unimpeded velocity, and more so 

in the body sizes and the empirical relationships that slow occupants due to specific 

densities of the space.  From previous sections, it can be seen that Simulex contains a 

lower (average) unimpeded velocity, a larger body size, and a different technique to slow 

occupants due to density (which is explained in a later section).  It could be seen from the 

visualization of Simulex runs that occupants with larger body sizes would walk only 1-

abreast down the stairwell.  Other times, occupants would walk 2-abreast, which shows 

the manner in which Simulex handles differences in body sizes of the occupants in a 

simulation.  Also, when trying to input occupants into Stair 3 at a density of 0.222 

m2/person (4.5 persons/m2), Simulex only allows a maximum of 28-30 occupants input 

into Stair 3.  This allows for a density of only 3 people/m2.   

In EXIT89, however, instead of specifying the length and width of the stairwell, 

the program is only aware of a total area of the space.  Therefore, it can easily space a 

specific number of occupants, of equivalent size, throughout each stairwell node, based 

on the speed of the incoming occupants and the density of the space with time.  The 

differences in techniques of body size, velocity vs. density, and the input of the stairwell 

alter the number of occupants in stair 3 throughout the simulation for each model. 

EXIT89 allows a larger number of occupants in the stair at one time, when 

compared to Simulex.  The maximum numbers of occupants noted in Stair 3 are 45 

occupants in EXIT89 and 29 occupants in Simulex.  With the area of the stairwell being 
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9.93 m2, the density of the space for 45 occupants in EXIT89 is 4.5 persons/m2 (0.51 

m2/m2) and for 29 occupants in Simulex is 2.9 person/m2.   The EXIT89 value of 4.5 

persons/m2 is off of the graphs created by Jake Pauls for speed vs. density and flow vs. 

density1.  However, when calculating the density used by Predtechenskii and Milinskii, 

0.51 m2/m2 for 45 persons in the stair, the occupants are still able to move at this density.  

This is an obvious difference in movement and density when using Predtechenskii and 

Milinskii calculations compared to others, such as Pauls and Fruin.  Fruin30 lists the 

highest density in his level of service data for stairways (Level of Service F) as 0.37 

m2/person (4 ft2/person) which is equal to 2.69 persons/m2.  This is also less dense than 

the allowance of Predtechenskii and Milinskii found in EXIT89 of 4.5 persons/m2.   

 

Differences in speed on stairs discovered by comparing movement 
correlations 

 
EXIT89 and Simulex use different methods for simulating speed of the occupants 

throughout all building components and under various densities.  EXIT89 uses a density 

vs. speed relationship provided by the research of Predtechenskii and Milinskii for 

horizontal components, through the doorway, and downstairs and upstairs movement.  

Examples of these equations and data are presented in Chapter 5 of this thesis, as Tables 

5.2 and 5.3 and Equations 5.2 through 5.5.  For all building components, as density 

increases, the speed of the occupant decreases.  Much different from the data provided by 

Pauls and Fruin, Predtechenskii  and Milinskii data allows for a maximum density of 0.92 

m2/m2 at a very slow speed of 0.1 m/s on stairs.  With the Soviet body size of 0.113 m2, 

this equates to an allowable density of approximately 8 persons/m2 in the hotel staircase.  
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Tables of velocities vs. densities for EXIT are also introduced in Chapter 5 as Tables 5.2 

and 5.3.   

Simulex, on the other hand, uses a different empirical relationship that slows 

occupants due to their inter-person distance in a building space.  This equation is also 

included and explained in Chapter 5 as Equation 5.6.  The walking velocity down stairs 

in the Simulex model is restricted to 0.6 times the normal unimpeded velocity assigned to 

each occupant characteristic/type, unless otherwise changed and stated by the author.   

 
Since EXIT89 and Simulex use different 

techniques to slow occupants in dense situations, 

a method was devised by Thompson83, to equate 

techniques for comparison purposes.  The 

method successfully equates density (m2/m2 or 

persons/m2) and inter-person distance in the 

following way.    Thompson states that Fruin30 

and Ando et al151 observed individual people 

conforming to a circular spacing pattern while 

moving in a crowd.  Thompson also states that 

Fruin defined “levels of service” for pedestrians based on a radius of personal space 

surrounding the individual.  This circular spatial zoning is used only as an approximation 

for crowd movement.  Thompson uses a circular spacing arrangement for analysis of 

inter-person distance, which is shown in Figure 9.5 and is taken from Chapter 8 of 

Thompson’s thesis83.  Thompson uses this figure to show the reduction of the circular 

formation into linear dimensions. 

= − =1 0.5 0.87d2 2

Figure 9.5:  Circular formation of 
occupants (83, p. 115) 
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“d” is used to describe inter-person distance or the forward spacing in between 

individuals.  Using the Pythagorean theorem, Thompson calculates the lateral or side 

spacing to be 0.87d.  From this situation, it can be derived that the quantity of total floor 

space per person (in a crowded area) is equivalent to the forward distance d multiplied by 

the side distance 0.87d.  Thompson has derived the following equation (Equation 9.3) to 

equate density and inter-person distance. 

 
A=0.87d2  where A is area per person (m2)    (9.1) 
 

D=crowd density (persons per unit area) = 287.0
11

dA
=   (9.2) 

d=inter-person distance (m) = 
D87.0

1     (9.3) 

 
Equation (9.3) is used to convert density (m2/m2) used by Predtechenskii and 

Milinskii into inter-person distance, so that the velocities used by both models can be 

compared accurately.  Since their density is in the form of m2/m2, it is first divided by the 

body size of the simulated occupants, to convert the Predtechenskii and Milinskii density 

into persons/m2.  In the case of the hotel simulations, the Soviet body size used is 0.113 

m2/person.  In this case, all densities used by Predtechenskii and Milinskii have to be 

divided by 0.113 m2/person to achieve a density of persons/m2.  Once in that form, 

equation (9.3) is used to convert all densities into inter-person distance, with each 

corresponding emergency velocity (in m/s).   

Next, calculations are made to calculate the speed of the occupants vs. inter-

person distance for the thesis simulations in Simulex.  This is done by using Equation 

(5.6) from Chapter 5 and inserting average values (found in Table 9.5 of this section) 

from the hotel simulation run for unimpeded velocity and body depth.  Two graphs, 
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Figures 9.6 and 9.7, are included showing the differences between EXIT89 and Simulex 

occupant movement vs. inter-person distance on horizontal components and stairs.  For 

the stair graph, it must be noted that the average unimpeded speeds of the occupants in 

Simulex is multiplied by 0.6, as is used in the model.  Also, in both the horizontal 

components and the stairs graphs, the maximum and minimum velocities (also found in 

Table 9.5) are used to calculate the range of velocities modeled in the hotel simulation.  It 

should be restated that since a mixture of occupant types is used to simulate the hotel 

scenario in Simulex, a range of velocities are input into the simulation.  This is unlike 

EXIT89, where all occupants moved at the same unimpeded speeds and contained the 

same body sizes.  The graphs for the horizontal components and stair movement for 

Simulex and EXIT89 (using Predtechenskii and Milinskii equations (P&M)) are included 

as Figure 9.6 and 9.7. 

 
Figure 9.6:  Graph showing velocity on horizontal components vs. Inter-person distance for both 
models 
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Figure 9.7:  Graph showing velocity on stairs vs. Inter-person distance for both models 
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From these graphs, it can be seen that the average Simulex velocity and EXIT89 

(P&M) velocity on horizontal components of the building are fairly similar.  At inter-

person distances below approximately 1.2 m, the mean velocity of Simulex is slightly 

higher than that of EXIT89 (a difference of about 0.1 to 0.2 m/s).  Above the inter-person 

distance of 1.2 m, EXIT89’s velocity is higher than the mean of Simulex.  However, 

since most of the time spent during this hotel evacuation is on the stairs, Figure 9.7 is 

analyzed more closely.  The mean velocity of the occupants in Simulex is much lower 

that that of EXIT89 on stairs.  Because of this, even the maximum values of velocity by a 

fraction of the occupants in Simulex (males body type) are still lower than that of 

EXIT89 by all occupants.  Simulex produces greater velocities at low inter-person 

distances of 0.5 m and below, but it is rare to see numbers this low in either model.  An 

inter-person distance of 0.5 m is equivalent to a density of 4.51 persons/m2 or 0.51 

m2/m2.  In the hotel staircase, this is represented by a value of 45 persons in the stairwell 

at one time, as mentioned in numbers in the stair section of this chapter.  This high 
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number of occupants is seen only by EXIT89 on a single occasion in the left stair section 

(Stair 398).  The averages of occupants in the left stair section, for instance, at one time 

period are 31 for EXIT89 and 21 for Simulex (average of separate and continuous stair 

simulations), which is equivalent to an inter-person distance of 0.61 m (0.43 m/s) and 

0.74 m (0.381 m/s mean) respectively.  After 0.5 m, EXIT89’s velocities significantly 

increase above the velocities of the average Simulex velocity.  Because of this data, 

Figures 9.3 and 9.4 explain why EXIT89 produces a faster evacuation time in each of its 

simulations. 

 

Differences in evacuation time when 99% of occupants evacuate the building 
 

During Simulex simulations, it is noticed that a majority of the occupants 

evacuate the building in a significantly lower evacuation time than would result from the 

entire population.  This could be another possible cause of the differences in the results 

from the two models.  Therefore, it is of interest to understand the difference in 

evacuation time between 99% population escape and 100% population escape for each 

model.  If there is a significant difference in escape times from 99% and 100% of the 

population, reasons for such are analyzed and explained.  1% of the population includes 

approximately 10 people. 
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Table 9.9:  Evacuation time when 99% of the occupants have evacuated the building 

NO DELAY Simulex EXIT89 
 Separated Stair Continuous Stair  

Simulation 99% 
Evac 

Time (s) 

100% 
Evac 
Time 

99% 
Evac 

Time (s) 

100% 
Evac 

Time (s) 

99% 
Evac 

Time (s) 

100% 
Evac 

Time (s) 
Hotel 655 735 670 698 441 445 

Hotel with 
disabled 

725 1029 1050a 1079 457 633 

All disabled 1270 1319 1210 1230 980 990 
 

DELAY Simulex EXIT89 
1005 1140 Hotel 
990 1195 

1080b 1091 782 808 

Hotel with 
disabled 

1075 1378 1255c 1264 804 969 

All disabled 1440 1592 1630 1647 1215 1126 
a96% evacuated by 930 s; b97% evacuated by 935 s; c92% evacuated by 1125 s 
 

When there is an insignificant difference in evacuation times, such as all 

continuous stair simulations in Simulex, another majority percentage (90% or higher) and 

the accompanying evacuation time is presented (as shown by the notes labeled a, b, and 

c).  The appropriate majority percentage is chosen if the output file shows a gap in the use 

of either exit.  A gap is captured in the output file as a list of zeros (as time increases) for 

the number of occupants using that exit at each time step, followed by a small number 

using either exit at the end of the simulation.  If a gap in occupants using either one of the 

two exits is discovered in the output files for a simulation, the time for the appropriate 

percentage of occupants to evacuate the building is logged in the table above.  Where the 

majority of occupants is less than 99% before a gap in the output file forms, an 
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alternative percentage of occupants (90% or higher) evacuating the building is listed with 

 

Figure 9.8:  A small portion of the population still left to evacuation in Simulex 

 
the accompanying evacuation time.   

For the simulations in Table 9.9, it is common for the 

majority of the occupants in Simulex to leave after a certain 

time, and for a small portion of the population to leave the 

building a significant amount of time later.  This is shown by 

Figure 9.8, taken from the Simulex “Hotel with disabled” 

simulation with no delay after 11 minutes.  The figure shows 

the left and right stairs between floors 2 and 4.   

 

 

This simulation with “stragglers” also occurred in the “Hotel 

with disabled” simulation with no delay for the continuous stair.  This is shown below in 

Figure 9.9:  A small portion 
of the population still left to 
evacuate in Simulex
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Figure 9.9.  After 15 minutes and 30 seconds, only 4% of the population remains in the 

building in the right stair and is obstructed from free flow by the slower occupant shown 

here.   

Also, this behavior seems to have occurred in the simulations with 3% (31) 

disabled occupants in EXIT89 (delay and no delay), as shown in Table 9.9.  However, in 

the case of EXIT89’s 1%, these are only disabled occupants who move slower than the 

other able occupants in the simulation.   

In Simulex, these “stragglers” are either one of two possibilities.  Figure 9.8 

shows the first case of very slow individual occupants who originate on the higher floors, 

namely floors 19, 20, and 21 (the three highest floors of the hotel building).  Simulex 

gives its occupants the capability to pass slower moving occupants in the stair, depending 

upon their body size and positioning in the stair.  For instance, a slow mover was spotted 

originating in a guestroom in the middle of the floor plan on Floor 21(meaning that they 

had to travel the longest distance to reach the stair).  This occupant was moving much 

slower than the rest of the population on the floor, entered the stairwell after all others 

from the floor, and continued down the stairwell at an extremely slow rate.  In this case, 

the occupant was not blocking a larger population from getting by since he originated on 

the top floor of the building and entered the stairwell last.  Other “stragglers” initiating on 

lower floor may allow other faster occupants to pass, instead of blocking their route.  

This would also cause a small number of “stragglers” to increase the overall evacuation 

time. 

For larger occupants, a second case like what is shown in Figure 9.9 will occur.  

Here, the slow moving occupant is blocking the stair for the occupants behind him to 
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pass.  This will cause a larger number of occupants to leave the building much later than 

the rest of the population.   

 

Differences in the way each model handles slower moving occupants 
 

It can be seen by viewing the Simulex simulations that slower moving occupants 

can provide an obstacle in the stair, depending upon the stair width.  In the design 

comparison runs, it is common to see the slower moving occupants, labeled “elderly” or 

“disabled,” causing a queue behind them.  Many times, due to the width of the stairwell 

in the hotel, the occupants behind the slow mover would adjust to the speed of the slow 

occupant and travel behind throughout the rest of the simulation.  This is seen in many of 

the simulations using Simulex involving slower moving occupants.  At times, the other 

occupants in the stair can bypass the slower moving occupants if the slow occupant is 

traveling close to the stair wall.  As shown in simulations, the position and body size of 

the occupant play a role in whether or not others can pass by.  Even if the slow moving 

occupants “hug” the stair wall, they provide a short-term obstacle for the others that wish 

to pass.  The occupants that wish to pass a slow mover many times slow down 

themselves, then angle their bodies to get by the occupant near the wall.  This affects the 

fluid movement of the other occupants, and this is seen by a short queue forming behind 

even the slow movers near the walls. 

The figures below are taken from the “hotel with disabled” simulation without 

delay using separate stairs.  Figures 9.10 and 9.11 show how a slow occupant can affect 

the movement of others in the stairwell using the Simulex model.  In Figure 9.10, the 

stair on the right (Right 34) is showing gaps between occupants where slower moving 
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occupants are causing others behind them also to slow.  Also, in Figure 9.11, Right 23 

shows that slower moving occupants are also passed by and left to travel in smaller 

numbers at the lower stairs, which increases the evacuation time.  This also accounts for 

why a majority of the occupants escape in a smaller evacuation time, while the clock runs 

higher for the few slower moving occupants to reach the exit.   

 

 
Figure 9.10:  Snapshots taken from "hotel with disabled" simulation showing how slow movers affect stair movement 
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Figure 9.11:  Snapshots taken from "hotel with disabled" simulation showing how slow movers affect stair movement 

 
Figures 9.12-9.14 are also taken from the “hotel with disabled” simulation 

without delay, but this time showing the continuous stair simulation.  They show the 

evacuation via progressive paused screen shots in order to show the gaps in between the 

occupants throughout the left and right continuous stairways.  The continuous stair 

simulation, as shown, provides an easier way to track individuals in the staircase and 

monitor total stair movement. 
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Figures 9.12-9.14:  Snapshots taken from “hotel with disabled” simulation 
 

EXIT89’s output is also analyzed to note if the occupants in the stair surrounding 

the disabled occupant are slowed down to the slower occupant’s speed, as is seen in 

Simulex.  From the analysis of the output, it is discovered that the increase in the 

evacuation time in the model is due only to the individual disabled occupants traveling to 

the exit without interfering with the able occupants in the stairs.  This is concluded due to 

the fact that all other occupants from a particular floor evacuate much quicker than the 

disabled occupant from that same floor.  There are definite differences recorded in 

evacuation times of the disabled occupant on a particular floor when compared to the 

evacuation time of the last person to leave the building from the same floor as the 
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disabled.  This increase in overall evacuation times of the disabled occupant ranges from 

12 s to 250 s, an average of 130 seconds. 

Also analyzed is the time the disabled occupants took to enter and exit the stair 

section on floor 3, compared with the time the able occupants, who are present in the stair 

section with the disabled, take to enter and exit the same section.  This is a check to make 

sure that the theory discussed in the earlier paragraph is accurate and that the disabled 

occupants did not interfere in any way with the evacuation of the able occupants.  On 

average, the disabled occupants take approximately 17 seconds longer than the others 

around them in the same stair section during the same time period, with a range of 0-34 

seconds.  Lastly, Table 9.10 shows the difference, per stair, of the disable and able 

occupants’ travel times for a flight of stairs.  It is seen that disabled occupants 

consistently have longer travel and evacuation times on stairs when compared with the 

able occupants in the simulation. 

Table 9.10:  Average stair section travel times for disabled vs. able occupants in Stair 3, EXIT89 

Average travel times Left stair section Right stair section
Disabled travel time (s)  34 28 

Able travel time (s) 19 18 
 

The following reasons show that the disabled occupants did not interfere with the 

able occupants traveling alongside in the stair.  

• The disabled occupants take longer to exit the building when compared with all 

others originating from the same floor  

• The disabled occupants take longer to travel one flight of stairs when compared with 

others traveling in the same stair 

• Overall, disabled occupants have longer travel times for a flight of stairs when 

compared with able occupants 
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Differences in the way each model handles response distributions 
 

As mentioned in Chapter 5, Simulex allows the user to distribute delay times 

randomly, triangularly, and normally.  EXIT89 allows the user to assign delay times to 

certain nodes and/or assign additional random delay times over a certain percentage of 

the population.  In order to simulate the fire scenario, random distributions are used in 

both models.  The only difference in input of this response delay is that EXIT89 requires 

a minimum and maximum value of the delay and Simulex requires a mean value with a 

(+/-) value for the delay.  However, in either model, the maximum response delay of 10 

minutes is specifically stated in the input.  Because of the similarity in input, any 

differences depend on the model’s random assignment of response delays over the height 

of the building.  This difference is expected anytime the user chooses random 

distributions. 

 

Bounding Results 
 

As is done in performance-based designs, an attempt to bound the evacuation 

results for this hotel building is made.  Simulex separate stair no delay and Simulex 

continuous stair no delay simulations (Table 9.11) are compared with the bounding 

results from EXIT89’s no delay simulations (Table 9.12).  Also EXIT89’s delay 

simulations (Table 9.12) are compared with Simulex delay simulations (Table 9.11).   
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Table 9.11:  Bounding results from the Simulex model  

SIMULEX No Delay 5 min +/- 5 min Delay 
 Separate Stair Continuous Stair  

Simulation Evacuation 
Time (s) 

Time at 
Exit (s) 

Evacuation 
Time (s) 

Time at 
Exit (s) 

Evacuation 
Time (s) 

Time at 
Exit (s) 

1140 L=1140 
R=1005 

All Hotel 
population 

735 L=735 
R=635 

698 
 

L=698 
R=555 

 1195 
 

L=1140 
R=1195 

Hotel 
population + 

disabled 

1029 L=1029 
R=815 

1079 L=930 
R=1079 

1378 L=1378 
R=1190 

All disabled 1319 L=1319 
R=1020 

1230 L=1230 
R=1155 

1592 L=1520 
R=1592 

All 1.0 m/s 745 L=745 
R=630 

591 L=591 
R=480 

963 L=963 
R=960 

All 1.2 m/s 602 L=602 
R=515 

489 L=489 
R=400 

903 L=903 
R=895 

All 1.4 m/s 537 L=537 
R=430 

420 L=420 
R=335 

869 L=869 
R=860 

1.2 m/s + 
jackets 

803 
 

L=803 
R=615 

595 L=595 
R=450 

907 L=907 
R=885 

All Elderly 1073 
 

L=1073 
R=860 

856 L=856 
R=720 

1269 L=1269 
R=1150 

All Male 590 L=590 
R=490 

552 L=552 
R=435 

923 L=923 
R=880 

All Median  
 

591 L=591 
R=460 

447 L=447 
R=370 

899 L=899 
R=880 

All Female 620 L=620 
R=540 

460 L=460 
R=390 

968 L=945 
R=968 

Business Stay 603 L=603 
R=515 

510 L=510 
R=405 

962 L=962 
R=955 

Leisure Stay 699 L=699 
R=680 

707 L=707 
R=625 

1169 L=1169 
R=1160 

95% Children, 
5% adult (camp) 

738 L=738 
R=650 

596 L=575 
R=596 

1151 L=1085 
R=1151 

Overall Range: 537-1319 
Range(w/o outliers): 

590-1073 

Range:420-1230 
Range (w/o outliers): 

447-1079 

Range: 869-1592 
Range(w/o outliers): 

899-1378 
Flow Split - L=582; R=462 
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Table 9.12:  Bounding results from the EXIT89 model 

EXIT89 No Delay 5 min +/- 5 min Delay 
Simulation Evacuation 

Time (s) 
Time at Exit 

(s) 
Evacuation 

Time (s) 
Time at 
Exit (s) 

Hotel (Soviet, 
emergency) 

445 L=445 
R=386 

809 L=806 
R=809 

Hotel–3% 
disabled 

633 L=496 
R=633 

969 L=934 
R=969 

All disabled 990 L=990 
R=859 

1226 L=1226 
R=1085 

American, 
emergency 

384 L=384 
R=332 

809 L=806 
R=809 

Austrian, normal 679 L=679 
R=544 

862 L=862 
R=857 

American, normal 442 L=442 
R=402 

857 L=853 
R=857 

Soviet, normal 563 L=563 
R=466 

857 L=854 
R=857 

Austrian 
emergency 

560 L=560 
R=445 

809 L=807 
R=809 

Overall Range:  384-990 
Range (w/o outliers): 

384-633 

Range: 809-1226 
Range(w/o outliers): 

809-969 
Flow split - L=582; R=462 
 

For the simulations without delay, EXIT89’s bounding results range from 384-

990 seconds and Simulex’s results range from 537-1319 seconds (separate stair) and 420-

1230 seconds (continuous stair).  Although these ranges quite possibly contain 

simulations that are highly unlikely.  For simulations that are too risky, the safety of the 

occupants may be comprised, and for simulations that are too conservative, the building 

owner may have to invest in unnecessary and costly safety additional to the building.  

Because of this, the following simulations are deemed unlikely. 

• Simulex – all 1.4 m/s 

• Simulex – all disabled 

• EXIT89 – all disabled 
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It is unlikely that the designer will design a hotel building safe enough for an entire 

population of disabled or slow moving occupants.  Also, speeds of 1.4 m/s from the entire 

population are also unlikely and not even documented as a maximum speed by Pauls1.  

The highest occupant speed has been documented to be approximately 1.2 m/s on 

horizontal components.   

Once the unlikely scenarios are removed from the bounding results, the ranges of 

evacuation times from each model are compared.  For the simulations without delay, 

EXIT89’s bounding results range from 384-633 s, while Simulex’s range from 590-1073 

s (separate stair) and 447-1079 s (continuous stair).  For simulations including a random 

delay distribution, EXIT89’s results range from 809-969 s and Simulex’s results range 

from 899-1378 s (separate stair only).  The separate stair is presumed to make the biggest 

impact or problem if all occupants traveled into the stairwell at the same time.  However, 

since a delay time is distributed among all occupants, the separate stair remains as the 

input file used for the delay simulations. 

Simulex still contains results much larger than EXIT89’s maximum evacuation 

time for the bounding simulations.  This was due to the introduction of the slower 

populations by Simulex, a known capability of the model.  EXIT89’s American 

emergency simulation produces a very low evacuation time (384 s or approximately 6.5 

minutes).  EXIT89 produces maximum results in the bounding simulations that are 

approximately 40% lower than that of Simulex for no delay.  In the case of simulated 

delay times, EXIT89 produces maximum results that are approximately 30% lower than 

Simulex.  In both cases of delay and no delay, EXIT89 produces a faster minimum result, 

but only by approximately 10%. 
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One thing that should be noted here is the results obtained from EXIT89 with the 

30 to 600 second delay time distribution.  Once the distribution is input, the evacuation 

time for EXIT89 no longer depends on the body size.  For all simulations with delay 

times, other than those involving disabled occupants, an evacuation time is given for all 

emergency simulations (independent of body size) and for all normal simulations 

(independent of body size).  The two evacuation times that EXIT89 would produce for 

the hotel building with delay time is either 809 seconds (emergency speed) or 

approximately 860 seconds (normal speed).  The delay time seems to space occupants 

throughout the building in such a way that they move close to their unimpeded speeds on 

the stairs and the evacuation time is then dominated by the time in which they are able to 

begin evacuating. 

Another observation to note is the differences between the separate and 

continuous stair simulations in Simulex.  When analyzing the continuous stair 

simulations, Simulex allows the occupants to walk 2 people, side-by-side, to the exit, 

causing a faster simulation.   This does not seem as realistic, especially given the size of 

the stairwell (44 inches).  Pauls mentions from his previous work that a 44 inch stair does 

not permit two-abreast movement152, as is shown by the Simulex model.   

Difficulties in Analyzing the Output of Each Model 
 

Simulex:  It is beneficial that the simulations are visualized, however the 

occupants are not labeled or tracked in the actual output.  It would be very difficult to 

track the location of the occupant from one place to another in the separated stair 

simulation or even the continuous stair simulation because the occupants become 

grouped once they enter the stair window.  Also, the model does not allow the user to 
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give occupants of interest different colors in order to track movements.  This would be a 

problem in very complicated buildings if the user is interested in following a certain 

group of occupants from one position in the building to another. 

EXIT89:  The output from the model is very detailed, but in a complex way.  

Each occupant in given a number and the author has found it useful to import the output 

data into an excel spreadsheet and sort out by occupant number, building component, etc. 

to evaluate the inner workings of the model.  The model does not visualize the 

evacuation, so the author must rely on analysis of the detailed data.  It is very helpful, 

however, to have the output tracking individual occupants’ positions at each time (s).  

This aided in the analysis performed in the chapter. 

Discussion of Results 
 

Even with a simplified hotel building, significant differences are found among the 

evacuation results given by EXIT89 and Simulex for the same fire scenario.  Figures 9.15 

and 9.16 are also used to show the differences in the evacuation times for each simulation 

type, with and without delay times.  And, Figure 9.17 is used to show differences in the 

maximum and minimum evacuation times (without unlikely simulations or outliers) from 

the bounding results from each model.  This type of bar graph can show more easily, 

rather than restating numbers and percentages, the differences between Simulex and 

EXIT89 results.   

 



341  

Evacuation Times for No Delay Time Simulations

0

200

400

600

800

1000

1200

1400

Hotel Hotel with dis All Disabled

Simulation Type

Ev
ac

ua
tio

n 
Ti

m
e 

(s
)

Separate Stair Simulex

Continuous Stair Simulex

EXIT89
 

Figure 9.15:  Evacuation times for simulations with no delay time 
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Figure 9.16:  Evacuation times for simulations with a delay time 
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Consistently, EXIT89 produced evacuation times that are 20-40% lower than 

those in Simulex.  The main reasons for these differences are found to be the following 

(taken from the sections presented previously in this chapter): 

1) The difference in movement algorithms used by each model 

2) The capability of Simulex to simulate slower moving occupants that affected able 

occupants’ movement 

3) The difference in unimpeded velocity  

4) The allowance of EXIT89 for a larger number of occupants in the stair at one time 

Even though a greater number of occupants in the stair at times would cause a 

lower inter-person distance and corresponding lower speed, Figure 9.7 is still able to 

show EXIT89 captured a higher overall speed on stairs than Simulex.  The movement 

algorithm, which incorporated body size and unimpeded speed, is the dominating factor 

in the difference in evacuation times between the two models. 
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Figure 9.17:  Evacuation times for the bounding results with and without delay times 
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Figure 9.17 shows the differences in the evacuation times of EXIT89 and 

Simulex, where Simulex values are those recorded in the continuous stair simulations for 

no delay time.  It is clear to see the similarities in evacuation time for the minimum 

bounds on both the delay and no delay simulations.  The differences occur in the 

maximum values, due to the ability of Simulex to move slower occupants throughout the 

simulation.  Also, EXIT89 handles disabled occupants in a different manner than 

Simulex, as stated earlier in this chapter. 
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CHAPTER 10: CONCLUSIONS 
 
 This thesis aims to answer two sets of questions.  The first and second sets of 

questions ask the following: 

• How does an engineering egress design of a hotel using EXIT89 or Simulex 

account for the four factors of egress?  What is missing from these models to 

capture major factors of a hotel evacuation?   

• Will two specific models give similar output for the same design scenario?  If not, 

why?  

To answer the first set of questions, a comprehensive model review is completed, 

as well as an in-depth study of two specific evacuation models, EXIT89 and Simulex.  

The focus of the set of questions is whether or not EXIT89 or Simulex can simulate all of 

the factors associated with a hotel evacuation, namely the building configuration, 

procedures of the evacuation, environmental conditions, and behaviors.  If not, other 

models are listed which have the capabilities of simulating a hotel evacuation.   

EXIT89 and Simulex are able to simulate certain features of a hotel evacuation, 

but could not capture all of the four factors of egress.  The input choices for each model 

corresponding to each of the four factors of egress are the following: 

• Building Configuration – Nodes and arcs input for EXIT89 and CAD drawing input 

for Simulex 

• Procedures – User-defined routes or shortest distance for both models 

• Environmental Conditions – CFAST data can be imported into EXIT89 and there is 

no option for Simulex 
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• Behavior – Both include inputs of delay time, body size, and the simulation of 

occupants with disabilities.  Simulex also allows the user to choose unimpeded speeds 

for each occupant group. 

However, there are features of a hotel evacuation that these models are not able to 

simulate.  These include an accurate representation of the building when using a coarse 

network, the simulation of the presence of hotel staff, the simulation of the effect of 

previous experience or training on the occupant, the incorporation of both fire and smoke 

conditions and the effects on the occupants’ decision making, exhaustion on the stairs, 

social affiliation, the simulation of actual pre-evacuation behaviors, elevator use, the 

condition of the occupant at the time of alarm (sleep, intoxicated, etc.), the simulation of 

carrying items or a baby, and the option of preparing an area of refuge instead of full 

evacuation.     

 From Chapter 2, it is apparent that other models have certain capabilities lacking 

in EXIT89 and Simulex to simulate a hotel evacuation.  This information is provided in 

Table 10.1.  As shown in Table 10.1, EvacSim contains many of the needed capabilities 

lacking in the two compared models.  However, it should be noted that data for some of 

the more complicated simulation techniques may be lacking.   

 Also shown in Table 10.1, all of the models listed, with the exception of STEPS, 

are the behavioral models.  This shows that behavioral models aim to simulate more 

complex situations and behaviors.  Many of the models listed in Table 10.1 have the 

capabilities of simulating individual pre-evacuation activities.   
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Table 10.1:  Features of models that contribute to a hotel evacuation 

Model Contribution to a hotel evacuation 
EXODUS • Turn back behavior  

• Movement affected by presence of smoke 
EvacSim • Fire wardens instruct occupants on each floor 

• Knowledge sharing among occupants 
• Elevator use 
• Simulation of pre-evacuation activities 

CRISP • Vertical counterflow 
• Simulation of pre-evacuation activities 

STEPs • Social Affiliation – family members reunite 
• Elevator use 

ASERI • Turn back behavior 
• Simulation of pre-evacuation activities 

EXITT 
(residences only) 

• Turn back behavior 
• Simulation of pre-evacuation activities 
• Simulation of occupants assisting others in the building 

EGRESS • Simulation of response and decision-making delays 
• Simulation of fire fighters moving toward the fire 

VEGAS • Simulation of occupants responding to behavior of others 
around them 

E-SCAPE • Simulation of pre-evacuation activities 
• Simulation of group conformity 
• Delays affected by occupant special training and/or fire drills 

BGRAF • Simulation of pre-evacuation activities 
• Simulation of environmental conditions affecting evacuation 

BFIRES-2 • Simulation of pre-evacuation activities 
 

This thesis also aims to relay limitations in the overall design process.  Most 

times, designers will use only one model for each of their projects in a performance-

based design.  The discussions above, and more detailed in Chapter 2 and 6, show that 

each model has different specialties and behavioral capabilities.  The user must choose a 

model with the appropriate features and capabilities for the project at hand.  Also, the 

user must make sure there is an understanding of what data the input variables and 

features are based on and the limitations of the model.  Depending upon the complexity 

of the space and the uncertainty of the occupants who will use the space, it is possibly 

more accurate to use models with less complexity, such as the movement models.   
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The second set of questions discussed in this thesis is the following: 

• Will two specific models give similar output for the same design scenario?  If not, 

why?   

Since designers use only one model for a performance-based design, there is a 

concern about the difference in output from two similar models given the same design 

scenario.  EXIT89 and Simulex, both partial behavior models, are used to model the same 

fire and evacuation design scenario from a hotel building.    In addition to the “hotel” 

simulation, “hotel with 3% disabled” and “all disabled” simulations are used in the 

comparison of EXIT89 and Simulex.  Also, each simulation described above is run with 

and without a time delay.  Overall, EXIT89’s evacuation times for these simulations are 

25-40% lower than the times produced by Simulex.  However, the usage of exits (the 

number of people using exits 1 and 2) are equivalent for both models.   

The reasons for these differences in model results are due to the differences in 

stair configuration input, the movement algorithm used by each model, differences in 

unimpeded speeds of the occupants, the differences in density in the stairwell, and the 

differences in the method that each model simulates disabled or slower moving 

occupants.   

The differences in stair configuration are due to the method of stair input into 

EXIT89 and Simulex.  By using the Simulex separate stair input method described in 

Chapters 8 and 9, the occupants travel 180° around the landing at each floor plan.  

EXIT89 considers the stairwell to be a set of connected nodes, without acknowledging 

individual movement around a landing.  Therefore, a new Simulex file is created in which 

the stair forms a single continuous staircase into which all floors enter.  By changing 
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Simulex’s stair configuration input to be more similar to EXIT89, the three simulations 

run in EXIT89; “hotel,” “hotel with 3% disabled,” and “all disabled,” still produce results 

that are 20-40% lower when compared with Simulex continuous stair simulations.  This 

stair configuration change results in more significant evacuation time differences in 

Simulex (between separate and continuous stair runs) for the simulations without slower 

or disabled occupants, as is seen in the bounding analyses in Chapter 9.   

The difference in movement algorithms in EXIT89 and Simulex is the main 

reason for the significant differences in evacuation times between the two models.  The 

three main simulations being compared are labeled as “hotel,” “hotel with 3% disabled,” 

and “all disabled.”  The movement algorithms for each model incorporate body sizes, 

initial unimpeded speeds, and slowing due to distance from others/density of the space.  

From analysis of the “hotel” simulation, it is found that both EXIT89 and Simulex 

contain similar overall body sizes, however EXIT89 simulates occupants at a higher 

unimpeded speed on horizontal components and stairs.  Both models’ movement 

algorithms are equated to inter-person distance vs. velocity in Chapter 9.  When velocity 

vs. inter-person distance is graphed for each model for the “hotel” simulation, Figure 9.7 

shows that movement in the stair is much faster using the EXIT89 model.  EXIT89’s 

velocity is, at times, larger than the maximum speed of a group of occupants using the 

Simulex model.   

Also, by analyzing the “hotel” simulation using EXIT89 and Simulex, it is found 

that EXIT89 allows a larger number of occupants in the stairwell at one time.  By 

observing the continuous stairwell visualization of the “hotel simulation,” the number of 

occupants in a stairwell section (the stair section is between floors 2 and 3 equating to 
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9.93 m2) is counted at random times throughout the simulation in Simulex.  EXIT89’s 

detailed output file is analyzed, using steps outlined in Chapter 9, to count the number of 

occupants in a stair section at various times throughout the simulation.  Analysis shows 

that EXIT89 allows 8-45 occupants in the stair section, while Simulex allows only 0-29 

occupants in the stair section during the “hotel” simulation.   With more occupants in the 

stair moving at a faster pace, EXIT89 can produce much faster evacuation times. 

A final reason for differences in evacuation results of the three simulations is the 

way in which the two models simulate slower moving occupants.  Simulex allows the 

slower moving occupant to act as an “obstacle” in the stair that either causes a queue or a 

slight delay for other occupants.  EXIT89, on the other hand, does not simulate the slower 

moving occupants to interfere with the able occupants in the simulations.  For this reason, 

EXIT89 still produces faster evacuation times than Simulex, even with the simulation of 

disabled occupants. 

The evacuation time for all three simulations; “hotel,” “hotel with 3% disabled,” 

and “all disabled,” using EXIT89 and Simulex with separate and continuous stairs are 

shown in Figures 10.1 and 10.2.     
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Figure 10.1:  Differences in evacuation times between EXIT89 and Simulex for simulations without 
delay 
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Figure 10.2: Differences in evacuation times between EXIT89 and Simulex for simulations with a 
delay 
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Also, both models are used in their full capacity to bound the evacuation results, 

since this is frequently done in performance-based design.  As mentioned in Chapter 5, 

Simulex contains a wider range of occupant characteristic inputs, which is used in the 

bounding simulations.  The ranges of evacuation time from each model (with and without 

delays) are also compared.  In the Simulex model, the simulations are varied by occupant 

speed, occupant type (speed and body size varied), hotel use, and occupant mobility.  In 

the EXIT89 model, the simulations are varied by occupant body size and speed and 

occupant mobility.  Results of the bounding simulations can be seen in Tables 9.11 and 

9.12 in Chapter 9.   

For the bounding results, the evacuation times of interest are the minimum and 

maximum evacuation times for each model (with and without delay times).  Simulex still 

contains evacuation times larger than EXIT89’s times for each minimum and maximum 

value, as shown in Figure 10.3.  This is especially seen with Simulex’s maximum value 

simulations with and without delay times.  Larger evacuation times produced by Simulex 

are mainly due to the introduction of the slower populations, a known capability of the 

model.  EXIT89 produces maximum results in the bounding simulations that are 

approximately 40% lower than that of Simulex for no delay.  In the case of simulated 

delay times, EXIT89 produces maximum results that are approximately 30% lower than 

Simulex.  In both cases of delay and no delay, EXIT89 produces a faster minimum result, 

but only by approximately 10%.   
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Figure 10.3:  Differences in bounding results for EXIT89 and Simulex with and without delay times 
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The question remains whether or not it is sufficient to use only one evacuation 

model for a project in a performance-based design.  This is a difficult question to answer 

due to other factors, such as time and cost.  In many cases, evacuation models may be 

second to hand calculations.  From the analysis done for this thesis, it is important to 

make sure that the model has sufficient capabilities and features to capture the scenario(s) 

for the specific building.  It is recommended for the designer to fully understand the inner 

workings of the models and to assess whether or not the movement algorithm and 

methods are realistic.  For example, in the case of EXIT89, it may not be a realistic 

scenario to model occupants who do not interact with each other.   

The models in this comparison produced different evacuation results mainly due 

to the capabilities of the model to represent an actual hotel simulation.  The simulation of 

a variety of speed and body sizes by Simulex produced longer evacuation times.  

However, a variety of occupant types are realistically seen in evacuation from buildings.  

Therefore, instead of focusing on the number of models to use in a design, the 

recommendation is to choose a model that is capable of simulating a multitude of 



353  

scenarios for that building type and is conscious of differences in the population’s 

movement.  And, by providing the information in Chapter 2, the user now has the 

mechanism to choose the appropriate model for the specific project.  If time is available 

and costs are low, the designers may want to check results with another egress model of 

similar capabilities and features. 

Future Work 

 This work helped to identify two types of further research in egress modeling.  

The first type involves the review and comparison of current egress models and the 

second type involves the collection of data to further prediction of egress models.  

 The first type of further research focuses on an extension of the work presented in 

this thesis.  This type of comparison can be extended to other available egress models 

being used to predict egress, such as STEPs, buildingEXODUS, and EVACNET4.  Since 

the models used in this analysis were dissimilar in the model structure (coarse and fine 

network), it would be beneficial to compare egress models that have the same 

characteristics and/or input features.  If differences arise with additional models which 

use different movement algorithms (but contain the same structure and features), the 

questions arises as to which movement data is the most accurate for certain types of 

evacuations.  Also, an interesting project would involve the use of the entire hotel 

building for future egress model comparison.  If the entire hotel building is modeled, 

other bounding variables could be simulated, such as occupant initial position, route 

choice, and occupant population numbers.  Lastly, a project that involves the 

identification of the dominant variables of certain egress models would be beneficial to 

the field of egress modeling.  By identifying dominant input variables that significantly 



354  

affect the egress results, model users would understand which input variables would 

require a higher level of research before running each simulation.  This project would be 

an extension of work being performed by Arup for the National Institute of Standard and 

Technology under the grants program. 

 The second type of further research involves the collection of data necessary to 

improve prediction capabilities in egress.  Data is needed on pre-movement times and 

activities of occupants in hotel buildings.  Also, data on how hotel staff (or staff of other 

buildings) affects the evacuation from hotels is critical in capturing all aspects of the 

evacuation.  Lastly, there is an overall need for more research detailing behaviors and 

reasons for delay from actual fire events occurring in hotel buildings (or any building).  

Many model developers rely on evacuation drills for model validation, which may result 

in unrealistic evacuation times. 

 

Recommendations for Model Developers 

 This research also helped to identify recommendations for model developers from 

a users’ point of view.  First, it would be beneficial for the user to obtain a more detailed 

version of the output than is frequently provided.  In performing the comparison of 

models outlined in Chapter 9, the differences in output and the lack of data in certain 

areas restricted the amount of analysis to be completed.  For instance, it would have been 

interesting to develop a graph of individual evacuation times over the length of the 

evacuation period for each model for comparison purposes, however individual 

evacuation times (without visualization) were not provided by each model as output.    

This is just one example.   
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 Also, providing the user with the egress model’s specific data sources to support 

certain input variables is important in understanding the inner methods of the model.  

There are highly sophisticated egress models that are available for users, however, these 

may lack egress data to support many of the input variables.  This should be stated so that 

the user is aware of these input parameters.  Also, providing the user with model 

limitations would prepare the user for possible problems or confusion with the output 

data.  It can be said that all egress models are accompanied with certain limitations, and 

providing them openly could avoid incorrect and/or inappropriate use of the model for 

certain project.   

 Lastly, it would be beneficial to compare egress model output to actual fire data.  

Although this is a difficult task with limited data, this comparison should be attempted at 

some stage in model development.  It is suggested that drill data is not sufficient to 

compare with model results due to the nature of the perceived threat of the occupants.   

 With all of these considerations in mind, there are many steps to take to improve 

the prediction tools in egress modeling.  These are certainly not “quick fixes.”  They are 

meant to provide areas of improvement from a users’ point of view.   
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